JPS6257659B2 - - Google Patents

Info

Publication number
JPS6257659B2
JPS6257659B2 JP22320983A JP22320983A JPS6257659B2 JP S6257659 B2 JPS6257659 B2 JP S6257659B2 JP 22320983 A JP22320983 A JP 22320983A JP 22320983 A JP22320983 A JP 22320983A JP S6257659 B2 JPS6257659 B2 JP S6257659B2
Authority
JP
Japan
Prior art keywords
weight
units
copolymer
glass fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22320983A
Other languages
Japanese (ja)
Other versions
JPS60115649A (en
Inventor
Akihiro Wada
Shiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22320983A priority Critical patent/JPS60115649A/en
Publication of JPS60115649A publication Critical patent/JPS60115649A/en
Publication of JPS6257659B2 publication Critical patent/JPS6257659B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガラス繊維強化熱可塑性樹脂組成物、
さらに詳しくいえば、高耐熱性及び高剛性であ
り、かつ成形性に優れたガラス繊維強化熱可塑性
樹脂組成物に関するものである。 アクリロニトリル−スチレン共重合体(以下
AS樹脂と略す)のガラス繊維強化樹脂(以下AS
−GF樹脂と略す)は、多くのガラス繊維強化熱
可塑性樹脂の中で、特に高い剛性と良好な耐化学
薬品性を有し、かつ成形時の金型寸法再現性が良
い、成形収縮率が小さい、成形品のソリが少ない
など成形寸法安定性が良好であり、その上成形条
件幅が広くて容易に成形しやすいといつた優れた
成形性を有するなど、多くの特徴があつて、例え
ば自動車のインストウルメントパネルやクーラー
のラインフローフアン、プロペラフアンなどに多
く用いられている。 しかしながら、このAS−GF樹脂は、耐熱性に
関しては必ずしも満足しうるものではなく、該樹
脂の特徴を損なわずにさらに高耐熱性を有するガ
ラス繊維強化熱可塑性樹脂を開発することが、前
記の用途における各部品の信頼性向上のために、
さらにはクーラー専用のみならず、冷暖兼用エア
コンのライン・フローフアン用樹脂などとしても
用いうるために強く要望されている。 本発明者らは、このような要望にこたえるため
に、種々の検討を行つてきた。例えばスチレン−
無水マレイン酸共重合体のガラス繊維強化樹脂
(以下SMA−GF樹脂と略す)、スチレン−メタク
リル酸共重合体のガラス繊維強化樹脂(以下
SMAA−GF樹脂と略す)、スチレン−アクリル酸
共重合体のガラス繊維強化樹脂(以下SAA−GF
樹脂と略す)などの検討を行つた。しかしなが
ら、これらの樹脂はいずれも、AS−GF樹脂より
耐熱性を10〜20℃改良しうるものの、タフネスや
耐油性に関しては、AS−GF樹脂よりも劣るとい
う欠点を有していた。 本発明者らは、さらにこのような欠点を克服し
た実用性の高いガラス繊維強化熱可塑性樹脂組成
物を開発すべく鋭意研究の進めた結果、特定の六
員環酸無水物単位を含む共重合体とガラス繊維と
を所定の割合で含有して成る熱可塑性樹脂組成物
が所望の特性を有することを見出し、この知見に
基づいて本発明をなすに至つた。 すなわち、本発明は、(A)(イ)一般式 (式中のR1及びR2は水素原子又はメチル基で
ある) で示される六員環酸無水物単位5〜85重量%、(ロ)
メタクリル酸メチル単位1〜80重量%、(ハ)芳香族
ビニル化合物単位1〜65重量%及び所望に応じ(ニ)
メタクリル酸又はアクリル酸単位10重量%以下を
含有し、かつ(イ)単位/(ニ)単位の重量比が3以上の
共重合体100重量部と、(B)ガラス繊維5〜100重量
部とから成るガラス繊維強化熱可塑性樹脂組成物
を提供するものである。 本発明の樹脂組成物は、前記のような特定の単
量体単位を有する共重合体を用いることが必要で
ある。この共重合体における(イ)単位の六員環酸無
水物単位は該共重合体の耐熱性やタフネスを向上
させ、ガラス繊維強化樹脂成形品の冷熱サイクル
に対する耐性を向上させる役割を果たす。すなわ
ち、一般に樹脂とガラス繊維とでは、その線膨張
係数に差があるため、脆い材料、例えばSMAA
樹脂やSAA樹脂をガラス繊維強化したSMAA−
GF樹脂やSAA−GF樹脂、GPPS−GF樹脂(ポリ
スチレンのガラス繊維強化樹脂)は−30℃×1時
間60℃×1時間の冷熱サイクルを5回繰り返す
と、無数のクラツクが発生するが、本発明の樹脂
組成物では、このようなクラツクは発生しない。 また(イ)単位は、(ロ)単位及び(ニ)単位に基づく熱的
不安定性を取り除く役割も果す。すなわち、(イ)単
位を含まず、(ロ)単位、(ハ)単位及び(ニ)単位から成る
共重合体にガラス繊維を含有させた場合、多くの
発泡を伴つて成形品中に数多くの気泡が生じるた
め、該成形品の実用上の強度や耐熱性などが著し
く低下し、本発明の目的とする成形品は得られな
い。 この(イ)単位は該共重合体中に5〜85重量%、好
ましくは10〜60重量%の範囲内で含有させること
が必要である。さらに、該六員環酸無水物単位
は、(ロ)単位と(ニ)単位間又は(ニ)単位同士の分子内縮
合により生成するが、この分子内縮合が未完成な
ものは、該共重合体をガラス繊維とコンパウンド
して成形した場合、成形品中に大きな気泡が多量
発生し、抱き込まれる。この理由は必ずしも明確
ではないが、該ガラス繊維が気泡発生の核剤の役
目を果たすためか、あるいは該ガラス繊維が前記
の分子内縮合を促進し、この分子内縮合による脱
メタノール及び脱水でメタノールが揮散するた
め、気泡が発生するものと考えられる。 このような気泡の発生を防ぐためには、(イ)単位
の六員環酸無水物単位/(ニ)単位のメタクリル酸又
はアクリル酸単位重量比が3以上、好ましくは10
以上、さらに好ましくは15以上であることが必要
である。この数値が大きくなるほど、成形温度が
高くなつても、また成形品の形状が複雑化や大型
化しても、気泡は発生しにくくなる。 本発明においては、共重合体中の六員環酸無水
物単位の含有量が5重量%未満では、本発明の樹
脂組成物を成形した場合、その成形品に十分な耐
熱性及び熱安定性を付与することができず、また
85重量%を超えると成形加工性が著しく低下する
ため実用的でない。 次に(ロ)単位のメタクリル酸メチル単位は、耐油
性及び機械的強度を向上させるためのものであつ
て、共重合体中1〜80重量%の範囲で含有させる
ことが必要である。この量が1重量%未満では、
耐衝撃性やその他の機械的強度などが不十分にな
り、また80重量%を超えると耐熱性が低下するの
で好ましくない。 さらに、(ハ)単位の芳香族ビニル化合物単位は、
共重合体の流動性を向上させて、成形寸法安定性
や成形性を改良するためのものであり、このよう
なものとしては、例えばスチレン、α−メチルス
チレン、核アルキル又はハロゲン置換スチレンな
どの単位が挙げられる。これらの芳香族ビニル化
合物単位は、共重合体中に1〜65重量%の範囲で
含有させることが必要である。この量が1重量%
未満では成形性の改良がなされないし、また65重
量%を超えると機械的強度及び耐油性が低下す
る。 他方、(ニ)単位のメタクリル酸又はアクリル酸単
位は、六員環酸無水物単位を形成させるための単
量体に由来するものであつて、いずれも共重合体
の耐熱性を向上させる役割を果たすが、必ずしも
存在する必要はない。この(ニ)単位の含有量が多く
なると熱安定性の低下をもたらして、ゲル状物が
生成しやすくなるので、その含有量は共重合体中
10重量%以下になるように抑える必要がある。 このような共重合体は、例えば芳香族ビニル化
合物とメタクリル酸メチルとメタクリル酸又はア
クリル酸とを、メチルエチルケトンなどの適当な
溶媒中に溶解し、重合開始剤として1,1−ビス
(tert−ブチルパーオキシ)−3,3,5−トリメ
チルシクロヘキサンを加え、約125℃の温度にお
いて反応率50%程度まで重合させ、次いでこの反
応混合物を1〜10mmHgの減圧下で260℃の温度に
おいて5〜60分間保持して、該溶媒及び未反応単
量体を除去するとともに、メタクリル酸又はアク
リル酸及びこれらの酸とメタクリル酸メチルとの
分子内縮合による環化を起こさせ、(イ)単位の六員
環酸無水物単位を形成させることによつて製造さ
れる。この際、反応温度、触媒量、反応率などの
条件を適当に制御することにより、得られる共重
合体を、そのメチルエチルケトン中10重量%濃度
の25℃の温度における粘度が3〜20センチポイズ
になるように調整することが望ましい。このよう
な共重合体は重量平均分子量(Mw)で約10万〜
50万に相当する。 また、(イ)単位の六員環酸無水物単位の形成量
は、前記反応混合物の熱処理条件、すなわち減圧
程度、加熱温度、加熱時間などを変化させること
によつて調整可能である。 本発明の樹脂組成物において用いる(B)成分のガ
ラス繊維は、通常のFRTP(ガラス繊維強化熱可
塑性樹脂)に用いられているガラス繊維でよく、
なかでもEガラスで8〜20μ太さ程度のものが好
適である。このガラス繊維の処理に用いるカツプ
リング剤については特に制限はないが、シラン系
のものが好適であり、アミノシランで処理したガ
ラス繊維は、他のカツプリング剤で処理したもの
に比べて補強効果がより良好であつた。該ガラス
繊維の形態については、チヨツプド・ストランド
でもロービングでもよく、また、分散型のペレツ
トでも、あるいは樹脂組成物ペレツトの押出軸方
向に該ペレツトの長さと同じ長さで含まれるいわ
ゆる長繊維型のペレツトでもよい。 本発明樹脂組成物における(A)成分の共重合体と
(B)成分のガラス繊維との含有割合については、(A)
成分100重量部に対し、(B)成分が5〜100重量部の
範囲内にあることが必要である。 このようにして得られた本発明の樹脂組成物
は、必要に応じて着色剤、離型剤、外部潤滑剤、
耐候性改良剤、酸化防止剤などの慣用の成形助剤
を加え、200〜300℃、好ましくは240〜280℃の樹
脂温度において所定の形状に成形することができ
る。この成形は射出成形はもちろんのこと、押出
成形や圧縮成形などの任意の段により行うことが
できる。 本発明のガラス繊維強化熱可塑性樹脂組成物
は、 (1) 各種FRTP(ABS−GF,PP−GF,PA−
GF,PC−GFなど)と比較しても高剛性及び
高引張強さを有する、 (2) 加熱変形温度が115℃以上であつて、実用耐
熱温度が従来にない高いレベルにある、 (3) 耐冷熱サイクル性に優れる、 (4) 耐化学薬品性、特に耐油性に優れる、 (5) 成形収縮率が、非結晶性樹脂のガラス繊維強
化樹脂であるためでもあつて、結晶性樹脂から
成るFRTPより小さく、寸法精度の良い、成形
寸法安定性に優れる成形品を得やすい、 (6) AS−GF樹脂と同様に成形が容易であり、成
形条件の選択幅が大きい、 (7) 使用する共重合のモノマー構成から考えても
比較的安価な樹脂組成物であるにもかかわら
ず、性能的にはエンジニアリング樹脂のFRTP
に近い性状を有する、 などの特徴を有している。 したがつて、本発明のガラス繊維強化熱可塑性
樹脂組成物は、特に、近年走行時における燃料消
費低減の要請により自動車の形状は流線形になつ
て窓ガラス部の面積が大きくなり、その結果車内
温度が上昇し、各種自動車内装部品の実用耐熱性
向上が要請されていることから、このような成形
部品用に有利に用いられる。特に、自動車内装部
品の中でもステレオやスピードメーターなどを取
り付ける大型部品であるインストウルメントパネ
ル用には、前記の特性を生かすことができて好適
である。 また、冷暖兼用エアコンのラインフローフアン
用として従来のAS−GF樹脂を用いる場合、温風
が出るときは実用耐熱性が不足してラインフロー
フアンが変形することがあるが、本発明の樹脂組
成物を用いる場合は該ラインフローフアンの変形
がなく、十分に実用に耐えることを確認できた。 さらに、各種の家庭部品においても、近年のい
わゆる「軽薄短小」製品のコンパクトな製品に使
用する部品用に本発明の樹脂組成物を用いると、
その部品の信頼性はさらに向上する。 このような点から、本発明のガラス繊維強化熱
可塑性樹脂組成物は極めて実用的価値の高いもの
である。 次に実施例により本発明をさらに詳細に説明す
る。 なお、各例中の物性において、特にJISや
ASTMに規定のない性質は、次に示す方法に従
つて求めた。 (1) ガラス繊維含有量 各種FRTPをサンプリングし、これを溶媒
(例えば本発明品ではメチルエチルケトン)に
溶かし、不溶のガラス繊維と熱可塑性樹脂とを
分離し、該ガラス繊維を秤量してその含有量を
算出する。 (2) 耐冷熱サイクル性 150×150mm、厚さ3mmの平板を射出成形によ
り成形し、該成形品を−30℃×1時間60℃×
1時間放置を1サイクルとして5サイクル繰り
返したのち、クラツクの発生状況を観察し、ク
ラツクの発生がないものを「〇」、クラツクが
発生したものを「×」で表示する。 (3) 耐化学薬品性 約10cmW×15cmL×7cmHの箱型成形品を射出
成形し、該成形品にサラダ油を満たし、60℃の
雰囲気中で24時間放置後、クラツク発生状況を
観察し、クラツクの発生がないものを「〇」、
クラツクが発生するものを「×」で表示する。 (4) 成形収縮率 150×150mm、厚さ3mmの平板を射出成形し、
該成形品の寸法と対応する金型の寸法とを比較
して収縮率を算出する。 (5) 気泡発生試験 幅5cm、長さ12cmで、幅方向より制限ゲート
である平板状成形品において、長さ方向に垂直
にゲート部より成形品厚さが3mm、2mm、1mm
と変化したいわゆる三段チツプを成形し、成形
品に気泡が発生するか否かを観察し、肉眼で観
察できる気泡が成形品内部に発生するものを
「×」、発生しないものを「〇」で表示する。 なお、成形時の樹脂温度が260℃、金型温度が
60℃を標準成形条件とする。 第1表に共重合体の(イ)単位/(ニ)単位重量比と気
泡発生程度との関係を示す。
The present invention provides a glass fiber reinforced thermoplastic resin composition,
More specifically, the present invention relates to a glass fiber-reinforced thermoplastic resin composition that has high heat resistance, high rigidity, and excellent moldability. Acrylonitrile-styrene copolymer (hereinafter referred to as
Glass fiber reinforced resin (abbreviated as AS resin)
-GF resin) has particularly high rigidity and good chemical resistance among many glass fiber reinforced thermoplastic resins, has good mold dimensional reproducibility during molding, and has a low mold shrinkage rate. It has many characteristics, such as being small and having good molding dimensional stability such as less warping of the molded product, and excellent moldability such as being easy to mold with a wide range of molding conditions. It is widely used in automobile instrument panels, cooler line flow fans, propeller fans, etc. However, this AS-GF resin is not necessarily satisfactory in terms of heat resistance, and it is necessary to develop a glass fiber reinforced thermoplastic resin that has even higher heat resistance without impairing the characteristics of the resin. In order to improve the reliability of each part in
Furthermore, it is strongly desired because it can be used not only for coolers, but also as a line/flow fan resin for air conditioners that serve both heating and cooling purposes. The present inventors have conducted various studies in order to meet such demands. For example, styrene
Glass fiber reinforced resin of maleic anhydride copolymer (hereinafter referred to as SMA-GF resin), glass fiber reinforced resin of styrene-methacrylic acid copolymer (hereinafter referred to as SMA-GF resin)
SMAA-GF resin), styrene-acrylic acid copolymer glass fiber reinforced resin (SAA-GF resin)
(abbreviated as “resin”)). However, although these resins can improve heat resistance by 10 to 20°C over AS-GF resins, they have the disadvantage that they are inferior to AS-GF resins in terms of toughness and oil resistance. The present inventors further conducted intensive research to develop a highly practical glass fiber-reinforced thermoplastic resin composition that overcomes these drawbacks, and as a result, the present inventors discovered a copolymer containing a specific six-membered cyclic acid anhydride unit. It has been discovered that a thermoplastic resin composition containing a predetermined ratio of agglomerates and glass fibers has desired properties, and based on this finding, the present invention has been accomplished. That is, the present invention provides (A) (a) general formula (R 1 and R 2 in the formula are hydrogen atoms or methyl groups) 5 to 85% by weight of six-membered cyclic acid anhydride units, (b)
1 to 80% by weight of methyl methacrylate units, (c) 1 to 65% by weight of aromatic vinyl compound units, and (d) as desired.
100 parts by weight of a copolymer containing 10% by weight or less of methacrylic acid or acrylic acid units and having a weight ratio of (a) units/(d) units of 3 or more, and (B) 5 to 100 parts by weight of glass fiber. The present invention provides a glass fiber-reinforced thermoplastic resin composition comprising: The resin composition of the present invention requires the use of a copolymer having the above-mentioned specific monomer units. The six-membered cyclic acid anhydride unit (a) in this copolymer improves the heat resistance and toughness of the copolymer, and plays a role in improving the resistance of glass fiber reinforced resin molded articles to thermal cycles. In other words, there is generally a difference in linear expansion coefficient between resin and glass fiber, so brittle materials such as SMAA
SMAA− made of resin or SAA resin reinforced with glass fiber
GF resin, SAA-GF resin, and GPPS-GF resin (polystyrene glass fiber reinforced resin) undergo countless cracks when subjected to a cooling cycle of -30℃ x 1 hour at 60℃ x 1 hour five times, but this Such cracks do not occur in the resin composition of the invention. The unit (a) also serves to eliminate thermal instability based on the units (b) and (d). In other words, when a copolymer containing no (a) unit but consisting of (b) units, (c) units, and (d) units contains glass fiber, a lot of foaming occurs and a large number of particles are formed in the molded product. Due to the formation of air bubbles, the practical strength and heat resistance of the molded article are significantly reduced, making it impossible to obtain the molded article aimed at by the present invention. This (a) unit must be contained in the copolymer in an amount of 5 to 85% by weight, preferably 10 to 60% by weight. Furthermore, the six-membered cyclic acid anhydride unit is produced by intramolecular condensation between (b) units and (d) units or between (d) units, but if this intramolecular condensation is incomplete, the When a polymer is compounded with glass fiber and molded, a large amount of large air bubbles are generated and trapped in the molded product. The reason for this is not necessarily clear, but it may be because the glass fibers act as a nucleating agent for bubble generation, or the glass fibers promote the above-mentioned intramolecular condensation, and methanol is removed by demethanol and dehydration through this intramolecular condensation. It is thought that bubbles are generated due to volatilization. In order to prevent the generation of such bubbles, the weight ratio of (a) six-membered cyclic acid anhydride units to (d) methacrylic acid or acrylic acid units is 3 or more, preferably 10
The number needs to be 15 or more, more preferably 15 or more. The larger this value is, the more difficult it is for bubbles to occur even if the molding temperature becomes high or even if the shape of the molded product becomes more complex or larger. In the present invention, when the content of six-membered cyclic acid anhydride units in the copolymer is less than 5% by weight, when the resin composition of the present invention is molded, the molded product has sufficient heat resistance and thermal stability. cannot be granted, and
If it exceeds 85% by weight, it is not practical because moldability is significantly reduced. Next, the (b) methyl methacrylate unit is for improving oil resistance and mechanical strength, and must be contained in the copolymer in an amount of 1 to 80% by weight. If this amount is less than 1% by weight,
Impact resistance and other mechanical strengths become insufficient, and if it exceeds 80% by weight, heat resistance decreases, which is not preferable. Furthermore, the aromatic vinyl compound unit (c) is
It is used to improve the fluidity of the copolymer and improve the dimensional stability and moldability of the copolymer, such as styrene, α-methylstyrene, nuclear alkyl or halogen-substituted styrene. Units are listed. These aromatic vinyl compound units must be contained in the copolymer in an amount of 1 to 65% by weight. This amount is 1% by weight
If it is less than 65% by weight, the moldability will not be improved, and if it exceeds 65% by weight, mechanical strength and oil resistance will decrease. On the other hand, the (d) unit methacrylic acid or acrylic acid unit is derived from a monomer for forming a six-membered cyclic acid anhydride unit, and both play a role in improving the heat resistance of the copolymer. However, it does not necessarily have to be present. If the content of this (d) unit increases, the thermal stability will decrease and gel-like substances will be more likely to be formed, so the content should be controlled in the copolymer.
It is necessary to suppress the content to 10% by weight or less. Such a copolymer can be prepared by dissolving an aromatic vinyl compound, methyl methacrylate, and methacrylic acid or acrylic acid in a suitable solvent such as methyl ethyl ketone, and adding 1,1-bis(tert-butyl) as a polymerization initiator. Peroxy)-3,3,5-trimethylcyclohexane is added and polymerized at a temperature of about 125°C to a reaction rate of about 50%, and then this reaction mixture is polymerized at a temperature of 260°C under a reduced pressure of 1 to 10 mmHg for 5 to 60%. The solvent and unreacted monomers are removed by holding for a minute, and cyclization is caused by intramolecular condensation of methacrylic acid or acrylic acid and these acids and methyl methacrylate. Produced by forming cyclic acid anhydride units. At this time, by appropriately controlling conditions such as reaction temperature, catalyst amount, and reaction rate, the resulting copolymer can be made to have a viscosity of 3 to 20 centipoise at a temperature of 25°C at a concentration of 10% by weight in methyl ethyl ketone. It is desirable to adjust as follows. Such copolymers have a weight average molecular weight (Mw) of approximately 100,000 ~
Equivalent to 500,000. Further, the amount of the six-membered cyclic acid anhydride unit (a) formed can be adjusted by changing the heat treatment conditions of the reaction mixture, ie, the degree of pressure reduction, heating temperature, heating time, etc. The glass fiber of component (B) used in the resin composition of the present invention may be the glass fiber used in ordinary FRTP (glass fiber reinforced thermoplastic resin),
Among these, E glass with a thickness of about 8 to 20 μm is suitable. There are no particular restrictions on the coupling agent used for this treatment of glass fibers, but silane-based ones are preferred, and glass fibers treated with aminosilane have a better reinforcing effect than those treated with other coupling agents. It was hot. The shape of the glass fibers may be chopped strands or rovings, dispersed pellets, or so-called long fibers contained in the extrusion axis direction of the resin composition pellets with the same length as the pellets. Pellet may also be used. The copolymer of component (A) in the resin composition of the present invention and
Regarding the content ratio of component (B) with glass fiber, (A)
It is necessary that component (B) be present in the range of 5 to 100 parts by weight per 100 parts by weight of the component. The resin composition of the present invention thus obtained may contain a colorant, a mold release agent, an external lubricant,
It can be molded into a predetermined shape at a resin temperature of 200 to 300°C, preferably 240 to 280°C, by adding conventional molding aids such as weatherability improvers and antioxidants. This molding can be carried out not only by injection molding but also by any arbitrary step such as extrusion molding or compression molding. The glass fiber reinforced thermoplastic resin composition of the present invention includes: (1) various FRTPs (ABS-GF, PP-GF, PA-
(GF, PC-GF, etc.) has high rigidity and high tensile strength, (2) has a heat deformation temperature of 115℃ or higher, and has an unprecedentedly high practical heat resistance temperature; (3) ) It has excellent cold and heat cycle resistance, (4) It has excellent chemical resistance, especially oil resistance, and (5) It has a lower molding shrinkage rate than that of crystalline resin because it is a non-crystalline glass fiber reinforced resin. (6) Like AS-GF resin, it is easy to mold, and there is a wide range of molding conditions to choose from. (7) Usage Although it is a relatively inexpensive resin composition considering the monomer composition of copolymerization, its performance is comparable to that of engineering resin FRTP.
It has the following characteristics: Therefore, the glass fiber-reinforced thermoplastic resin composition of the present invention can be used particularly in recent years as the shape of automobiles has become more streamlined and the area of window glass has become larger due to the demand for reduced fuel consumption during driving. As temperatures rise, there is a need to improve the practical heat resistance of various automobile interior parts, so it is advantageously used for such molded parts. In particular, it is suitable for use in instrument panels, which are large automotive interior parts to which stereos, speedometers, etc. are attached, since the above-mentioned characteristics can be utilized. Furthermore, when conventional AS-GF resin is used for a line flow fan in a dual-purpose air conditioner, the line flow fan may be deformed due to lack of practical heat resistance when hot air is emitted; however, the resin composition of the present invention When the line flow fan was used, there was no deformation of the line flow fan, and it was confirmed that it was sufficiently durable for practical use. Furthermore, when the resin composition of the present invention is used for various household parts, such as those used in compact products such as the so-called "light, thin, short, and small" products in recent years,
The reliability of the parts is further improved. From this point of view, the glass fiber reinforced thermoplastic resin composition of the present invention has extremely high practical value. Next, the present invention will be explained in more detail with reference to Examples. In addition, in the physical properties in each example, JIS and
Properties not specified in ASTM were determined according to the method shown below. (1) Glass fiber content Sample each type of FRTP, dissolve it in a solvent (for example, methyl ethyl ketone for the product of the present invention), separate the insoluble glass fiber and thermoplastic resin, weigh the glass fiber, and calculate its content. Calculate. (2) Cold and heat cycle resistance A flat plate of 150 x 150 mm and 3 mm thickness was molded by injection molding, and the molded product was heated at -30°C x 60°C for 1 hour.
After repeating 5 cycles, each cycle being left for 1 hour, the occurrence of cracks is observed, and those with no cracks are marked with "O", and those with cracks are marked with "x". (3) Chemical resistance A box-shaped molded product of approximately 10cm W x 15cm L x 7cm H was injection molded, the molded product was filled with salad oil, and after being left in an atmosphere at 60℃ for 24 hours, the occurrence of cracks was observed. If there is no crack, mark it as “〇”.
Items where cracks occur are displayed with an "x". (4) Injection mold a flat plate with a molding shrinkage rate of 150 x 150 mm and a thickness of 3 mm.
The shrinkage rate is calculated by comparing the dimensions of the molded article and the corresponding dimensions of the mold. (5) Bubble generation test For a flat molded product with a width of 5 cm and a length of 12 cm, and a gate that restricts the width, the thickness of the molded product is 3 mm, 2 mm, and 1 mm from the gate part perpendicular to the length direction.
Molding a so-called three-stage chip with a change in shape and observing whether or not air bubbles occur in the molded product. If bubbles that can be observed with the naked eye are generated inside the molded product, it is marked "×", and if no bubbles are generated, it is marked "○". Display in . In addition, the resin temperature during molding is 260℃, and the mold temperature is
The standard molding condition is 60℃. Table 1 shows the relationship between the (a) unit/(d) unit weight ratio of the copolymer and the degree of bubble generation.

【表】 生を示す。
実施例 1〜3 メタクリル酸11重量%、メタクリル酸メチル45
重量%及びスチレン44重量%から成るモノマー混
合物をエチルベンゼンに溶解し、これに重合開始
剤として1,1−ビス(第三ブチルパーオキシ)
−3,3,5−トリメチルシクロヘキサンを加
え、連続的に重合器に供給し、約125℃で反応率
50%になるまで重合させた。次いでこの反応混合
物を10mmHg以下に減圧しながら、260℃に約60分
間保持し、溶媒及び未反応単量体を除去すると同
時に、メタクリル酸の分子内縮合による環化を生
じさせることにより、メタクリル酸メチル単位35
重量%、スチレン単位45重量%、メタクリル酸単
位1重量%及び式 で示される六員環酸無水物単位19重量%から成る
平均分子量約25万の共重合体を製造した。 このようにして得た共重合体を、ベント付押出
機において、樹脂温度が260℃になるように押出
し、該ベント部より定量フイード装置により、6
mm長さのガラス繊維チヨツプドストランドを添加
しペレタイズして、ガラス繊維含有量がそれぞれ
10,20,30重量%であるガラス繊維強化熱可塑性
樹脂組成物を得た。それぞれの物性を第2表に示
す。 第2表から明らかに、前記の樹脂組成物はいず
れも、従来のFRTPに比較して高剛性、高タフネ
ス、高耐熱性であり、かつ耐薬品性に優れた寸法
精度のよい成形品を与えることが分る。 比較例 1〜4 スチレン単位70重量%とアクリロニトリル単位
30重量%とから成る平均分子量約25万の共重合体
を用い、実施例2と同様の方法でガラス繊維含有
量が20重量%のFRTPを作成し(比較例1)、該
FRTPの物性を測定した。その結果を第2表に示
す。 以下同様に、スチレン単位90重量%と無水マレ
イン酸単位10重量%とから成る平均分子量約22万
の共重合体(比較例2)、スチレン単位92重量%
とメタクリル酸単位8重量%から成る平均分子量
約25万の共重合体(比較例3)、スチレン単位92
重量%とアクリル酸単位8重量%とから成る平均
分子量約23万の共重合体(比較例4)に、それぞ
れガラス繊維をFRTP中20重量%になるように実
施例2と同様の方法でコンパウンドして分散型
FRTPを作成した。その物性を第2表に示す。
[Table] Shows raw.
Examples 1-3 Methacrylic acid 11% by weight, methyl methacrylate 45%
A monomer mixture consisting of 44% by weight of styrene and 44% by weight of styrene was dissolved in ethylbenzene, and 1,1-bis(tert-butylperoxy) was added as a polymerization initiator.
- Add 3,3,5-trimethylcyclohexane and continuously feed it to the polymerization vessel, and the reaction rate at about 125℃
Polymerization was carried out until it reached 50%. Next, this reaction mixture was held at 260°C for about 60 minutes while reducing the pressure to 10 mmHg or less to remove the solvent and unreacted monomers, and at the same time cause cyclization by intramolecular condensation of methacrylic acid. methyl unit 35
Weight%, styrene units 45% by weight, methacrylic acid units 1% by weight and formula A copolymer having an average molecular weight of approximately 250,000 and consisting of 19% by weight of six-membered cyclic acid anhydride units was produced. The copolymer thus obtained was extruded in a vented extruder so that the resin temperature reached 260°C, and the copolymer was extruded from the vented part using a quantitative feed device.
Glass fiber chopped strands with a length of mm are added and pelletized, and the glass fiber content is adjusted accordingly.
Glass fiber reinforced thermoplastic resin compositions containing 10, 20 and 30% by weight were obtained. The physical properties of each are shown in Table 2. It is clear from Table 2 that all of the above resin compositions have higher rigidity, toughness, and heat resistance than conventional FRTP, and provide molded products with excellent chemical resistance and dimensional accuracy. I understand. Comparative Examples 1 to 4 70% by weight of styrene units and acrylonitrile units
Using a copolymer with an average molecular weight of about 250,000 and consisting of 30% by weight, FRTP with a glass fiber content of 20% by weight was prepared in the same manner as in Example 2 (Comparative Example 1).
The physical properties of FRTP were measured. The results are shown in Table 2. Similarly, a copolymer with an average molecular weight of about 220,000 consisting of 90% by weight of styrene units and 10% by weight of maleic anhydride units (Comparative Example 2), 92% by weight of styrene units.
A copolymer with an average molecular weight of approximately 250,000 consisting of 8% by weight of methacrylic acid units (Comparative Example 3), 92 styrene units
A copolymer with an average molecular weight of approximately 230,000 (Comparative Example 4) consisting of 8% by weight of acrylic acid units and 8% by weight of acrylic acid units was compounded with glass fibers in the same manner as in Example 2 so that the amount of each glass fiber was 20% by weight in FRTP. decentralized
Created FRTP. Its physical properties are shown in Table 2.

【表】 実施例4〜5、比較例5〜6 メタクリル酸8重量%、メタクリル酸メチル72
重量%、スチレン20重量%から成るモノマー混合
物(実施例4)及びメタクリル酸34重量%、メタ
クリル酸メチル46重量%、スチレン20重量%から
成るモノマー混合物(実施例5)を用い、実施例
1と同様にして重合させたのち、この反応混合物
を減圧下に加熱環化させることにより、第3表に
示す組成をもつ六員環酸無水物を含む共重合体を
製造した。 また、比較のために、実施例4及び実施例5と
同じモノマー混合物を同じ条件下で重合させたの
ち、減圧下の加熱時間を短縮して第3表に比較例
5及び比較例6として示すメタクリル酸単位に対
する六員環酸無水物単位の割合が3未満のものを
製造した。 このようにして得た共重合体に、実施例2と同
様の方法でそれぞれガラス繊維を樹脂組成物に対
して20重量%になるように添加し、ガラス繊維強
化熱可塑性樹脂組成物を作成して、それぞれの物
性を測定した。その結果を第3表に示す。 第3表より、共重合体における各単量体単位の
含有割合によつて、耐熱性を中心とする物性が変
化すること、また、比較例にみられるように環化
率の低いものは成形品に気泡が発生して、それ自
体商品価値を著しく損なうばかりでなく諸物性も
低下することが分る。
[Table] Examples 4-5, Comparative Examples 5-6 Methacrylic acid 8% by weight, methyl methacrylate 72
Using a monomer mixture (Example 4) consisting of 20% by weight of styrene and a monomer mixture (Example 5) consisting of 34% by weight of methacrylic acid, 46% by weight of methyl methacrylate, and 20% by weight of styrene, Example 1 and After polymerization in the same manner, the reaction mixture was heated and cyclized under reduced pressure to produce a copolymer containing a six-membered cyclic acid anhydride having the composition shown in Table 3. For comparison, the same monomer mixture as in Examples 4 and 5 was polymerized under the same conditions, and the heating time under reduced pressure was shortened, and the results are shown in Table 3 as Comparative Examples 5 and 6. A product in which the ratio of six-membered cyclic acid anhydride units to methacrylic acid units was less than 3 was produced. Glass fibers were added to the thus obtained copolymer in the same manner as in Example 2 so that the amount was 20% by weight based on the resin composition to create a glass fiber-reinforced thermoplastic resin composition. The physical properties of each were measured. The results are shown in Table 3. Table 3 shows that the physical properties, mainly heat resistance, change depending on the content of each monomer unit in the copolymer, and as seen in the comparative example, those with a low cyclization rate are moldable. It can be seen that air bubbles are generated in the product, which not only significantly impairs the product value but also deteriorates various physical properties.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)(イ)一般式 (式中のR1及びR2は水素原子又はメチル基で
ある) で示される六員環酸無水物単位5〜85重量%、(ロ)
メタクリル酸メチル単位1〜80重量%、(ハ)芳香族
ビニル化合物単位1〜65重量%及び所望に応じ(ニ)
メタクリル酸又はアクリル酸単位10重量%以下を
含有し、かつ(イ)単位/(ニ)単位の重量比が3以上の
共重合体100重量部と、(B)ガラス繊維5〜100重量
部とから成るガラス繊維強化熱可塑性樹脂組成
物。 2 共重合体が(イ)単位/(ニ)単位重量比10以上のも
のである特許請求の範囲第1項記載の組成物。 3 共重合体が(イ)単位/(ニ)単位重量比15以上のも
のである特許請求の範囲第2項記載の組成物。
[Claims] 1 (A) (B) General formula (R 1 and R 2 in the formula are hydrogen atoms or methyl groups) 5 to 85% by weight of six-membered cyclic acid anhydride units, (b)
1 to 80% by weight of methyl methacrylate units, (c) 1 to 65% by weight of aromatic vinyl compound units, and (d) as desired.
100 parts by weight of a copolymer containing 10% by weight or less of methacrylic acid or acrylic acid units and having a weight ratio of (a) units/(d) units of 3 or more, and (B) 5 to 100 parts by weight of glass fiber. A glass fiber reinforced thermoplastic resin composition consisting of: 2. The composition according to claim 1, wherein the copolymer has a weight ratio of (a) units to (d) units of 10 or more. 3. The composition according to claim 2, wherein the copolymer has a weight ratio of (a) units to (d) units of 15 or more.
JP22320983A 1983-11-29 1983-11-29 Glass fiber-reinforced thermoplastic resin composition Granted JPS60115649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22320983A JPS60115649A (en) 1983-11-29 1983-11-29 Glass fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22320983A JPS60115649A (en) 1983-11-29 1983-11-29 Glass fiber-reinforced thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS60115649A JPS60115649A (en) 1985-06-22
JPS6257659B2 true JPS6257659B2 (en) 1987-12-02

Family

ID=16794499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22320983A Granted JPS60115649A (en) 1983-11-29 1983-11-29 Glass fiber-reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS60115649A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103612A (en) * 1987-07-30 1989-04-20 Sumitomo Chem Co Ltd Thermoplastic copolymer
JPH0745343A (en) * 1991-10-28 1995-02-14 I T T Canon:Kk Socket for ic card

Also Published As

Publication number Publication date
JPS60115649A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
US10035907B2 (en) Transparent thermoplastic resin composition and article produced therefrom
CN100549087C (en) PC terpolymer resin/polybutylene terephthalate alloy material
KR101457403B1 (en) Acrylate-Styrene-Acrylonitrile Resin Composition Having Excellent Thermochromic Resistant Property Under High Temperature
GB1590549A (en) Thermoplastic moulding compositions of high impact strength
JPH02294358A (en) Filled polymer blend
CN110862618A (en) Ultra-low-warpage high-strength long glass fiber reinforced polypropylene composite material and preparation method thereof
WO2006012039A1 (en) Stabilized polyoxymethylene compositions with low melt viscosity
JPS631971B2 (en)
JPH04314750A (en) Thermoplastic resin composition
KR100870754B1 (en) Thermoplastic resin composition having excellent low gloss characteristic and scratch resistance, and method for preparing the same
CN108285609B (en) High melt strength styrene resin composition and preparation method thereof
JPS6257659B2 (en)
WO1998029483A1 (en) High-rigidity oxymethylene polymer resin molding
JPS61163950A (en) Thermoplastic resin composition
KR100199246B1 (en) Thermoplastic resin composition with high chemical resistance
CN111218077A (en) Polymethyl methacrylate resin composition and preparation method and application thereof
JPS61250048A (en) Resin composition
US4201829A (en) Metal plated thermoplastic articles
JP3141791B2 (en) Rubber-modified styrenic resin composition and molded article thereof
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JPS63264659A (en) Thermoplastic resin composition
EP1123347A1 (en) Monovinylidene aromatic resins
WO1988004310A1 (en) Thermoplastic polyester resin composition
JPH01261445A (en) Glass fiber-reinforced thermoplastic resin
JPH0333743B2 (en)