JPS6257692B2 - - Google Patents
Info
- Publication number
- JPS6257692B2 JPS6257692B2 JP12395983A JP12395983A JPS6257692B2 JP S6257692 B2 JPS6257692 B2 JP S6257692B2 JP 12395983 A JP12395983 A JP 12395983A JP 12395983 A JP12395983 A JP 12395983A JP S6257692 B2 JPS6257692 B2 JP S6257692B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- direct
- pressure
- gas
- oxidizing atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 25
- 230000001590 oxidative effect Effects 0.000 claims description 23
- 238000000137 annealing Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 39
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は竪型直火加熱炉と、それに続く無酸
化雰囲気ガス炉(均熱炉等)を有する連続焼鈍炉
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a continuous annealing furnace having a vertical direct-fire heating furnace and a non-oxidizing atmosphere gas furnace (soaking furnace, etc.) following the vertical heating furnace.
第1図は溶融亜鉛鍍金設備として用いられる従
来の直火式竪型連続焼鈍炉を示すもので、予熱炉
1と、竪型の直火加熱炉2と、それに続く無酸化
雰囲気ガス炉3と、溶融亜鉛ポツト4を有する。
ストリツプ5は予熱炉1、直火加熱炉2により
700℃程度まで加熱され、その後無酸化雰囲気ガ
ス炉3に入り、均熱、冷却、過時効処理等の熱処
理をされた後、溶融亜鉛ポツト4に送られて鍍金
される。直火加熱炉2はコークス炉ガス、天然ガ
ス、LPG等を直火バーナを用いて炉内で直接燃焼
させる炉で、高温ガスのふく射熱でストリツプ5
を急激に加熱できるという特色がある。また空燃
比を1以下(通常0.85〜0.95位)で燃焼させ、ガ
ス温度を1150〜1300℃位で、ストリツプ5を加熱
すれば700℃程度までほとんど無酸化の状態で昇
温できる。前記直火加熱炉2に続く無酸化雰囲気
ガス炉3は雰囲気ガス(H2が5〜75%,残りは
N2)をガス供給管3a,3bから炉内に充満さ
せ、ラジアントチユーブ、クーリングチユーブ等
(図示せず)によりストリツプ5を間接的に加
熱、冷却させたりして熱処理を行なう炉である。
前記直火加熱炉2でほとんど無酸化のまま加熱さ
れたストリツプ5は、その後の前記無酸化雰囲気
ガス炉3で、若干酸化の場合は完全に還元され、
無酸化の場合はそのまま光輝焼鈍される。
Figure 1 shows a conventional direct-fired vertical continuous annealing furnace used as hot-dip galvanizing equipment. , has a molten zinc pot 4.
Strip 5 is made by preheating furnace 1 and direct fire heating furnace 2.
It is heated to about 700°C, then enters a non-oxidizing atmosphere gas furnace 3, undergoes heat treatments such as soaking, cooling, and over-aging, and then is sent to a molten zinc pot 4 for plating. Direct-fired heating furnace 2 is a furnace that burns coke oven gas, natural gas, LPG, etc. directly in the furnace using a direct-fired burner.
It has the characteristic of being able to heat up rapidly. Furthermore, if the strip 5 is heated at an air-fuel ratio of 1 or less (usually about 0.85 to 0.95) and the gas temperature is about 1150 to 1300°C, the temperature can be raised to about 700°C with almost no oxidation. The non-oxidizing atmosphere gas furnace 3 following the direct-fired heating furnace 2 is filled with atmospheric gas (H 2 is 5-75%, the rest is
This furnace performs heat treatment by filling the furnace with N 2 ) from gas supply pipes 3a and 3b, and indirectly heating and cooling the strip 5 through radiant tubes, cooling tubes, etc. (not shown).
The strip 5 heated in the direct fire heating furnace 2 with almost no oxidation is then completely reduced in the case of slight oxidation in the non-oxidation atmosphere gas furnace 3.
If it is non-oxidized, it is brightly annealed as is.
無酸化雰囲気ガス炉3は構造上、完全なガスタ
イトにできないため、炉圧を正圧(通常10〜20mm
H2O)にして外気の侵入を防いでいる。このた
め、常時400〜1000Nm3/Hr程度の雰囲気ガスを
炉内に送気している。また前記直火加熱炉2はそ
れ自身は無酸化雰囲気ガス炉3ほどガスタイトで
ある必要はないが、燃焼後の酸化性のH2O,CO2
を含んだ廃ガスを予熱炉1の煙突6から排出させ
るため、直火加熱炉2の炉圧を無酸化雰囲気ガス
炉3の炉圧より通常5〜10mmH2O位低く保ち、雰
囲気ガス及び廃ガスを無酸化雰囲気ガス炉3→直
火加熱炉2→予熱炉1→煙突6へと導くように炉
圧をコントロールしている。直火加熱炉2の炉圧
は通常、ストリツプ5が予熱炉1へ侵入する部分
をシールロール又は気体シール装置7でシール
し、煙道中の炉圧制御ダンパ6aでコントロール
される。定常状態ではこの制御で全く問題ない
が、直火加熱炉2の燃焼量を急激に変化させる場
合(直火加熱炉2は通常3〜4ゾーンに分割さ
れ、ゾーンごとにそれぞれ燃焼量をコントロール
できるが、燃焼の安定性から各ゾーンの最小燃焼
量が最大燃焼量の1/4〜1/5であり、ゾーン消火・
点火時には急激な廃ガス量の変化がある。)、煙道
中の大型ダンパ6aでは直火加熱炉2の炉圧を制
御し切れず、この炉圧が急激に変化し、この影響
で無酸化雰囲気ガス炉3の炉圧が負圧になり、外
気侵入によつてストリツプ5が酸化される問題が
発生する。 Because the non-oxidizing atmosphere gas furnace 3 cannot be made completely gas tight due to its structure, the furnace pressure is set to positive pressure (usually 10 to 20 mm).
H 2 O) to prevent outside air from entering. For this reason, atmospheric gas of about 400 to 1000 Nm 3 /Hr is constantly supplied into the furnace. Although the direct-fired heating furnace 2 itself does not need to be as gas-tight as the non-oxidizing atmosphere gas furnace 3, it does not require oxidizing H 2 O, CO 2 after combustion.
In order to discharge the waste gas containing gas from the chimney 6 of the preheating furnace 1, the furnace pressure of the direct-fired heating furnace 2 is usually kept 5 to 10 mmH2O lower than the furnace pressure of the non-oxidizing atmosphere gas furnace 3. The furnace pressure is controlled so that the gas is guided from the non-oxidizing atmosphere gas furnace 3 to the direct-fire heating furnace 2 to the preheating furnace 1 to the chimney 6. The furnace pressure of the direct-fired heating furnace 2 is usually controlled by sealing the part where the strip 5 enters the preheating furnace 1 with a sealing roll or gas sealing device 7, and with a furnace pressure control damper 6a in the flue. There is no problem with this control in a steady state, but when the combustion amount of the direct-fired heating furnace 2 is suddenly changed (direct-fired heating furnace 2 is usually divided into 3 to 4 zones, and the combustion amount can be controlled for each zone. However, from the viewpoint of combustion stability, the minimum combustion amount in each zone is 1/4 to 1/5 of the maximum combustion amount, and zone fire extinguishing and
At the time of ignition, there is a sudden change in the amount of waste gas. ), the large damper 6a in the flue cannot control the furnace pressure of the direct-fired heating furnace 2, and this furnace pressure changes rapidly, and as a result of this, the furnace pressure of the non-oxidizing atmosphere gas furnace 3 becomes negative pressure, The problem arises that the strip 5 is oxidized due to the intrusion of outside air.
この発明は前記従来の問題点を解消するために
なされたもので、直火加熱炉の急激な燃焼変化に
よる炉内の圧力変動を無酸化雰囲気ガス炉に波及
させないようにした直火式竪型連続焼鈍炉を提供
することを目的とする。
This invention was made in order to solve the above-mentioned conventional problems, and is a direct-fired vertical type heating furnace that prevents pressure fluctuations in the furnace due to sudden combustion changes from spreading to the non-oxidizing atmosphere gas furnace. The purpose is to provide a continuous annealing furnace.
この発明は前記の目的を達成するために、竪型
直火加熱炉と、無酸化雰囲気ガス炉の接続部分
に、両炉の炉圧より高い内圧に保持される中間室
を設け、直火加熱炉の炉圧が燃焼変化によつて急
激に落ちても、無酸化雰囲気ガス炉のガスが直火
加熱炉側に流れないようにしたこと、即ち直火加
熱炉の炉圧が急激に下がつても、無酸化雰囲気ガ
ス炉の炉圧は急激に下がらないようにしたことを
特徴とする。
In order to achieve the above-mentioned object, this invention provides an intermediate chamber at the connecting part of a vertical direct-fired heating furnace and a non-oxidizing atmosphere gas furnace, which is maintained at an internal pressure higher than the furnace pressure of both furnaces, and provides direct-fired heating. Even if the furnace pressure in the furnace suddenly drops due to combustion changes, the gas in the non-oxidizing atmosphere gas furnace will not flow to the direct-fired heating furnace. However, the furnace pressure of the non-oxidizing atmosphere gas furnace is characterized by not dropping suddenly.
以下、この発明の実施例を第2図、第3図の図
面に従い説明すると、この実施例は第1図に示す
従来の直火式竪型連続焼鈍炉において、竪型直火
加熱炉2と、それに続く無酸化雰囲気ガス炉3の
接続部分8に、ストリツプ5が通過する部分の隙
間を極力小さくし、その他はガスタイトにした中
間室9を設ける。この中間室9には無酸化雰囲気
ガス炉3の雰囲気ガスを循環ブロア10により吸
引して送気する配管路11と、無酸化雰囲気ガス
炉3の炉圧がガスの引き過ぎて低くなり過ぎない
ように、別の系統からN2を補給するガス補給管
12を接続し、前記配管路11に組込んだ圧力制
御弁13によつて中間室9の内圧を直火加熱炉2
及び無酸化雰囲気ガス炉3の炉圧より高く保つよ
うにしている。このようにすれば中間室9に送気
した前記炉3の雰囲気ガスは室両側壁部のストリ
ツプ通過隙間からたえず両方の炉2,3に流れる
ようになり、このため直火加熱炉2の炉圧が燃焼
変化によつて急激に落ちても、無酸化雰囲気ガス
炉3のガスが直火加熱炉2側に流れることはな
く、このため前記炉3の炉圧が急激に下がるとい
う問題は起らない。なお中間室9の内圧は無酸化
雰囲気ガス炉3の炉圧より10〜20mmH2O程度高く
設定するのがよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings in FIGS. 2 and 3. This embodiment will be described in detail in the conventional direct-fired vertical continuous annealing furnace shown in FIG. At the connection part 8 of the non-oxidizing atmosphere gas furnace 3 which follows it, there is provided an intermediate chamber 9 in which the gap in the part through which the strip 5 passes is made as small as possible and the rest is made gas tight. This intermediate chamber 9 has a piping line 11 for sucking and supplying the atmospheric gas of the non-oxidizing atmosphere gas furnace 3 with a circulation blower 10, and preventing the furnace pressure of the non-oxidizing atmosphere gas furnace 3 from becoming too low due to too much gas being drawn. A gas replenishment pipe 12 for replenishing N 2 from another system is connected, and the internal pressure of the intermediate chamber 9 is controlled by the pressure control valve 13 built into the piping line 11.
And the furnace pressure is kept higher than the furnace pressure of the non-oxidizing atmosphere gas furnace 3. In this way, the atmospheric gas of the furnace 3 sent to the intermediate chamber 9 will constantly flow into both the furnaces 2 and 3 from the strip passage gaps on the side walls of the chamber, and therefore the furnace of the direct-fired heating furnace 2 Even if the pressure suddenly drops due to combustion changes, the gas in the non-oxidizing atmosphere gas furnace 3 will not flow to the direct-fired heating furnace 2 side, and therefore the problem of a sudden drop in the furnace pressure of the furnace 3 will not occur. No. Note that the internal pressure of the intermediate chamber 9 is preferably set to be approximately 10 to 20 mmH 2 O higher than the furnace pressure of the non-oxidizing atmosphere gas furnace 3.
第3図は前記中間室9の構造例を示すもので、
ストリツプ5が通過する部分にシールロール1
4,15を設けている。このような構造にする
と、中間室9から炉2,3側へ流れるガス量が減
少するので、中間室9に配管路11から送気する
ガス量が少量でも必要な室内圧を得ることができ
る。 FIG. 3 shows an example of the structure of the intermediate chamber 9.
Seal roll 1 is placed on the part where the strip 5 passes.
4,15 are provided. With this structure, the amount of gas flowing from the intermediate chamber 9 to the furnaces 2 and 3 side is reduced, so even if the amount of gas sent from the piping 11 to the intermediate chamber 9 is small, the necessary indoor pressure can be obtained. .
この発明の直火式竪型連続焼鈍炉は以上述べた
ようなものであるから、直火加熱炉の急激な圧力
変動があつても、これによつて無酸化雰囲気ガス
炉の炉圧が急激に下がることはなく、このため無
酸化雰囲気ガス炉の炉圧が負圧になり、外気が侵
入してストリツプが酸化するという問題を解消す
ることができる。
Since the direct-fired vertical continuous annealing furnace of the present invention is as described above, even if there is a sudden pressure fluctuation in the direct-fired heating furnace, the furnace pressure in the non-oxidizing atmosphere gas furnace will change rapidly. Therefore, the furnace pressure of the non-oxidizing atmosphere gas furnace becomes a negative pressure, and the problem of outside air entering and oxidizing the strip can be solved.
第1図は溶融亜鉛鍍金設備として用いられる従
来の直火式竪型連続焼鈍炉を示す概略構成図、第
2図はこの発明の一実施例による連続焼鈍炉の要
部断面図、第3図は中間室の構造例を示す断面図
である。
1…予熱炉、2…竪型直火加熱炉、3…無酸化
雰囲気ガス炉、5…ストリツプ、9…中間室、1
0…循環ブロア、11…配管路、13…圧力制御
弁、14,15…シールロール。
Fig. 1 is a schematic configuration diagram showing a conventional direct-fired vertical continuous annealing furnace used as hot-dip galvanizing equipment, Fig. 2 is a sectional view of essential parts of a continuous annealing furnace according to an embodiment of the present invention, and Fig. 3 FIG. 2 is a sectional view showing an example of the structure of an intermediate chamber. 1... Preheating furnace, 2... Vertical direct fire heating furnace, 3... Non-oxidizing atmosphere gas furnace, 5... Strip, 9... Intermediate chamber, 1
0... Circulation blower, 11... Piping path, 13... Pressure control valve, 14, 15... Seal roll.
Claims (1)
ガス炉を有する連続焼鈍炉において、前記両炉の
接続部分に、両炉の炉圧より高い内圧に保たれる
中間室を設けたことを特徴とする直火式竪型連続
焼鈍炉。1. In a continuous annealing furnace having a vertical direct-fired heating furnace followed by a non-oxidizing atmosphere gas furnace, an intermediate chamber that is maintained at an internal pressure higher than the furnace pressure of both furnaces is provided at the connecting portion of the two furnaces. Features a direct-fired vertical continuous annealing furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12395983A JPS6017020A (en) | 1983-07-07 | 1983-07-07 | Direct firing vertical type continuous annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12395983A JPS6017020A (en) | 1983-07-07 | 1983-07-07 | Direct firing vertical type continuous annealing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6017020A JPS6017020A (en) | 1985-01-28 |
JPS6257692B2 true JPS6257692B2 (en) | 1987-12-02 |
Family
ID=14873571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12395983A Granted JPS6017020A (en) | 1983-07-07 | 1983-07-07 | Direct firing vertical type continuous annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017020A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103305744B (en) * | 2012-03-08 | 2016-03-30 | 宝山钢铁股份有限公司 | A kind of production method of high quality silicon steel normalizing substrate |
JP6518943B2 (en) * | 2015-12-09 | 2019-05-29 | Jfeスチール株式会社 | Sealing apparatus and sealing method in continuous annealing furnace |
CN111334659B (en) * | 2020-04-05 | 2021-11-12 | 揭阳市佳烨科技有限公司 | Stainless steel bright annealing furnace equipment and use method thereof |
CN111235360B (en) * | 2020-04-05 | 2021-11-12 | 揭阳市佳烨科技有限公司 | Energy-saving annealing furnace equipment and using method thereof |
-
1983
- 1983-07-07 JP JP12395983A patent/JPS6017020A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6017020A (en) | 1985-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES8305482A1 (en) | Method and system for controlling multi-zone reheating furnaces. | |
JPS6257692B2 (en) | ||
US6183246B1 (en) | Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace | |
CN106801139A (en) | Annealing furnace optimization of air-fuel ratio method | |
US3197184A (en) | Apparatus for heating metals to high temperatures | |
JPH0610059A (en) | Combustion control device | |
US5238229A (en) | Burner for generating soot and furnace to deposit soot by using the same | |
JP3044286B2 (en) | Continuous annealing furnace | |
JPH09243056A (en) | Heat accumulation switching burner | |
US2317927A (en) | Combustion control | |
JPS6014246B2 (en) | Combustion control method for thermal equipment | |
JPS6117887B2 (en) | ||
US2393306A (en) | Melting furnace | |
JP3890538B2 (en) | Continuous heating method and apparatus | |
JPS638747Y2 (en) | ||
US2069196A (en) | Method of and apparatus for making open hearth steel | |
JPS6239190B2 (en) | ||
US1102359A (en) | Regenerative furnace. | |
JP3473060B2 (en) | Muffle furnace | |
JPS6321564Y2 (en) | ||
JPH01283352A (en) | Galvanealing furnace | |
JPH089737B2 (en) | Direct-fire type hard-type continuous annealing furnace and its operating method | |
JPS6024329A (en) | Continuous direct heating furnace | |
JPS63250415A (en) | Preheating chamber for atmospheric heat-treatment furnace | |
JPH09256071A (en) | Continuous annealing method and apparatus therefor |