JPS6257580B2 - - Google Patents

Info

Publication number
JPS6257580B2
JPS6257580B2 JP7827380A JP7827380A JPS6257580B2 JP S6257580 B2 JPS6257580 B2 JP S6257580B2 JP 7827380 A JP7827380 A JP 7827380A JP 7827380 A JP7827380 A JP 7827380A JP S6257580 B2 JPS6257580 B2 JP S6257580B2
Authority
JP
Japan
Prior art keywords
weight
glass
temperature
composition
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7827380A
Other languages
Japanese (ja)
Other versions
JPS573738A (en
Inventor
Taminori Suematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7827380A priority Critical patent/JPS573738A/en
Publication of JPS573738A publication Critical patent/JPS573738A/en
Publication of JPS6257580B2 publication Critical patent/JPS6257580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/001Alkali-resistant fibres
    • C03C13/002Alkali-resistant fibres containing zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐アルカリ性に優れたガラス繊維用組
成物に関するものである。 コンクリートの薄肉・軽量化を目的とするガラ
ス繊維強化コンクリート(GRC)の強化繊維や
石綿スレート等の配合石綿量の減少化のための代
替繊維として混入するガラス繊維には耐アルカリ
性が要求される。その理由は、マトリツクス用原
料のポルトランドセメントの主成分が3CaO・
SiO2であり、これらが水と反応してトバモライ
トゲルを生成、硬化する反応過程で多量の水酸化
カルシウムを生じ、これと平衝関係にある水溶液
のPHは12.5〜13.0と高まる。 これを化学式で示すと次の様になる。 2(3CaO−SiO2)+6H2O→3CaO・2SiO2
3H2O+3Ca(OH)2 2(2CaO・SiO2)+4H2O→3CaO・2SiO2
3H2O+Ca(OH)2 したがつてガラス繊維強化プラスチツクス
(FRP)などによく使われるEガラスの長繊維で
は、このような高アルカリ雰囲気では、急速に劣
化するため、どうしても、耐アルカリ性のガラス
繊維を必要とするのである。 耐アルカリ性ガラス繊維の代表的な組成は、
SiO2−Na2O−ZrO2系のもので、その耐アルカリ
性は、高配合のZrO2に依存している。この系の
ものは、原料が高価なことや、溶融温度および紡
糸温度が高いこともあつて、採算性に問題があ
る。 また、Eガラスに代表されるガラス長繊維は、
B2O3をフラツクスとして使用しているので、
B2O3が耐火物を著しく損傷することならびにガ
ラスの耐アルカリ性を甚しく劣化せしめる欠点が
ある。 本発明は、上記欠点を解消するものでB2O3
使用せずして溶融温度、紡糸温度(作業温度)を
比較的に低くして、溶融炉、白金ブツシングなど
の損傷を少なくしまた紡糸温度と液相温度との差
を大きくして作業性に優れ、さらに糸ぎれ現象を
少なくし経済性に優れた耐アルカリ性ガラス繊維
用組成物を提供するものである。 本発明に係る耐アルカリ性ガラス繊維用組成物
の要旨とする構成は、 SiO2 64〜68重量% Al2O3 1〜5 〃 RO 5〜11 重量% R′2O 7〜13 〃 ZrO2 8〜13 〃 MoO3 0.1〜0.5 〃 CdO 0.1〜0.5 〃 Fe2O3、FeO 0.5〜1.0 〃 からなる組成を有することを特徴とするものであ
る。ここでRは、Ca、Mg又はBaを表わしR′は
Na又はKを表わす。 次に上記組成成分だる各々につき、順次説明す
る。 SiO2はガラスの骨格成分となるものであり、
耐アルカリ性と溶融温度紡糸作業性の面からみて
64〜68重量%含有する。 Al2O3はガラスの耐水性を高めCaO成分による
失透を抑制するのに効果を奏するが5重量%を越
えるとZrO2成分の溶解を困難にするので含有量
は1〜5重量%である。 ROはCaO、MgO、BaOを表わしこれらを単独
または組み合せて5〜11重量%含有する。ROは
溶融剤として作用しまた耐アルカリ性を付与する
もので、5重量%以下では溶融剤としての効果が
期待できなく、11重量%以上では液相温度の上昇
を伴い、好しいとは言えない。R′2OはNa2O、
K2Oを表わし、フラツクスとしてこれらを単独ま
たは、組み合せて、7〜13%含有する。R′2Oは
7重量%以下では、SiO2およびZrO2の溶融が期
待できなく13重量%以上では耐水性が低下するの
で好ましくない。 ZrO2は、耐アルカリ性を付与するもので、8
〜13重量%含有する。8重量%以下では耐アルカ
リ性が期待できなく13重量%以上では、溶融時に
高温を要し、また、温度−粘度曲線が高温側に移
行する。紡糸温度(1000ポイズ)が上昇すると白
金ブツシングの寿命を縮める弊害を生じる。
ZrO2成分は、これ単独でなく、SiZrO4として混
入し、調整する。 MoO3、CdOはそれぞれ、溶融性、耐アルカリ
性を付与するもので本発明の特徴とする成分であ
る。MoO3、OdOは高価な原料であるのでそれぞ
れ0.5〜1.0重量%の含有量にする。 Fe2O3、ReOは作業性を良くするために混入す
るもので0.5〜1.0重量%含有する。 上記有効成分の外、不純物としてMnOおよび
TiO2が0〜1wt%含まれるが本発明の実施に何ら
弊害を及ぼさない。 以上成分について説明したが一般にガラス繊維
の紡糸に際しては白金ブツシングの耐熱性と強度
寿命の点から作業温度を1300℃以下にとどめるこ
とが必要であり、望ましくは1250℃以下にする。
この場合作業温度でのガラス溶融粘度が103ポイ
ズとなり、温度−粘度曲線もあまり立ち上つてい
ない挙動を示すガラス組成が好ましく、しかも液
相温度が作業温度より50℃好ましくは100℃以上
低いことが必要である。 次に本発明に係る耐アルカリ性長繊維用ガラス
組成物につき、その製造工程の概略を説明する。 本発明の実施に当つては、南九州一帯に広く堆
積する天然ガラス質原料のシラスを主原料とす
る。シラスの取扱に当つては若干の注意を要する
ので次にその理由及び取扱いについて述べる。 シラスの化学組成は、産地によつて若干組成を
異にするのが鹿児島県産の数例を第1表に示す。
この表にみるようにSiO2が71〜73%、Al2O3が13
〜14%、Na2OとK2Oが約6%、CaO約2%、酸
化鉄が約2%の組成比となつている。またシラス
には、70〜80重量%のガラス質と斜長石を主とす
る鉱物質20〜30重量%を含んでいる。
The present invention relates to a composition for glass fibers having excellent alkali resistance. Glass fibers used as reinforcing fibers in glass fiber reinforced concrete (GRC) to make concrete thinner and lighter, and as substitute fibers in asbestos slate to reduce the amount of asbestos, are required to have alkali resistance. The reason is that the main component of Portland cement, the raw material for the matrix, is 3CaO.
It is SiO2 , and in the reaction process in which these react with water to form and harden tobermorite gel, a large amount of calcium hydroxide is produced, and the pH of the aqueous solution that is in equilibrium with this increases to 12.5 to 13.0. This can be expressed as a chemical formula as follows. 2(3CaO−SiO 2 )+6H 2 O → 3CaO・2SiO 2
3H 2 O+3Ca(OH) 2 2(2CaO・SiO 2 )+4H 2 O→3CaO・2SiO 2
3H 2 O + Ca (OH) 2 Therefore, long fibers of E glass, which are often used in glass fiber reinforced plastics (FRP), deteriorate rapidly in such a highly alkaline atmosphere, so it is necessary to use alkali-resistant glass. It requires fiber. The typical composition of alkali-resistant glass fiber is:
It is based on SiO 2 −Na 2 O−ZrO 2 , and its alkali resistance depends on a high content of ZrO 2 . This type of material has problems in profitability because the raw materials are expensive and the melting and spinning temperatures are high. In addition, long glass fibers such as E-glass are
Since B 2 O 3 is used as flux,
B 2 O 3 has the drawback of significantly damaging refractories and severely deteriorating the alkali resistance of glass. The present invention solves the above-mentioned drawbacks by making the melting temperature and spinning temperature (working temperature) relatively low without using B 2 O 3 , thereby reducing damage to the melting furnace, platinum bushings, etc. An object of the present invention is to provide an alkali-resistant glass fiber composition which has excellent workability by increasing the difference between the spinning temperature and the liquidus temperature, and further reduces the yarn breakage phenomenon and is excellent in economical efficiency. The gist of the composition for alkali-resistant glass fibers according to the present invention is as follows: SiO 2 64-68% by weight Al 2 O 3 1-5 RO 5-11% by weight R' 2 O 7-13 ZrO 2 8 ~13〃MoO30.1 ~ 0.5〃CdO0.1~ 0.5〃Fe2O3 , FeO0.5 ~ 1.0〃It is characterized by having a composition consisting of. Here, R represents Ca, Mg or Ba, and R' is
Represents Na or K. Next, each of the above composition components will be explained in turn. SiO 2 is a skeletal component of glass,
From the viewpoint of alkali resistance and melt temperature spinning workability
Contains 64-68% by weight. Al 2 O 3 is effective in increasing the water resistance of the glass and suppressing devitrification caused by the CaO component, but if it exceeds 5% by weight, it becomes difficult to dissolve the ZrO 2 component, so the content should be 1 to 5% by weight. be. RO represents CaO, MgO, and BaO, and contains 5 to 11% by weight of these alone or in combination. RO acts as a melting agent and imparts alkali resistance, and if it is less than 5% by weight, it cannot be expected to be effective as a melting agent, and if it is more than 11% by weight, it is accompanied by an increase in liquidus temperature, which is not desirable. . R′ 2 O is Na 2 O,
It represents K 2 O and contains 7 to 13% of these alone or in combination as a flux. If R' 2 O is less than 7% by weight, melting of SiO 2 and ZrO 2 cannot be expected, and if it is more than 13% by weight, the water resistance decreases, which is not preferable. ZrO 2 provides alkali resistance and has a
Contains ~13% by weight. If it is less than 8% by weight, alkali resistance cannot be expected, and if it is more than 13% by weight, a high temperature is required during melting, and the temperature-viscosity curve shifts to the high temperature side. An increase in the spinning temperature (1000 poise) has the disadvantage of shortening the life of platinum bushings.
The ZrO 2 component is not used alone, but is mixed and adjusted as SiZrO 4 . MoO 3 and CdO provide meltability and alkali resistance, respectively, and are characteristic components of the present invention. Since MoO 3 and OdO are expensive raw materials, the content thereof is set to 0.5 to 1.0% by weight, respectively. Fe 2 O 3 and ReO are mixed to improve workability and are contained in an amount of 0.5 to 1.0% by weight. In addition to the above active ingredients, MnO and other impurities
Although TiO 2 is contained in an amount of 0 to 1 wt%, it does not have any adverse effects on the implementation of the present invention. Although the components have been explained above, in general when spinning glass fibers, it is necessary to keep the working temperature below 1300°C, preferably below 1250°C, from the viewpoint of the heat resistance and strength life of the platinum bushing.
In this case, it is preferable to use a glass composition in which the glass melt viscosity at the working temperature is 10 3 poise, the temperature-viscosity curve does not rise much, and the liquidus temperature is 50°C, preferably 100°C or more lower than the working temperature. It is necessary. Next, the outline of the manufacturing process for the alkali-resistant long fiber glass composition according to the present invention will be explained. In carrying out the present invention, the main raw material is shirasu, a natural glassy raw material that is widely deposited in the southern Kyushu area. Some care is required when handling whitebait, so the reason and handling will be explained below. The chemical composition of whitebait varies slightly depending on the production area, but Table 1 shows some examples from Kagoshima Prefecture.
As shown in this table, SiO 2 is 71-73% and Al 2 O 3 is 13%.
~14%, Na 2 O and K 2 O about 6%, CaO about 2%, and iron oxide about 2%. Shirasu also contains 70-80% by weight of glass and 20-30% by weight of minerals, mainly plagioclase.

【表】 次に第2表に武岡産シラスの粒度による化学組
成および鉱物組成を示す。
[Table] Next, Table 2 shows the chemical and mineral composition of whitebait from Takeoka according to particle size.

【表】 この表からわかるように100メツシユより粗い
シラスには斜長石が多量に含まれている。この斜
長石は溶融に難があり、特に長繊維の採糸にはし
ばしば糸切れの原因となるので100メツシユより
細いシラスまたは水簸あるいは風簸したガラス分
の豊富なシラスを使用することが望ましい。 この主原料に対し、副原料として、CaCO3
NaCO3、SiZ2O4、CdOMoO3などを適量調合し、
これらを溶融炉で溶融せしめてガラス化する。次
にスロートおよび作業槽を経由させて、フオーハ
ウスに設けられた白金ブツシングから紡糸し、こ
の繊維の表面に集束剤を塗布して、フオーミング
ワインダーでケーキ状に巻きとり乾燥することに
よつて長繊維のストランドを得る。 次に本発明に関する実施例22例を表にして掲げ
以下詳細に説明する。
[Table] As can be seen from this table, whitebait coarser than 100 mesh contains a large amount of plagioclase. This plagioclase is difficult to melt and often causes breakage, especially when harvesting long fibers, so it is preferable to use shirasu that is thinner than 100 mesh or elutriated or elutriated shirasu that is rich in glass content. . In addition to this main raw material, CaCO 3 ,
Mix appropriate amounts of NaCO 3 , SiZ 2 O 4 , CdOMoO 3 , etc.
These are melted in a melting furnace and vitrified. Next, the fibers are spun from a platinum bushing provided in a forehouse through a throat and a working tank, and a sizing agent is applied to the surface of the fibers, which is then wound into a cake shape with a forming winder and dried. Obtain long fiber strands. Next, 22 examples relating to the present invention are listed in a table and will be described in detail below.

【表】【table】

【表】【table】

【表】【table】

【表】 上記22例の実施例は次の如くして行つた。 主原料となるシラスは、水簸しをして得られた
精製シラスで、その組成は次に示すものである。 SiO2 71.5重量% Al2O3 12.0 〃 CaO 1.0 〃 MgO 0.9 〃 Fe2O3 1.7 〃 Na2OK2O 6.6 〃 TiO2 0.1 〃 MnO 0.4 〃 Ig−Loss 2.9 〃 まず、液相温度と作業温度を測定するため、22
例のガラス原料を秤量調合し、白金ルツボを用い
て、電気炉中で1500℃で3時間溶融しガラスカレ
ツトを得た。液相温度はガラス失透試験装置を用
いて、8時間保持の結晶析出の上限温度を判定す
ることにより測定した。作業温度は白金球引上式
粘度天びんを用いて103ポイズに相当する温度を
測定した。 次にフオーハウスに204ホールの白金ブツシン
グを有する電気溶融炉を用いて紡糸試験を行つ
た。この電気溶融炉は、溶融温度が1500℃、流出
量が15Kg/hrのもので、原料投入後、集束剤塗布
採糸まで一貫して行える直接溶融式紡糸炉であ
る。前記せる22例の実施に際しては、炉内が所定
のガラス組成に置換するまで白金ブツシングより
炉外へガラス生地を流出させ絶えず、これを螢光
X線分析装置で組成分析を続け、完全に置換がで
きたことを確認してから22例の採糸試験を行つ
た。この場合のフオーミングワインダーはドラム
径285mmで回転数が1200、1500、1900、rpmのも
のである。また、ガラス繊維の耐アルカリ性を確
認するには、引張り強さ変化率および重量、減少
率を求めることによつて判明するもので、次のと
おり行つた。引張り強さ変化率は、この紡糸方法
で得られた13μmの長繊維のストランドを、重量
減少率は、これとは別に採取したガラスカレツト
を粉砕して、0.5〜1.0mmの粒度にした粉末を夫々
試料とした。これらを、IN−NaOH水溶液と合成
セメント抽出液〔NaOH:0.88g/KOH:3.45
g/Ca(OH)2:0.48g/の割合に調整した
PH−12.5の試験液〕の入つた還流冷却管付きの
丸底フラスコに投入し、80℃で所定時間加熱した
後、取り出し水洗、乾燥してから重量減少率と繊
維の引張り強さ変化率を求めた。その結果は、実
施例表の中段、下段に示す。 実施例として、1〜22例まで掲げたが、このう
ち1〜17例まではその生成組成物としての性能は
本発明の初期の目的に充分合致満足しうる望しい
例であり18から22例は本発明に係る耐アルカリ性
ガラス繊維用組成物の組成成分のある一部の成分
の含有%を本発明の要旨とする含有%より減じる
か増すことによつて、結果的に使用目的にそぐわ
ない欠点が指摘される例である。18〜22例は、1
〜17例と比較した場合、1部の成分の増減によつ
て得られた組成物の特性に大きく影響しているこ
とがわかる。 なおEガラスとも比較するために市販の長繊維
のストランドを入手し、そのまま、もしくは1旦
白金ルツボにて溶融冷却後粉砕し、0.5〜1.0mmの
粒度にした粉末を用いて、耐アルカリ性試験をし
た。耐アルカリ性試験の重量減少率及び引張強さ
変化率とも本発明のものより著しく劣つているこ
とがわかる。 以上のように本発明は、溶融温度、紡糸温度が
従来に比較して低く、溶融炉、白金ブツシングな
どの損傷を少なくし、また、紡糸温度と液相温度
との差を大きくして作業性をよくし、さらに糸ぎ
れ現象が少なく経済性に優れた効果を有する。
[Table] The above 22 Examples were carried out as follows. The main raw material, whitebait, is purified whitebait obtained by elutriation, and its composition is as shown below. SiO 2 71.5% by weight Al 2 O 3 12.0 〃 CaO 1.0 〃 MgO 0.9 〃 Fe 2 O 3 1.7 〃 Na 2 OK 2 O 6.6 〃 TiO 2 0.1 〃 MnO 0.4 〃 Ig−Loss 2.9 〃 First, liquidus temperature and working temperature To measure, 22
The glass raw materials of the example were weighed and prepared, and melted in an electric furnace at 1500°C for 3 hours using a platinum crucible to obtain a glass cullet. The liquidus temperature was measured using a glass devitrification tester by determining the upper limit temperature for crystal precipitation maintained for 8 hours. The working temperature was measured at a temperature equivalent to 10 3 poise using a platinum ball lifting type viscosity balance. Next, a spinning test was conducted using an electric melting furnace equipped with a 204-hole platinum bushing in the forehouse. This electric melting furnace has a melting temperature of 1500°C and a flow rate of 15 kg/hr, and is a direct melting type spinning furnace that can perform everything from feeding the raw materials to applying a sizing agent and harvesting the yarn. When implementing the above 22 examples, the glass fabric was continuously flowed out of the furnace from the platinum bushing until the inside of the furnace was replaced with the specified glass composition, and the composition was analyzed using a fluorescent X-ray analyzer to ensure complete replacement. After confirming that it was possible, we conducted a yarn sampling test on 22 cases. The forming winder in this case has a drum diameter of 285 mm and rotation speeds of 1200, 1500, and 1900 rpm. In addition, the alkali resistance of glass fibers can be confirmed by determining the rate of change in tensile strength, weight, and rate of decrease, which was carried out as follows. The rate of change in tensile strength was calculated using the strands of 13 μm long fibers obtained by this spinning method, and the rate of weight loss was calculated using separately collected glass cullet, which was crushed to a particle size of 0.5 to 1.0 mm. It was used as a sample. These were mixed with IN-NaOH aqueous solution and synthetic cement extract [NaOH: 0.88g/KOH: 3.45
g/Ca(OH) 2 :adjusted to a ratio of 0.48 g/
PH-12.5 test solution] was put into a round bottom flask equipped with a reflux condenser, heated at 80℃ for a specified time, taken out, washed with water, dried, and then measured for weight loss rate and tensile strength change rate of the fiber. I asked for it. The results are shown in the middle and lower rows of the Examples table. Examples 1 to 22 are listed as Examples, and Examples 1 to 17 are desirable examples whose performance as a product composition satisfies the initial purpose of the present invention, and Examples 18 to 22 are examples. By decreasing or increasing the content percentage of some components of the composition for alkali-resistant glass fibers according to the present invention from the content percentage defined by the gist of the present invention, defects that are not suitable for the purpose of use as a result. This is an example of this being pointed out. 18-22 cases are 1
When compared with Examples 1 to 17, it can be seen that increasing or decreasing one part of the component greatly affects the properties of the resulting composition. In addition, in order to compare with E-glass, we obtained commercially available long fiber strands and conducted an alkali resistance test using the powder as it was or after melting and cooling in a platinum crucible and pulverizing it to a particle size of 0.5 to 1.0 mm. did. It can be seen that both the weight loss rate and the tensile strength change rate in the alkali resistance test are significantly inferior to those of the present invention. As described above, the present invention has lower melting and spinning temperatures than conventional ones, which reduces damage to the melting furnace, platinum bushings, etc., and increases workability by increasing the difference between the spinning temperature and the liquidus temperature. In addition, it has excellent economical effects with less thread breakage.

Claims (1)

【特許請求の範囲】 1 SiO2 64〜68重量% Al2O3 1〜5重量% RO 5〜11重量% R′2O 7〜13重量% ZrO2 8〜13重量% MoO3 0.1〜0.5重量% CdO 0.1〜0.5重量% Fe2O3、FeO 0.5〜1.0重量% の組成からなる耐アルカリ性繊維用ガラス組成物
(但し、RはCa、Mg又はBaを表わしR′はNa又は
Kを表わす。)
[Claims] 1 SiO 2 64-68% by weight Al 2 O 3 1-5% by weight RO 5-11% by weight R' 2 O 7-13% by weight ZrO 2 8-13% by weight MoO 3 0.1-0.5 A glass composition for alkali-resistant fibers consisting of: CdO 0.1-0.5 wt% Fe 2 O 3 and FeO 0.5-1.0 wt % (wherein R represents Ca, Mg or Ba and R' represents Na or K) .)
JP7827380A 1980-06-10 1980-06-10 Composition for glass filament having alkali resistance Granted JPS573738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7827380A JPS573738A (en) 1980-06-10 1980-06-10 Composition for glass filament having alkali resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7827380A JPS573738A (en) 1980-06-10 1980-06-10 Composition for glass filament having alkali resistance

Publications (2)

Publication Number Publication Date
JPS573738A JPS573738A (en) 1982-01-09
JPS6257580B2 true JPS6257580B2 (en) 1987-12-01

Family

ID=13657366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7827380A Granted JPS573738A (en) 1980-06-10 1980-06-10 Composition for glass filament having alkali resistance

Country Status (1)

Country Link
JP (1) JPS573738A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401287A (en) * 1993-08-19 1995-03-28 Ppg Industries, Inc. Reduction of nickel sulfide stones in a glass melting operation
US9593038B2 (en) * 2009-08-03 2017-03-14 Ppg Industries Ohio, Inc. Glass compositions and fibers made therefrom

Also Published As

Publication number Publication date
JPS573738A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
US4764487A (en) High iron glass composition
KR101299769B1 (en) Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US8338319B2 (en) Composition for high performance glass fibers and fibers formed therewith
US6686304B1 (en) Glass fiber composition
US9643881B2 (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
JPS62288137A (en) Alkali-resistant glass fiber
CA2375719C (en) Glass fiber composition
JP2000247683A (en) Corrosion resistant glass fiber
CN109982982B (en) Glass composition for glass fiber, and method for producing glass fiber
GB2220654A (en) Glass composition and batch blend for its production
US4014705A (en) Glass compositions
US4142906A (en) Glass composition for alkali-resistant glass fiber
US3928049A (en) Alkali-resistant mineral fibers useful for the reinforcement of various moulded articles
JPWO2016093212A1 (en) Glass composition for glass fiber, glass fiber and method for producing glass fiber
CN111433166B (en) Glass fiber and method for producing same
JPH0127009B2 (en)
US4067744A (en) Alkali-resistant glass composition and glass fibers made therefrom
JP2020100538A (en) Mixed raw material for glass production and glass production method using the same
JPS6257580B2 (en)
JP3771073B2 (en) Glass fiber
JPS58167444A (en) Alkali-resistant glass fiber
JP7235928B1 (en) Glass fibers and compositions for glass fibers
JPH06157072A (en) Corrosion resistant glass fiber
JP7235915B1 (en) Glass fibers and compositions for glass fibers
KR900001372B1 (en) Preparing method of the heat resistant staple from slag