JPS6258097A - Inverter control method for submersible motor pump in hot string deep well - Google Patents
Inverter control method for submersible motor pump in hot string deep wellInfo
- Publication number
- JPS6258097A JPS6258097A JP19715685A JP19715685A JPS6258097A JP S6258097 A JPS6258097 A JP S6258097A JP 19715685 A JP19715685 A JP 19715685A JP 19715685 A JP19715685 A JP 19715685A JP S6258097 A JPS6258097 A JP S6258097A
- Authority
- JP
- Japan
- Prior art keywords
- deep well
- submersible motor
- hot
- motor pump
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、温泉の需要量や井戸の水位および湧出量等の
各種条件に対応させて最も効果的に温泉用深井戸水中モ
ータポンプを駆動させるためのインバータによる温泉用
深井戸水中モータポンプの制御方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to driving a deep well submersible motor pump for hot springs most effectively in response to various conditions such as the demand for hot springs, the water level of the well, and the amount of gushing water. This invention relates to a method of controlling a hot spring deep well submersible motor pump using an inverter.
C従来の技術〕
そもそも、温泉用深井戸水中モータポンプは、水井戸用
とは違い、温度、泉質成分、湧出量、水位(揚程)変化
、据付深度、水圧変化、需要量変化等が通常の限度を超
える場合があり、ガス混入、スケール付着、腐蝕等もか
らみ合って複雑な条件が伴うので、モーター、ポンプの
製品はもとより、その運転にも各井戸毎の条件に合わせ
た微妙な制御・管理を必要とするものであるが、従来は
、この種の温泉用深井戸モータポンプは、需要量や井戸
の水位及び湧出量の各種条件の変動に係りなく、定格運
転をし、需要量が少ない時などには、給湯パルプを締め
て調節し、更には温泉用深井戸水中モータポンプの運転
と停止との繰り返しにより、需要量等の各種条件に見合
うように調節しているのが現状である。しかし、温泉用
深井戸水中モータポンプを定格運転した状態のままで、
給湯バルブを締めて調節するのでは、不安定領域の危険
状態で運転して故障発生のおそれがあることになる。C. Conventional technology] In the first place, unlike those for water wells, submersible motor pumps for deep wells for hot springs are usually subject to changes in temperature, spring quality components, gushing volume, water level (head) changes, installation depth, water pressure changes, demand volume changes, etc. The limits may be exceeded, and complex conditions are involved, including gas contamination, scale adhesion, corrosion, etc. Therefore, not only motors and pump products, but also their operation must be carefully controlled to suit the conditions of each well.・Although it requires management, conventionally, this type of deep well motor pump for hot springs operates at its rated value regardless of fluctuations in the demand volume, water level of the well, and various conditions such as the amount of water flowing out. At present, when water is low, the water supply pulp is adjusted by tightening the hot water supply pulp, and the hot spring deep well submersible motor pump is repeatedly started and stopped to match various conditions such as demand. It is. However, when the deep well submersible motor pump for hot springs is operated at its rated condition,
If the hot water supply valve is adjusted by tightening it, there is a risk of operation in a dangerous unstable region and failure.
温泉用ポンプはその条件の複雑さから一旦運転したら、
あまり止めないで連続運転する方が寿命的に良いわけで
あるので、調整なく定格運転を続けると不必要な時にも
温泉を汲み出して放流することになって温泉資源に対し
て無駄が多いばかりか、温泉用深井戸水中モータポンプ
に供与される電力も温泉の必要量に対して消費量が多く
、経済的でないといった問題があった。又、温泉用深井
戸水中モータポンプの運転と停止とで各種条件に見合う
ように調節する方式は、温泉用深井戸水中モータポンプ
の故障発生率が高くなる等の原因ともなって好ましくな
く、かつ高頻度の時間帯の調節も期待できるものではな
かった。Due to the complexity of the conditions, once hot spring pumps are operated,
Continuous operation without frequent stops is better in terms of lifespan, so if you continue to operate at full capacity without making adjustments, hot springs will be pumped out and released even when it is unnecessary, which will not only be a waste of hot spring resources. However, the electric power supplied to the deep well submersible motor pump for hot springs also has a problem of being uneconomical because the amount of electricity consumed is large compared to the amount required for hot springs. In addition, the method of adjusting the operation and stop of the deep well submersible motor pump for hot springs to suit various conditions is undesirable and increases the failure rate of the deep well submersible motor pump for hot springs. Adjustment of frequency and time of day was also not as expected.
そこで、本発明は、上記事情に鑑み、インバータにより
温泉用深井戸水中モータポンプの回転を制御して、需要
量や井戸の水位及び湧出量等の各種条件に応じて温泉用
深井戸水中モータポンプ特性を可変し、これにより経済
的で故障発生率の少ない運転が期待でき、かつ地下の温
泉資源の枯渇を防止できると共に、無人管理などによる
省力化をも図ることができるインバータによる温泉用深
井戸水中モータポンプの制御方法を提供することを目的
とする。Therefore, in view of the above-mentioned circumstances, the present invention controls the rotation of the deep well submersible motor pump for hot springs using an inverter, and adjusts the rotation of the deep well submersible motor pump for hot springs according to various conditions such as the amount of demand, the water level of the well, and the amount of gushing water. Deep well water for hot springs uses an inverter that allows for variable characteristics, which enables economical operation with a low failure rate, prevents depletion of underground hot spring resources, and saves labor through unmanned management. The purpose of the present invention is to provide a method for controlling a medium motor pump.
本発明は、上記目的を達成すべく、需要量、井戸の水位
及び湧出量等の各種条件に応じてインバータから温泉用
深井戸水中モータポンプに供与される電源の周波数を可
変させて、温泉用深井戸水中モータポンプのポンプ特性
を制御する温泉用深井戸水中モータポンプの制御方法を
特徴とするものである。In order to achieve the above object, the present invention varies the frequency of power supplied from an inverter to a deep well submersible motor pump for hot springs according to various conditions such as demand, well water level, and gushing amount. The present invention is characterized by a method for controlling a deep well submersible motor pump for use in hot springs, which controls the pump characteristics of the deep well submersible motor pump.
以下、本発明に係るインバータによる温泉用深井戸水中
モータポンプの制御方法の一実施例を説明する。第1図
において、1は、井戸内に設置される温泉用深井戸水中
モータポンプである。温泉用深井戸水中モータポンプ1
は、吸込口2を備えたポンプ部3と、該ポンプ3を駆動
するモータ部4とからなっている。該温泉用深井戸水中
モータポンプ1は井戸内から湯を揚場管5を介して揚湯
し、バルブ6を経て所定箇所に給湯する。温泉用深井戸
水中モータポンプ1は、従来制御面7で駆動される。つ
まり、−次電源8から制御面7を経り後、水中ケーブル
9を介してモータ部に定格電力が供与され、これにより
定格運転が行われる。An embodiment of a method for controlling a hot spring deep well submersible motor pump using an inverter according to the present invention will be described below. In FIG. 1, 1 is a hot spring deep well submersible motor pump installed in a well. Hot spring deep well submersible motor pump 1
consists of a pump section 3 having a suction port 2 and a motor section 4 for driving the pump 3. The deep well submersible motor pump 1 for hot springs lifts hot water from inside the well through a pumping pipe 5, and supplies the hot water to a predetermined location via a valve 6. A hot spring deep well submersible motor pump 1 is conventionally driven by a control surface 7. That is, after passing through the control surface 7 from the secondary power source 8, rated power is supplied to the motor section via the underwater cable 9, thereby performing rated operation.
この状態では、商用周波数の電源で運転され、第2図に
示す如く、ある揚湯量Q(n?/m1n)に対して最大
の効率ηを呈するようになっている。又、温泉用深井戸
水中モータポンプ1に供与される電力の周波数を可変す
れば、最大効率ηも左右に移動する。この温泉用深井戸
水中モータポンプ1に供与される電源の周波数を自由に
可変できるインバータ10は、第1図に示す如く、制御
面7に並列に接続される。そして、インバータ10と制
御面7とは、切換えにより選択されて動作するようにす
る。つまり、通常はインバータ10により温泉用深井戸
水中モータポンプ1の駆動を制御し、必要に応じて制御
面7で温泉用深井戸水中モータポンプ1の駆動を制御す
るように形成される。インバータ10にも最低の水位に
対して応動する井戸電極23が接続されることは勿論で
ある。上記インバータ10は給湯量や井戸の水位等各種
条件の変化に対応させて温泉用深井戸水中モータポンプ
1に供与される電源の周波数を可変させる。例えば、第
3図に示す如く、必要とする給湯量が極めて少ない場合
には、′標準周波数1例えば50Hzから35Hz程度
まで低減させる。低減させる周波数は、必要とする給湯
量に対して最大の効率が得られるような周波数に変更す
る。又、逆に第4図に示す如(、必要な給湯量が増加し
たとすると、この増加した給湯量に対して最大の効率が
得られるような周波数に変更する。ところで、第3図及
び第4図に示す如く、給湯に従って井戸11内の水位が
低下することが多い。この場合、水位が低下する実際の
揚程、所謂実揚程(m)が変化するので、給湯量(nr
/+win)の変化のみならず、実揚程(m)の変化に
も対応させてインバータ10から温泉用深井戸水中モー
タポンプ1に供与される周波数を可変し、調整する。井
戸水位が需要量変化または季節的変化等で実揚程(m)
がH3からH2に上昇したにも拘らず、標準周波数のま
まで温泉用深井戸水中モータポンプ1を駆動したとする
と、第5図に示す如く、温泉用深井戸水中モータポンプ
1の状態が揚程(m)の上昇に対応してポンプの標準特
性曲線12のA点からB点に移動する。従って、揚湯i
Qが必要量Q、からQ2に増加するばかりか、動力特性
曲線13に示す如く、動力PもPlからPzに増加する
。一方、インバータ10により、実揚程の変化Hl−H
zに対応させて、温泉用深井戸水中モータポンプ1に供
与される電源の周波数を低減させれば、温泉用深井戸水
中モータポンプ1の駆動状態が第5図に示す標準特性曲
線12のA点から周波数の低減された特性曲線14の0
点に移動する。従って、温泉用深井戸水中モータポンプ
1は、必要とする給湯量のみ揚湯する。しかも、動力特
性曲線13から15に変化し、これに伴い、動力PがP
+から可変された動力曲線15のP3に移動するのでP
2とP3との差だけ電力が少なくて済み節約されること
になる。インバータ10から温泉用深井戸水中モータポ
ンプ1に供与される電源周波数を変化させたときの消費
電力は、標準周波数を100%、この時のポンプ軸動力
を100%したものを標準とすると、理論的にも下記の
表に示す如(、大幅に節減されて、電力消費の削減を図
ることができる。In this state, it is operated with a commercial frequency power supply, and as shown in FIG. 2, it exhibits the maximum efficiency η for a certain amount of hot water Q (n?/m1n). Moreover, if the frequency of the electric power supplied to the deep well submersible motor pump 1 for hot springs is varied, the maximum efficiency η will also shift from side to side. An inverter 10 that can freely vary the frequency of the power supplied to the hot spring deep well submersible motor pump 1 is connected in parallel to the control surface 7, as shown in FIG. Then, the inverter 10 and the control surface 7 are selected and operated by switching. That is, the driving of the hot spring deep well submersible motor pump 1 is normally controlled by the inverter 10, and the driving of the hot spring deep well submersible motor pump 1 is controlled by the control surface 7 as necessary. Of course, the well electrode 23 that responds to the lowest water level is also connected to the inverter 10. The inverter 10 varies the frequency of the power supplied to the hot spring deep well submersible motor pump 1 in response to changes in various conditions such as the amount of hot water supplied and the water level in the well. For example, as shown in FIG. 3, when the required amount of hot water supply is extremely small, the standard frequency 1 is reduced from, for example, 50 Hz to about 35 Hz. The frequency to be reduced is changed to a frequency that provides the maximum efficiency for the required amount of hot water supply. Conversely, as shown in Fig. 4, if the required amount of hot water supply increases, the frequency is changed to obtain the maximum efficiency for this increased amount of hot water supply. As shown in Figure 4, the water level in the well 11 often decreases as hot water is supplied.In this case, the actual head at which the water level falls, the so-called actual head (m), changes, so the amount of hot water supplied (nr
The frequency supplied from the inverter 10 to the deep well submersible motor pump 1 for hot springs is varied and adjusted in response to not only changes in the actual head (m) but also changes in the actual head (m). Actual pumping height (m) due to changes in demand or seasonal changes in well water level
If the hot spring deep well submersible motor pump 1 is driven at the standard frequency even though the current has increased from H3 to H2, as shown in FIG. (m) moves from point A to point B on the standard characteristic curve 12 of the pump. Therefore, fried water i
Not only does Q increase from the required amount Q to Q2, but as shown in the power characteristic curve 13, the power P also increases from Pl to Pz. On the other hand, the inverter 10 causes a change in the actual head Hl−H
If the frequency of the power supplied to the deep well submersible motor pump 1 for hot springs is reduced in accordance with 0 of the frequency reduced characteristic curve 14 from the point
Move to a point. Therefore, the hot spring deep well submersible motor pump 1 pumps only the amount of hot water that is needed. Moreover, the power characteristic curve changes from 13 to 15, and along with this, the power P changes to P
Since it moves from + to P3 of the variable power curve 15, P
The power consumption is reduced by the difference between P2 and P3, resulting in savings. The power consumption when changing the power frequency supplied from the inverter 10 to the hot spring deep well submersible motor pump 1 is theoretically calculated based on the standard frequency being 100% and the pump shaft power at this time being 100%. As shown in the table below, the power consumption can be significantly reduced and power consumption can be reduced.
第5図において、24.25は全揚程のうち損失揚程を
示している。In FIG. 5, 24.25 indicates the lost head of the total head.
又、インバータ10による温泉用深井戸水中モータポン
プ1の駆動の制御に際し、例えば運転開始時には水位が
浅(、漸次水位が低下した後に正常運転に入るような井
戸の場合、インバータ10から温泉用深井戸水中モータ
ポンプ1に供与される電源の周波数を第6図に示す如く
段階を追って順次増加させる。このようにすると、最終
の特性曲線16に達するまでD−Iの如く、多少振らっ
くが、変化させるべき周波数の幅を細かく採るに従って
揚湯量Q4に近づき、直線的に変化をする。従って、適
正揚湯量の範囲を遺脱しないようにポンプ性能を制御す
ることになる。つまり、従来の場合温泉用深井戸水中モ
ータポンプ1に供与される電源の周波数が同一のままで
あると、第6図に示す如く、同一特性曲線16上を、井
戸内の水位の変化に対応してKからLに至り、更にMか
らIに達する。この結果、従来の方法では、適正揚湯量
の範囲エフのみならず、不安定領域18内で運転される
時がある。その他、適正揚湯量の範囲17の他側にも不
安定領域19がある。不安定領域18.19で運転をす
ると、キャビテーションが発生し、温泉用深井戸水中モ
ータポンプlの故障の原因になるといったことは周知の
通りである。In addition, when controlling the drive of the hot spring deep well submersible motor pump 1 by the inverter 10, for example, in the case of a well where the water level is shallow at the start of operation (or the water level gradually decreases before normal operation starts), the inverter 10 controls the drive of the hot spring deep well submersible motor pump 1. The frequency of the power supply supplied to the well submersible motor pump 1 is increased step by step as shown in FIG. As the width of the frequency to be changed becomes narrower, the amount of hot water pumped approaches Q4 and changes linearly.Therefore, the pump performance is controlled so as not to deviate from the range of the appropriate amount of hot water pumped.In other words, the conventional method In this case, if the frequency of the power supply supplied to the hot spring deep well submersible motor pump 1 remains the same, as shown in FIG. L, and then from M to I. As a result, in the conventional method, there are times when the operation is not only within the range F of the appropriate amount of hot water pumped, but also within the unstable region 18. In addition, the range 17 of the appropriate amount of hot water pumped is There is also an unstable region 19 on the other side.It is well known that if the operation is performed in the unstable region 18.19, cavitation will occur and cause a failure of the hot spring deep well submersible motor pump l. .
一方、必要とする給湯量に対応させてインバータ10が
温泉用深井戸水中モータポンプ1を制御する場合、第7
図に示す如く、予め1日の経時的な必要量を予測してお
き、この予測量をインバータ10に、特にインバータ1
0のタイマーに設定し、この設定値により温泉用深井戸
水中モータポンプ1を制御する。例えば、前日の21時
から翌日の6時までは使用量が少ないことから、最少の
揚湯量■に設定しておき、次の6時から8時までは使用
量が増えるのに伴って揚湯量@に設定し、8時から16
時までには使用量が少ないので前記■と同様な揚湯量■
′に設定し、更に16時から21時までは最も多い使用
量が予測されるので揚湯i0に設定し、21時以降翌日
の6時までは前記と同様に最も少ない使用量が予測され
るので揚湯量■“に設定する。On the other hand, when the inverter 10 controls the hot spring deep well submersible motor pump 1 in accordance with the required amount of hot water supply, the seventh
As shown in the figure, the required amount over time for one day is predicted in advance, and this predicted amount is applied to the inverter 10, especially the inverter 1.
The timer is set to 0, and the hot spring deep well submersible motor pump 1 is controlled by this set value. For example, from 9:00 pm on the previous day to 6:00 am the next day, the amount of hot water used is low, so set the minimum amount of hot water. Set to @, 8:00 to 16:00
Since the amount used is small by the time, the amount of boiling water is the same as in the previous ■■
', and then from 16:00 to 21:00, the highest amount of hot water usage is predicted, so it is set to i0, and from 21:00 until 6:00 the next day, the lowest amount of hot water used is predicted as above. Therefore, set the amount of boiling water to ■“.
第8図に示す如く、インバータ10は1台で複数の温泉
用深井戸水中モータポンプ1a〜1cを並列運転し、こ
の駆動を上記の如く需要量や井戸の水位等の各種条件に
応じて制御することも可能である。この場合、温泉用深
井戸水中モータポンプ1a〜ICで貯湯槽20内に汲み
上げ、貯湯槽20内からは別のポンプで各使用箇所に圧
送するようになっている。As shown in FIG. 8, one inverter 10 operates a plurality of deep well submersible motor pumps 1a to 1c for hot springs in parallel, and controls the driving according to various conditions such as demand and well water level as described above. It is also possible to do so. In this case, the hot spring deep well submersible motor pumps 1a to IC pump the hot water into the hot water storage tank 20, and from within the hot spring tank 20, another pump pumps the hot water to each point of use.
更には、第9図に示す如く、各温泉用深井戸水中モータ
ポンプ1d〜1fにそれぞれインバータ10d〜10f
を付設し、かつインバータ10d〜lofを集中制御装
置21で制御すべく接続する。そして、湯温や水位その
他湧出量等各井戸lid〜llfの状態乃至条件に応じ
て夫々の温泉用深井戸水中モータポンプ1d〜1fの駆
動を制御する。例えば、湧出量の少ない井戸116から
は、単位時間当たりの湯量を少なく、又湧出量の多い井
戸lid、Iffからは単位時間当たりの揚湯量を多く
すべく各温泉用深井戸水中モータポンプ1d〜1fを各
インバータ10d〜10fで制御する。温泉用深井戸水
中モータポンプ1d〜1fで汲み上げられた湯は一旦貯
湯装置22内に送られ、更に貯湯槽22から別のポンプ
で使用箇所に給湯される。この給湯用ポンプもインバー
タによる同時制御ができることは勿論である。上記各イ
ンバータ10d〜10fは集中制御装置21で管理され
、動作が制御される。Furthermore, as shown in FIG. 9, each hot spring deep well submersible motor pump 1d to 1f is equipped with an inverter 10d to 10f, respectively.
are attached, and the inverters 10d to lof are connected to be controlled by the central control device 21. Then, the drive of each hot spring deep well submersible motor pump 1d to 1f is controlled according to the state or condition of each well lid to llf, such as water temperature, water level, and gushing amount. For example, each deep well submersible motor pump 1d~ for hot springs is designed to reduce the amount of hot water per unit time from the well 116 with a small amount of gushing water, and to increase the amount of hot water per unit time from the wells lid and If with a large amount of gushing water. 1f is controlled by each inverter 10d to 10f. The hot water pumped up by the deep well submersible motor pumps 1d to 1f for hot springs is once sent into a hot water storage device 22, and then is further supplied from the hot water storage tank 22 to the point of use by another pump. Of course, this hot water supply pump can also be controlled simultaneously by an inverter. Each of the inverters 10d to 10f is managed by a central control device 21 and its operation is controlled.
更に、寒冷地などの屋外井戸現場では、凍結防止のため
に連続運転を必要とする場合があり、しかも一般的にも
温泉用深井戸水中モータポンプ1は停止させないで連続
運転をするのが好ましいことは勿論である。この場合も
インバータ10で最少の揚湯量に温泉用深井戸水中モー
タポンプ1の駆動を制御することができて、極めて便利
である。Furthermore, in outdoor well sites such as those in cold regions, continuous operation may be required to prevent freezing, and it is generally preferable that the hot spring deep well submersible motor pump 1 be operated continuously without stopping. Of course. In this case as well, the drive of the hot spring deep well submersible motor pump 1 can be controlled to the minimum amount of hot water pumped by the inverter 10, which is extremely convenient.
また別途で80度を超えるような高温度の湯を揚湯する
場合も、インバータ10により回転数を低減させて、ポ
ンプの吸込性能を向上させることもできる。なお、従来
、モータ直結での最大回転数は、2極−60Hzによる
終期回転数が3.60Orpmとなり、これが限度であ
ったが、上記インバータ10によっては、120 Hz
、若しくは240 Hzまでの周波数の回転を得られる
ものがあり、これに伴い、ポンプ機能としての限界回転
数まで機能アップすることができる。Furthermore, when hot water at a high temperature exceeding 80 degrees Celsius is separately pumped, the rotation speed can be reduced by the inverter 10 to improve the suction performance of the pump. In addition, conventionally, the maximum rotation speed when directly connected to the motor was 3.60 Orpm, which was the final rotation speed due to two poles at 60 Hz, which was the limit, but depending on the inverter 10 described above, the maximum rotation speed was 120 Hz.
, or 240 Hz, and along with this, the function can be increased to the limit rotation speed as a pump function.
以上の如く、本発明に係るインバータによる温泉用深井
戸水中モータポンプの制御方法によれば、インバータで
温泉用深井戸水中モータポンプに供与される電源の周波
数を必要揚湯量や井戸を湧出量等の各種条件に応じて可
変させて温泉用深井戸水中モータポンプの回転数を自由
自在に調節でき、この結果、ポンプ特性を各井戸の固有
の状態および各種使用条件に応じて、最も効率の良い適
正範囲に可変できて、消費電力の節約等経済的であり、
かつ停止と運転との繰り返しによる故障の発生も防止で
き、又無駄な量を汲み出すことがないので、地下の温泉
源の枯渇防止をもできるばかりか、運転制御の将来に対
する自動化を図る上で極めて便利であり、無人管理によ
る省力化をも期待できる。As described above, according to the method of controlling a deep well submersible motor pump for hot springs using an inverter according to the present invention, the frequency of the power supply supplied to the deep well submersible motor pump for hot springs by the inverter can be adjusted to determine the required amount of hot water pumped, the amount of water gushing out from the well, etc. The rotation speed of the hot spring deep well submersible motor pump can be adjusted freely according to various conditions, and as a result, the pump characteristics can be adjusted to the most efficient condition according to the unique conditions of each well and various usage conditions. It is economical as it can be varied within an appropriate range and saves power consumption.
It also prevents breakdowns caused by repeated stops and starts, and since it does not pump out unnecessary amounts, it not only prevents the depletion of underground hot spring sources, but also helps in automating operation control in the future. It is extremely convenient and can also be expected to save labor through unmanned management.
図面は本発明に係るインバータによる温泉用深井戸水中
モータポンプの制御方法の実施例を示し、第1図は、制
御方法を実施するための温泉用深井戸水中モータポンプ
に対するインバータの接続状態を示す概念図、第2図は
温泉用深井戸水中モータポンプに供与される電源の周波
数を可変させた時の、揚湯量に対するポンプ効率を示す
図、第3は給湯量が少ない状態での井戸の状態を示す図
、第4図は給湯量の多い状態での井戸の状態を示す図、
第5図は温泉用深井戸水中モータポンプに供与される電
源の周波数゛を可変させた時の、揚湯量に対する全揚程
の関係と、揚湯量に対するポンプ動力の関係を示す図、
第6図は、インバータによって温泉用深井戸水中モータ
ポンプに供与される電源の周波数を段階別に可変させて
運転を制御した状態での揚湯量に対する全揚程の関係を
示す図、第7図はインバータによって温泉用深井戸水中
モータポンプに供与される電源の周波数を時間帯別に可
変させて揚湯量を設定する時の、時刻に対する設定揚湯
量の関係を示す図、第8図は1台のインバータで複数の
温泉用深井戸水中モータポンプを並列運転する際の構成
図、第9図はインバータで複数台の温泉用深井戸水中モ
ータポンプを制御する際に、各インバータとポンプを集
中管理する構成図である。
1.18〜1f・・・温泉用深井戸水中モータポンプ2
・・・・・・吸込口 3・・・・・・ポンプ
部4・・・・・・モータ部 5・・・・・・揚
湯管6・・・・・・パルプ 7・・・・・・
制御面880199.−次電源 9・旧・・水
中ケーブル10、10d〜10f ・・・インバータI
L11a〜Ilf・・・井戸 12・・・・・・標
準揚程曲線14・・・周波数を変えた時の揚程曲線13
、15・・・動力曲線 16・・・・・・ポンプ
揚程曲線17・・・・・・適正揚湯量の範囲 18.1
9・・・不安定領域20.22・・・貯湯槽
21・・・・・・集中制御装置特許出願人 冨士川
機械株式会社
第1区
第2因
携遍量(mンm1ni
[
「
妾 人
■湯量(m/m1n)
オ6因
オフ図
時別(h「)
手続補正書岨発)
16事件の表示 特願昭60−197156号3、補
正をする者
事件との関係 出願人
住所
氏 名 冨士川機械株式会社 (外 名)
4、代理人
住 所 〒101 東京都千代田区東神田2丁目1番
11号7、補正の内容
+11 明細書の特許請求の範囲の欄を別紙の通り補
正する。
(2)明細書の発明の詳細な説明の欄において、[aj
明細書第4頁第4行に「各種条件に応じて」とある
のを「各種条件の変化に応じて」に補正する。
(bl 同第4頁第7行に「制御」とあるのを「適応
制御」に補正する。
以 上
特許請求の範囲
需要量、井戸の水位および湧出量等の各種条件の変化に
応じてインバータから温泉用深井戸水中モータポンプに
供与される電源の周波数を可変させて、温泉用深井戸水
中モータポンプのポンプ特性を韮制御することを特徴と
するインバータによる温泉用深井戸水中モータポンプの
制御方法。The drawings show an embodiment of a method for controlling a deep well submersible motor pump for hot springs using an inverter according to the present invention, and FIG. Conceptual diagram. Figure 2 is a diagram showing the pump efficiency with respect to the amount of hot water pumped when the frequency of the power supply supplied to the submersible motor pump for a hot spring deep well is varied. Figure 3 is the state of the well when the amount of hot water supplied is low. Figure 4 is a diagram showing the state of the well with a large amount of hot water supply.
Figure 5 is a diagram showing the relationship between the total head and the amount of hot water pumped, and the relationship between the pump power and the amount of hot water pumped, when the frequency of the power supply supplied to the deep well submersible motor pump for hot springs is varied.
Figure 6 is a diagram showing the relationship between the total head and the amount of hot water pumped when the frequency of the power supply supplied to the deep well submersible motor pump for hot springs is varied in stages by an inverter to control the operation, and Figure 7 is a diagram showing the relationship between the total head and the amount of hot water pumped. Figure 8 shows the relationship between the set amount of hot water pumped and the time when the frequency of the power supply supplied to the hot spring deep well submersible motor pump is varied depending on the time of day to set the amount of hot water pumped. Figure 9 is a configuration diagram when operating multiple hot spring deep well submersible motor pumps in parallel. Figure 9 is a configuration diagram for centrally managing each inverter and pump when controlling multiple hot spring deep well submersible motor pumps with an inverter. It is. 1.18~1f...Deep well submersible motor pump 2 for hot springs
...Suction port 3...Pump section 4...Motor section 5...Hot water pipe 6...Pulp 7...・
Control surface 880199. -Next power supply 9.Old...Underwater cable 10, 10d~10f...Inverter I
L11a~Ilf...Well 12...Standard head curve 14...Head curve 13 when changing the frequency
, 15... Power curve 16... Pump head curve 17... Range of appropriate hot water pumping amount 18.1
9... Unstable area 20.22... Hot water storage tank
21... Patent applicant for central control device Fujigawa Kikai Co., Ltd. 1st ward 2nd factor (mnm1ni) 6th factor off chart hourly (h ``) Procedural amendments issued by 岨) Indication of 16 cases Japanese Patent Application No. 197156 No. 3 Sho 60-197 Relationship with the case of the person making the amendments Applicant Address Name Fujigawa Kikai Co., Ltd. (Foreign name)
4. Address of agent: 7-1-11, 2-1 Higashikanda, Chiyoda-ku, Tokyo 101, Japan Contents of amendment +11 The claims section of the specification is amended as shown in the attached sheet. (2) In the detailed description of the invention section of the specification, [aj
On page 4, line 4 of the specification, the phrase "according to various conditions" is amended to "according to changes in various conditions." (bl The word "control" on page 4, line 7 of the same is amended to "adaptive control." Control of a hot spring deep well submersible motor pump using an inverter, characterized in that the pump characteristics of the hot spring deep well submersible motor pump are controlled by varying the frequency of the power supplied to the hot spring deep well submersible motor pump. Method.
Claims (1)
インバータから温泉用深井戸水中モータポンプに供与さ
れる電源の周波数を可変させて、温泉用深井戸水中モー
タポンプのポンプ特性を制御することを特徴とするイン
バータによる温泉用深井戸水中モータポンプの制御方法
。The pump characteristics of the hot spring deep well submersible motor pump are controlled by varying the frequency of the power supplied from the inverter to the hot spring deep well submersible motor pump according to various conditions such as demand, well water level, and gushing amount. A method of controlling a deep well submersible motor pump for hot springs using an inverter, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19715685A JPS6258097A (en) | 1985-09-06 | 1985-09-06 | Inverter control method for submersible motor pump in hot string deep well |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19715685A JPS6258097A (en) | 1985-09-06 | 1985-09-06 | Inverter control method for submersible motor pump in hot string deep well |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6258097A true JPS6258097A (en) | 1987-03-13 |
Family
ID=16369696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19715685A Pending JPS6258097A (en) | 1985-09-06 | 1985-09-06 | Inverter control method for submersible motor pump in hot string deep well |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6258097A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449689U (en) * | 1987-09-24 | 1989-03-28 | ||
JPH07119894A (en) * | 1993-10-22 | 1995-05-12 | Nippon Kaataa Kk | Residual liquid sucking method and device of storage tank |
JPH07241581A (en) * | 1994-03-03 | 1995-09-19 | Tsurumi Mfg Co Ltd | Fixed volume pump device for combination treatment purifying tank |
WO2013108459A1 (en) * | 2012-01-16 | 2013-07-25 | オムロンヘルスケア株式会社 | Blood pressure measurement device and blood pressure measurement device control method |
JP2021032193A (en) * | 2019-08-28 | 2021-03-01 | 株式会社荏原製作所 | Pump device |
US12085072B2 (en) | 2020-07-29 | 2024-09-10 | Regal Beloit America, Inc. | Systems and methods for a pump having an onboard user interface |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56162288A (en) * | 1980-05-16 | 1981-12-14 | Hitachi Ltd | Submersible pump |
-
1985
- 1985-09-06 JP JP19715685A patent/JPS6258097A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56162288A (en) * | 1980-05-16 | 1981-12-14 | Hitachi Ltd | Submersible pump |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449689U (en) * | 1987-09-24 | 1989-03-28 | ||
JPH07119894A (en) * | 1993-10-22 | 1995-05-12 | Nippon Kaataa Kk | Residual liquid sucking method and device of storage tank |
JPH07241581A (en) * | 1994-03-03 | 1995-09-19 | Tsurumi Mfg Co Ltd | Fixed volume pump device for combination treatment purifying tank |
WO2013108459A1 (en) * | 2012-01-16 | 2013-07-25 | オムロンヘルスケア株式会社 | Blood pressure measurement device and blood pressure measurement device control method |
JP2013144055A (en) * | 2012-01-16 | 2013-07-25 | Omron Healthcare Co Ltd | Blood pressure measurement device, and method for controlling the same |
CN104010567A (en) * | 2012-01-16 | 2014-08-27 | 欧姆龙健康医疗事业株式会社 | Blood pressure measurement device and blood pressure measurement device control method |
JP2021032193A (en) * | 2019-08-28 | 2021-03-01 | 株式会社荏原製作所 | Pump device |
WO2021039025A1 (en) * | 2019-08-28 | 2021-03-04 | 株式会社荏原製作所 | Pump device |
US11835047B2 (en) | 2019-08-28 | 2023-12-05 | Ebara Corporation | Pump apparatus |
US12085072B2 (en) | 2020-07-29 | 2024-09-10 | Regal Beloit America, Inc. | Systems and methods for a pump having an onboard user interface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6305756B2 (en) | Pumped-storage power generator | |
EA012683B1 (en) | Method for a short-term-well operation by means of an electrically-powered down-hole pumping unit (kuzmichev method) | |
KR101183907B1 (en) | Inverter booster pump system and method for controlling using this | |
EP3387191B1 (en) | Ship lock system for a canal | |
GB2187310A (en) | Control of pumping | |
JP2018530840A (en) | Variable speed maximum power point tracking, solar induction electric motor controller, and permanent magnet AC motor | |
KR101602475B1 (en) | The optimal control method of inverter booster pump | |
US3286636A (en) | Tankless pumping system | |
JPS6258097A (en) | Inverter control method for submersible motor pump in hot string deep well | |
US4243892A (en) | Energy-efficient fluid medium pumping system | |
JP2002257026A (en) | Method of controlling operation of residual pressure recovering generator device in water service facility | |
JP4514558B2 (en) | Pump system | |
SE453160B (en) | CIRCULATING SYSTEM FOR LIQUID FRUITS FOR USE IN A SPRAY PAINTING PLANT | |
JPH08159079A (en) | Revolution control water supply system with pressure fluctuation restraining function | |
RU2006108030A (en) | METHOD FOR DEVELOPING A WELL AND / OR OUTPUT IT FOR OPTIMUM MODE AFTER REPAIR | |
JP4517937B2 (en) | Water distribution control method | |
RU2119578C1 (en) | Method for operating low-producing well by electric pump with frequency-regulated electric drive | |
AU2017345741A1 (en) | Motor drive system and method | |
Abdullabekov et al. | Reducing reactive energy consumption by optimizing operating modes of irrigation pumping stations | |
SU1557354A1 (en) | Method of controlling parallel operation of two pumping units | |
RU167165U1 (en) | SUBMERSIBLE ELECTRIC HYDRAULIC INSTALLATION | |
Dosi | Energy conservation in centrifugal pump using variable frequency drive including SCADA and PLC | |
CN108625433A (en) | A kind of centrifugal pump intelligent frequency reduction or raising frequency energy-saving control system | |
KR102409922B1 (en) | Inverter for pumps applying sensorless algorithm | |
RU2687175C1 (en) | Control system of electric drive of pump unit and method of operation of system |