JPS6257934B2 - - Google Patents

Info

Publication number
JPS6257934B2
JPS6257934B2 JP12120378A JP12120378A JPS6257934B2 JP S6257934 B2 JPS6257934 B2 JP S6257934B2 JP 12120378 A JP12120378 A JP 12120378A JP 12120378 A JP12120378 A JP 12120378A JP S6257934 B2 JPS6257934 B2 JP S6257934B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
measured
bending
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12120378A
Other languages
Japanese (ja)
Other versions
JPS5548634A (en
Inventor
Yasutsugu Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12120378A priority Critical patent/JPS5548634A/en
Publication of JPS5548634A publication Critical patent/JPS5548634A/en
Publication of JPS6257934B2 publication Critical patent/JPS6257934B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、光フアイバの機械強度を評価する光
フアイバ曲げ試験器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber bending tester for evaluating the mechanical strength of optical fibers.

従来、この種の試験は第1図に示すように、被
測定光フアイバ1をノギス2で両側から挟みつ
け、光フアイバ1が破断したと思われる間隔dを
読み取つて光フアイバの強度を評価していた。こ
の方法では、フアイバの挟みつけスピードを一定
にできず、フアイバの破断を明確に判断できない
等のために、正確な曲げ破断間隔dを測定でき
ず、ノギスの読み取り誤差がある等の欠点を有し
ていた。特に、第2図に示すような構造を有する
テープ状光フアイバの曲げ破断強度を測定する場
合、光フアイバ3の1心づつをテープ状態のまま
で測定することは全く不可能であつた。
Conventionally, in this type of test, as shown in Figure 1, the optical fiber 1 to be measured is held between both sides with calipers 2, and the strength of the optical fiber is evaluated by reading the distance d at which the optical fiber 1 is thought to break. was. This method has drawbacks such as the inability to accurately measure the bending break interval d because the fiber clamping speed cannot be kept constant and fiber breakage cannot be clearly determined, and there is a caliper reading error. Was. In particular, when measuring the bending rupture strength of a tape-shaped optical fiber having the structure shown in FIG. 2, it is completely impossible to measure each optical fiber 3 in its tape state.

本発明は、上記従来例の欠点を除去するため
に、光フアイバの挟みつけスピードを一定にし、
光フアイバに光信号を入れて測定することによ
り、光フアイバの破断を正確に知り得るように
し、破断時の間隔を直続できるようにした光フア
イバ曲げ試験器を提供するものである。以下、図
面により実施例を詳細に説明する。
In order to eliminate the drawbacks of the above-mentioned conventional example, the present invention makes the optical fiber pinching speed constant,
To provide an optical fiber bending tester that enables accurate determination of the breakage of an optical fiber by inputting an optical signal into the optical fiber and measuring it, and enables direct measurement of the interval at the time of breakage. Hereinafter, embodiments will be described in detail with reference to the drawings.

第3図は、本発明の1実施例を示したもので、
4はモータ駆動源、5はモータ、6はギヤ、7は
クラツチ、8は回転ネジ、9は移動端、10は固
定端、11はデジタル変位計センサ、12はデジ
タル変位計、13はデジタル変位計用指示器、1
4は発光源、15は受光素子、16は信号線、1
7は被測定光フアイバ、18は定盤である。第4
図は移動端9と固定端10のフアイバ取り付け部
分の構成を示したもので、19はフアイバ取り付
け金具であり、被測定光フアイバ17の外径に合
せて間隔aが適当となるように構成する。
FIG. 3 shows one embodiment of the present invention.
4 is a motor drive source, 5 is a motor, 6 is a gear, 7 is a clutch, 8 is a rotating screw, 9 is a moving end, 10 is a fixed end, 11 is a digital displacement meter sensor, 12 is a digital displacement meter, 13 is a digital displacement Metering indicator, 1
4 is a light emitting source, 15 is a light receiving element, 16 is a signal line, 1
7 is an optical fiber to be measured, and 18 is a surface plate. Fourth
The figure shows the structure of the fiber attachment parts of the moving end 9 and the fixed end 10. Reference numeral 19 is a fiber attachment fitting, which is configured so that the distance a is appropriate according to the outer diameter of the optical fiber 17 to be measured. .

次に、本実施例の測定動作を説明する。まず、
第4図のフアイバ取り付け金具19をはずし、移
動端9のA面と固定端10のB面とが隙間なく一
致するようにし、この状態でデジタル変位計用指
示器13の表示が零を示すようにする。この時、
デジタル変位計センサ11は移動端9のB面と接
していることはもちろんである。次に、被測定光
フアイバ17に合せたフアイバ取り付け金具19
を第4図のように取り付け、被測定光フアイバ1
7が破断しない間隔で第5図のようにセツトす
る。この状態で、発光源14から被測定光フアイ
バ17に光信号を入れると、この光フアイバ17
を介して受光素心15に光信号が入り、信号線1
6を通してモータ5に作動信号が入る。このモー
タ5が動作すると、クラツチ7が入り、回転ネジ
8を回転させ、これにより、移動端9が一定のス
ピードで移動する。この移動端9は被測定光フア
イバ17を挟みつけると同時に、デジタル変位計
センサ11を押して行く。次に、被測定フアイバ
17が破断すると同時に受光素子15への光信号
が無くなると、モータ5が停止するので、移動端
9は被測定光フアイバ17が破断すると同時に停
止する。この時のデジタル変位計用指示器13の
表示値は被測定光フアイバ17の破断時の曲げ破
断間隔(曲げ破断直径)を示している。
Next, the measurement operation of this embodiment will be explained. first,
Remove the fiber fitting 19 shown in Fig. 4, and make sure that the A side of the movable end 9 and the B side of the fixed end 10 match without any gap, and in this state, make sure that the display on the digital displacement meter indicator 13 shows zero. Make it. At this time,
Of course, the digital displacement sensor 11 is in contact with the B side of the moving end 9. Next, the fiber attachment fitting 19 that matches the optical fiber 17 to be measured is
Attach the optical fiber 1 as shown in Figure 4.
7 is set as shown in FIG. 5 at intervals that will not cause breakage. In this state, when an optical signal is input from the light emitting source 14 to the optical fiber 17 to be measured, this optical fiber 17
An optical signal enters the light receiving element core 15 via the signal line 1
An operating signal is input to the motor 5 through the motor 6. When the motor 5 operates, the clutch 7 engages and rotates the rotary screw 8, thereby moving the moving end 9 at a constant speed. This moving end 9 pinches the optical fiber 17 to be measured and at the same time pushes the digital displacement sensor 11. Next, when the fiber to be measured 17 breaks and the optical signal to the light receiving element 15 disappears, the motor 5 stops, so the moving end 9 stops at the same time as the optical fiber to be measured 17 breaks. The value displayed on the digital displacement meter indicator 13 at this time indicates the bending break interval (bending break diameter) when the optical fiber 17 to be measured is broken.

以上の方法により、光フアイバの曲げ破断強度
を正確に知ることができる。また、従来測定不可
能であつたテープ状光フアイバの曲げ破断強度は
フアイバ取り付け金具19の間隔aをテープ状光
フアイバの幅に合せ、測定したい構成フアイバに
光信号を入れることにより、上述の方法で容易に
測定できる。更に、曲げ破断間隔dを知ることに
より、機械強度の重要な測定項目である引張破断
強度を知ることもできる。
By the above method, the bending rupture strength of the optical fiber can be accurately determined. In addition, the bending breaking strength of a tape-shaped optical fiber, which could not be measured in the past, can be measured using the above-mentioned method by adjusting the spacing a of the fiber fittings 19 to the width of the tape-shaped optical fiber and inputting an optical signal to the constituent fibers to be measured. can be easily measured. Furthermore, by knowing the bending break interval d, it is also possible to know the tensile break strength, which is an important measurement item for mechanical strength.

次に、この推定方法を簡単に説明するために、
曲げ試験におけるフアイバ形状のモデルを第6図
に示すと、通常のフアイバの曲げ破断は第6図の
C点でおこる。これは、この点Cでフアイバの曲
げ半径が最小となるためで、この時、半径Rnio
は、計算の結果、次の式で与えられる。
Next, to briefly explain this estimation method,
A model of the fiber shape in the bending test is shown in FIG. 6. Normal fiber bending fracture occurs at point C in FIG. This is because the bending radius of the fiber becomes the minimum at this point C, and at this time the radius R nio
is given by the following formula as a result of calculation.

nio=d/2.4 …………(1) この式は、C点での半径が平均径d/2より20%
程度小さくなつていることを示しており、式(1)の
結果を利用して、フアイバの破断が、曲げのとき
のフアイバ外側に働く引張力に起因しているとす
ると、曲げ破断間隔dと引張破断強度Pとの関係
は、次式(2)のように導びかれる。
R nio = d/2.4 ………(1) This formula means that the radius at point C is 20% of the average diameter d/2.
Using the result of equation (1), if we assume that the fiber fracture is caused by the tensile force acting on the outside of the fiber during bending, the bending fracture interval d and The relationship with the tensile breaking strength P is derived as shown in the following equation (2).

P=2.4γ/(μ・d) ………(2) ここで、γはフアイバの半径、μはフアイバの
伸び定数である。
P=2.4γ/(μ·d) (2) Here, γ is the radius of the fiber, and μ is the elongation constant of the fiber.

この式(2)の推定式の精度を確認するため、引張
破断強度の判つたフアイバを本発明の曲げ試験器
により曲げ試験した。実験の結果は推定精度10%
以下でよく対応づけられることが判つた。
In order to confirm the accuracy of the estimated formula (2), a fiber whose tensile strength at break was determined was subjected to a bending test using the bending tester of the present invention. The experimental results have an estimated accuracy of 10%
It was found that the following can be well matched.

以上説明したように、本発明によれば、被測定
光フアイバの挟みつけスピードを一定に行うこと
ができ、光フアイバに光信号を入れておくことに
より光フアイバの破断を光信号の有無で判断し、
光フアイバ破断時の正確な曲げ破断間隔をデジタ
ル表示することにより、その表示値より明確な光
フアイバの機械強度の評価を行うことができ、ま
た、従来より測定不可能であつたテープ状フアイ
バのテープ状態のままで、構成光フアイバの曲げ
強度測定を可能とする利点があり、更に、正確な
曲げ破断間隔を知ることにより、高い精度で引張
破断強度を推定できるため、簡易な引張試験器と
して代用することもできる利点がある。
As explained above, according to the present invention, the optical fiber to be measured can be clamped at a constant speed, and by inputting an optical signal into the optical fiber, breakage of the optical fiber can be determined based on the presence or absence of the optical signal. death,
By digitally displaying the exact bending break interval at the time of optical fiber breakage, it is possible to evaluate the optical fiber's mechanical strength more clearly than the displayed value. It has the advantage of being able to measure the bending strength of the constituent optical fibers in the tape state.Furthermore, by knowing the exact bending break interval, the tensile break strength can be estimated with high accuracy, so it can be used as a simple tensile tester. It has the advantage that it can be substituted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の曲げ試験をする方法を説明す
るための図であり、第2図は、テープ状光フアイ
バの形状を示した図であり、第3図は、本発明の
1実施例の構成図であり、第4図は、移動端と固
定板のフアイバ取付部分を示す図であり、第5図
は、第4図で被測定フアイバをセツトした状態を
示した図であり、第6図は、曲げ試験におけるフ
アイバ形状モデルを示した図である。 4……モータ駆動電源、5……モータ、6……
ギヤ、7……クラツチ、8……回転ネジ、9……
移動端、10……固定端、11……デジタル変位
計センサ、12……デジタル変位計、13……デ
ジタル変位計用指示器、14……発光源、15…
…受光素子、16……信号線、17……被測光フ
アイバ、18……定盤、19……フアイバ取付金
具。
FIG. 1 is a diagram for explaining a conventional bending test method, FIG. 2 is a diagram showing the shape of a tape-shaped optical fiber, and FIG. 3 is a diagram showing an embodiment of the present invention. FIG. 4 is a diagram showing the fiber attachment portion of the moving end and the fixed plate, and FIG. 5 is a diagram showing the state in which the fiber to be measured is set in FIG. FIG. 6 is a diagram showing a fiber shape model in a bending test. 4...Motor drive power supply, 5...Motor, 6...
Gear, 7...Clutch, 8...Rotating screw, 9...
Moving end, 10... Fixed end, 11... Digital displacement meter sensor, 12... Digital displacement meter, 13... Digital displacement meter indicator, 14... Light emitting source, 15...
... Light receiving element, 16 ... Signal line, 17 ... Photometric fiber, 18 ... Surface plate, 19 ... Fiber mounting bracket.

Claims (1)

【特許請求の範囲】 1 被測定光フアイバに光信号を入射させる発光
手段と、 被測定光フアイバから出射する光信号を受信す
る受光手段と、 被測定光フアイバをU字形に曲げた状態で一定
の速度で挟みつける光フアイバ挟みつけ手段と、 受光手段が光信号を受信している間光フアイバ
挟みつけ手段を動作させ、被測定光フアイバが曲
げ破断を起し受光手段が光信号を受信しなくなる
と同時に光フアイバ挟みつけ手段の挟みつけ動作
を停止させる駆動手段と、 挟みつけ動作を停止したときの被測定光フアイ
バの挟みつけ間隔を表示する手段と を有することを特徴とする光フアイバ曲げ試験
器。
[Scope of Claims] 1: a light emitting means for inputting an optical signal into the optical fiber to be measured; a light receiving means for receiving the optical signal emitted from the optical fiber to be measured; an optical fiber clamping means that clamps the optical fiber at a speed of Optical fiber bending characterized by having a driving means for stopping the pinching operation of the optical fiber pinching means as soon as the optical fiber is removed, and a means for displaying the pinching interval of the optical fiber to be measured when the pinching operation is stopped. Test device.
JP12120378A 1978-10-03 1978-10-03 Optical fiber bend tester Granted JPS5548634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12120378A JPS5548634A (en) 1978-10-03 1978-10-03 Optical fiber bend tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12120378A JPS5548634A (en) 1978-10-03 1978-10-03 Optical fiber bend tester

Publications (2)

Publication Number Publication Date
JPS5548634A JPS5548634A (en) 1980-04-07
JPS6257934B2 true JPS6257934B2 (en) 1987-12-03

Family

ID=14805408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12120378A Granted JPS5548634A (en) 1978-10-03 1978-10-03 Optical fiber bend tester

Country Status (1)

Country Link
JP (1) JPS5548634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218737A (en) * 1988-07-06 1990-01-23 Victor Co Of Japan Ltd Magnetic recorder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281385A (en) * 1985-06-07 1986-12-11 旭精工株式会社 Coin dumping apparatus
JPS62169869U (en) * 1986-04-18 1987-10-28
KR100309355B1 (en) * 1993-09-07 2001-12-15 오까다 마사하루 Cure Dispenser
JP4530068B2 (en) * 2008-04-10 2010-08-25 住友電気工業株式会社 Bending stiffness evaluation method for long materials
CN108548503A (en) * 2018-05-31 2018-09-18 长飞光纤光缆股份有限公司 A kind of optical fiber loose tube bending radius measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218737A (en) * 1988-07-06 1990-01-23 Victor Co Of Japan Ltd Magnetic recorder

Also Published As

Publication number Publication date
JPS5548634A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
FR2463401A1 (en) METHOD FOR MEASURING VOLTAGE STATUS OF CONTINUOUS DRIVE MEANS DURING OPERATION
GB2103369A (en) Measuring hardness of rubber and plastics
JPS6257934B2 (en)
US5317814A (en) Measuring caliper instrument having a digital display and method for calibrating same
US3524345A (en) Method and apparatus for measuring delaminating forces
US4350041A (en) System and method for measurement of dynamic angular or linear displacement
US4943714A (en) Method of continuous measurement of damping in an elongated light wave conductor-sensor having only one accessible end
JPS62278352A (en) Belt tension monitor
US4871993A (en) Self-diagnostic apparatus for vehicle meter
JPS59142408A (en) Device for measuring tip clearance of blade
US3568326A (en) Extensometer
US3620629A (en) Optical gauges
JPH10221049A (en) Apparatus and method for measuring rope elongation
JPS6117022A (en) Automatic reading device for indicated value of liquid level gage
SU1377570A1 (en) Method of diagnostics and checking of damage to coupling prisms of electric machines
US3461456A (en) Apparatus for automatically determining the total pitch error of gears or the like
RU2063007C1 (en) Torque meter
JPH11237218A (en) Strain measuring equipment and method
SU1245856A1 (en) Device for measuring length of elastic mechanical measuring instrument
KR890003821B1 (en) A digital ruler
JPH0599820A (en) Method for tensile test of minute-length sample
SU974150A1 (en) Device for measuring static force
JPS6459032A (en) Device for monitoring optical fiber line
JPS60230026A (en) Temp. measuring instrument for semiconductor inspecting device
PL104739B1 (en) TENSOMETRIC PROBE