JPS6257578B2 - - Google Patents

Info

Publication number
JPS6257578B2
JPS6257578B2 JP59019241A JP1924184A JPS6257578B2 JP S6257578 B2 JPS6257578 B2 JP S6257578B2 JP 59019241 A JP59019241 A JP 59019241A JP 1924184 A JP1924184 A JP 1924184A JP S6257578 B2 JPS6257578 B2 JP S6257578B2
Authority
JP
Japan
Prior art keywords
particles
magnetoplumbite
magnetic
type ferrite
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59019241A
Other languages
Japanese (ja)
Other versions
JPS60166234A (en
Inventor
Masayuki Watabe
Mitsuyoshi Nishizawa
Nanao Horiishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP59019241A priority Critical patent/JPS60166234A/en
Publication of JPS60166234A publication Critical patent/JPS60166234A/en
Publication of JPS6257578B2 publication Critical patent/JPS6257578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、マグネトプランバイト型フエライト
粒子粉末の製造法に関するものであり、詳しくは
磁気カード用磁性材料として適した粒子の比表面
積が大きく且つ狭い粒度分布を有したマグネトプ
ランバイト型フエライト微粒子粉末を得ることが
できるマグネトプランバイト型フエライト粒子粉
末の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetoplumbite-type ferrite particles, and more specifically to magnetoplumbite-type ferrite particles having a large specific surface area and a narrow particle size distribution suitable as a magnetic material for magnetic cards. The present invention relates to a method for producing magnetoplumbite-type ferrite particles that can obtain plumbite-type ferrite fine particles.

周知の如く、昨今、各種交通切符、クレジツト
カード等の磁気カード応用製品の普及は目覚し
く、磁気カード応用製品に対する高記録密度化の
要求が益々高まつてきている。
As is well known, in recent years, magnetic card application products such as various traffic tickets and credit cards have become widespread, and the demand for higher recording densities for magnetic card application products is increasing.

従来から、磁気カード用磁性材料としてマグネ
トプランバイト型フエライト粒子粉末が使用され
ている。そもそもマグネトプランバイト型フエラ
イト粒子粉末は、バリウム、ストロンチウム及び
鉛からなる群より選ばれた少なくとも1種の金属
元素の化合物と酸化鉄とを所定のモル比になるよ
うに混合配合し、焼成、粉砕してマグネトプラン
バイト型フエライト粒子粉末とし、主にモータ
ー、発電機等の励磁界用磁石材料等永久磁石材料
として用いられていたが、最近では、その高保磁
力に着目して粒度調整を施した上で、磁気カード
用の磁性材料として使用されている。
Conventionally, magnetoplumbite-type ferrite particles have been used as a magnetic material for magnetic cards. In the first place, magnetoplumbite type ferrite particle powder is produced by mixing and blending a compound of at least one metal element selected from the group consisting of barium, strontium, and lead with iron oxide at a predetermined molar ratio, followed by firing and pulverization. It was made into a magnetoplumbite type ferrite particle powder and was mainly used as a permanent magnet material such as excitation field magnet material for motors, generators, etc., but recently, the particle size has been adjusted with attention to its high coercive force. It is used as a magnetic material for magnetic cards.

しかし、このようなマグネトプランバイト型フ
エライト粒子粉末は、少なくとも900℃以上、通
常の場合1100℃以上の高い温度で焼成し、粒度調
整を粉砕機により行つている為、微細化には限度
があり、高々2〜5m2/gのBET法比表面積の
粒子粉末で粒度分布が拡く、しかも粒子は機械的
衝撃による歪を有するので磁気記録材としては
S/N比が悪く、従つてノイズレベルが高いとい
う問題があり、記録密度の高い磁気カード用の磁
性材料としては適さないものであつた。
However, such magnetoplumbite-type ferrite particle powder is fired at a high temperature of at least 900℃ or higher, usually 1100℃ or higher, and the particle size is adjusted using a crusher, so there is a limit to how fine it can be made. , the particle size distribution is wide with the BET specific surface area of 2 to 5 m 2 /g at most, and the particles have distortion due to mechanical impact, so the S/N ratio is poor as a magnetic recording material, and the noise level is low. There was a problem that the magnetic flux was high, making it unsuitable as a magnetic material for magnetic cards with high recording density.

他方、コバルト被着型酸化鉄(Co−γ−
Fe2O3)、Fe3O4粒子を磁性材料として使用し、ノ
イズレベルを低下させた磁気カードを得る方法も
採られている。この場合には保磁力が高々600〜
700eO程度であつて、外部磁界の影響を受けやす
い磁気カードとなり、磁気カード使用上のトラブ
ルが多発し、問題になつているのが現状である。
この事実は、例えば、特開昭56−118304号公報の
「現在用いられているもののごとき抗磁力
(rHc)の小さい磁気カードでは、磁気カード本
来の特性が磁気撹乱を受けて失われてしまうとい
う欠点がある。」という記載からも明らかであ
る。
On the other hand, cobalt-coated iron oxide (Co-γ-
Another method is to use Fe 2 O 3 ) and Fe 3 O 4 particles as magnetic materials to obtain magnetic cards with reduced noise levels. In this case, the coercive force is at most 600~
At present, the magnetic card is about 700 eO and is susceptible to the effects of external magnetic fields, causing many troubles when using the magnetic card.
This fact can be seen, for example, in Japanese Patent Application Laid-Open No. 56-118304, which states that "magnetic cards with low coercive force (rHc), such as those currently in use, lose their original characteristics due to magnetic disturbance. It is clear from the statement, "There are some shortcomings."

従つて、磁気カード用に対する高記録密度化に
適した磁性材料としては高保磁力を有し且つノイ
ズレベルを低下させるものが必要とされている。
Therefore, there is a need for a magnetic material suitable for high recording density for magnetic cards that has high coercive force and lowers the noise level.

ノイズレベルの低下は、用いられる磁性材料粉
末の粒子サイズ、粒度分布に影響されるというこ
とが言われており、詳言すれば、磁性粒子粉末の
粒子サイズを表わす方法として粒子粉末の比表面
積の値がしばしば用いられるが、磁気記録媒体に
起因するノイズレベルは磁性粒子粉末の比表面積
が大きくなる程、低くなる傾向にあることが知ら
れている。
It is said that the reduction in noise level is affected by the particle size and particle size distribution of the magnetic material powder used. Specifically, the particle size of the magnetic particles is expressed by the specific surface area of the particles. Although the value is often used, it is known that the noise level caused by the magnetic recording medium tends to decrease as the specific surface area of the magnetic particles increases.

この現象は、例えば電子通信学会技術研究報告
MR−81−11第27頁23−9の「Fig3」等に示され
ている。「Fig3」はCo被着針状晶マグヘマイト粒
子粉末における粒子の比表面積とノイズレベルと
の関係を示す図であり、粒子の比表面積が大きく
なる程ノイズレベルは直線的に低下している。
This phenomenon can be seen, for example, in the Technical Research Report of the Institute of Electronics and Communication Engineers.
This is shown in "Fig 3" on page 27, 23-9 of MR-81-11. "Fig. 3" is a diagram showing the relationship between the specific surface area of particles and the noise level in Co-coated acicular maghemite particle powder, and the noise level decreases linearly as the specific surface area of the particles increases.

この関係は、マグネトプランバイト型フエライ
ト粒子粉末についても同様に言えることである。
This relationship also applies to the magnetoplumbite type ferrite particle powder.

本発明者は、磁気カード用の磁性材料として従
来から使用されて来たマグネトプランバイト型フ
エライト粒子を記録密度の高い磁気カードに適し
た磁性材料とするべく検討を重ねて来た。従来の
マグネトプランバイト型フエライト粒子粉末は、
前述した通り、バリウム、ストロンチウム及び鉛
からなる群より選ばれた少なくとも1種の金属元
素の化合物と酸化鉄とを所定のモル比になるよう
混合配合し、焼成、粉砕して得られるのである。
The present inventor has repeatedly studied magnetoplumbite-type ferrite particles, which have been conventionally used as a magnetic material for magnetic cards, in order to make them a magnetic material suitable for magnetic cards with high recording density. Conventional magnetoplumbite type ferrite particle powder is
As mentioned above, it is obtained by mixing and blending a compound of at least one metal element selected from the group consisting of barium, strontium, and lead with iron oxide at a predetermined molar ratio, followed by firing and pulverization.

得られたマグネトプランバイト型フエライト粒
子粉末は、少なくも900℃以上、通常の場合1100
℃以上の高い温度で焼成しており、焼成過程での
異常結晶の発生、粒子自体の粒成長と粒子間の強
力な焼結が起り粗大粒子が生成し、その為比表面
積が小さいものとなり、たとえ後工程に於いて強
力な粉砕機により粒子の微細化を施しても粒度分
布の拡い粒子粉末となつてしまう。
The obtained magnetoplumbite type ferrite particle powder has a temperature of at least 900°C or higher, usually 1100°C.
It is fired at a high temperature of ℃ or higher, and during the firing process abnormal crystals occur, grain growth of the particles themselves, and strong sintering between particles occur, resulting in coarse particles with a small specific surface area. Even if the particles are refined using a powerful pulverizer in the post-process, the particle size distribution will be widened and the result will be powder particles.

そこで、焼成温度を1000℃以下、例えば900℃
程度迄下げた場合には焼成過程での異常結晶の発
生、粒子自体の粒成長と粒子間の強力な焼結を極
力防ぐことができ、生成粒子は比表面積の大きい
粒子粉末となるがフエライト化反応が困難な為マ
グネトプランバイト型フエライト粒子は得難い。
Therefore, the firing temperature should be lower than 1000℃, for example 900℃.
If the temperature is reduced to a certain level, the occurrence of abnormal crystals during the firing process, grain growth of the particles themselves, and strong sintering between particles can be prevented as much as possible, and the resulting particles will be powder particles with a large specific surface area, but they will become ferrite. Magnetoplumbite type ferrite particles are difficult to obtain because the reaction is difficult.

本発明者は、マグネトプランバイト型フエライ
ト粒子粉末を磁気カード用の磁性材料として用い
るに当り、ノイズレベルの低下をはかるために、
より比表面積が大きく且つより狭い粒度分布を有
するマグネトプランバイト型フエライト粒子粉末
を探求して、永年に亘り、マグネトプランバイト
型フエライト粒子粉末の粒子サイズを微細化させ
る方法及び各種添加剤の作用効果について、数多
くの実験検討を行つて来た。そして、その結果、
バリウム、ストロンチウム及び鉛からなる群より
選ばれた少なくとも1種の金属元素の化合物と酸
化鉄とを所定のモル比になるように混合配合する
際に同時に水ガラスを添加しておけば焼成温度を
900℃以下の温度に下げてもフエライト化反応が
生起し、焼成過程での粒子自体の粒成長とを粒子
間の強力な焼結を抑制するので、得られた粒子粉
末は比表面積が大きく且つ狭い粒度分布を有した
マグネトプランバイト型フエライト粒子粉末とな
ることを確め、本発明に到達したのである。
In order to reduce the noise level when using magnetoplumbite type ferrite particle powder as a magnetic material for magnetic cards, the inventor of the present invention
In search of magnetoplumbite type ferrite particles having a larger specific surface area and narrower particle size distribution, we have been researching methods for refining the particle size of magnetoplumbite type ferrite particles and the effects of various additives for many years. We have conducted numerous experimental studies regarding this. And as a result,
If water glass is added at the same time when a compound of at least one metal element selected from the group consisting of barium, strontium, and lead and iron oxide are mixed at a predetermined molar ratio, the firing temperature can be controlled.
Even if the temperature is lowered to below 900℃, the ferritization reaction occurs, suppressing the grain growth of the particles themselves and strong sintering between particles during the firing process, so the obtained powder particles have a large specific surface area and The present invention was achieved by confirming that magnetoplumbite-type ferrite particles with a narrow particle size distribution can be obtained.

即ち、本発明は、バリウム、ストロンチウム及
び鉛からなる群より選ばれた少なくとも1種の金
属元素の化合物と酸化鉄との混合物を焼成し、粉
砕する工程から成るモル比Fe2O3/MO(M:
Ba、Sr、Pbの1種または2種以上)=5.6〜6.1の
組成のマグネトプランバイト型フエライト粒子粉
末の製造法において、バリウム、ストロンチウム
及び鉛からなる群より選ばれた少なくとも1種の
金属元素の化合物と酸化鉄とを水ガラスの存在下
で混合させた後、750〜900℃の温度範囲で焼成す
ることを特徴とするマグネトプランバイト型フエ
ライト微粒子粉末の製造法である。
That is, the present invention provides a molar ratio Fe 2 O 3 /MO ( M:
At least one metal element selected from the group consisting of barium, strontium, and lead in a method for producing magnetoplumbite-type ferrite particles having a composition of 5.6 to 6.1 (one or more of Ba, Sr, and Pb) This is a method for producing magnetoplumbite-type ferrite fine particle powder, which is characterized by mixing the compound and iron oxide in the presence of water glass and then firing the mixture at a temperature range of 750 to 900°C.

次に本発明の構成の詳細について説明する。 Next, details of the configuration of the present invention will be explained.

先ず、本発明のマグネトプランバイト型フエラ
イト粒子粉末の組成について説明すると、
Fe2O3/MO(M:Ba、Sr、Pbの1種又は2種以
上)のモル比は5.6〜6.1の範囲にする必要があ
る。この範囲以外では磁気特性殊に保磁力IHcが
極端に低くなり実用上望ましくない。酸化鉄原料
としてはα−Fe2O3、γ−Fe2O3、あるいは
Fe3O4等のいずれもが使用できる。またバリウ
ム、ストロンチウム及び鉛の原料としては、
BaCO3、SrCO3、PbO等が使用できるが、加熱し
てBaO、SrO、PbOとなるBa化合物、Sr化合物、
Pb化合物も使用できる。
First, the composition of the magnetoplumbite type ferrite particle powder of the present invention will be explained.
The molar ratio of Fe 2 O 3 /MO (M: one or more of Ba, Sr, and Pb) needs to be in the range of 5.6 to 6.1. Outside this range, the magnetic properties, particularly the coercive force IHc, become extremely low, which is not desirable for practical use. As raw materials for iron oxide, α-Fe 2 O 3 , γ-Fe 2 O 3 , or
Any of Fe 3 O 4 etc. can be used. In addition, raw materials for barium, strontium and lead include:
BaCO 3 , SrCO 3 , PbO, etc. can be used, but Ba compounds, Sr compounds, which become BaO, SrO, PbO when heated,
Pb compounds can also be used.

次に水ガラスの添加について説明する。 Next, the addition of water glass will be explained.

本発明に於ける水ガラスは、ケイ酸ソーダ、ケ
イ酸カリウム等の水溶性ケイ酸塩が使用できる。
またその添加量としては、酸化鉄(α−Fe2O3
算)に対してSiO2換算で0.05〜1.45重量%の間で
有効である。1.45重量%以上添加すると生成物フ
エライトの磁化値が低下し磁性材料として好まし
くない。また0.05重量%以下では本発明の目的と
する効果は得られない。又、前記水ガラスの添加
する時期は、焼成工程の直前が適当である。即ち
原料配合工程、焼成工程、粉砕工程の各工程中に
おいて、焼成工程の直前の工程である原料配合の
時点に添加することができる。
As the water glass in the present invention, water-soluble silicates such as sodium silicate and potassium silicate can be used.
Moreover, the addition amount is effective between 0.05 and 1.45% by weight in terms of SiO 2 based on iron oxide (in terms of α-Fe 2 O 3 ). If 1.45% by weight or more is added, the magnetization value of the product ferrite decreases, making it undesirable as a magnetic material. Further, if it is less than 0.05% by weight, the desired effect of the present invention cannot be obtained. Further, the appropriate time to add the water glass is immediately before the firing process. That is, during each of the raw material blending process, firing process, and pulverization process, it can be added at the time of raw material blending, which is the process immediately before the firing process.

焼成温度範囲は750〜900℃の間であればさしつ
かえない。750℃以下の温度ではフエライト化を
完全に行わせるには不充分であり、900℃以上の
温度では、焼成過程での粒子自体の粒成長と粒子
間の強力な焼結により後に行う粉砕が困難となり
好ましくない。
The firing temperature range may be between 750 and 900°C. Temperatures below 750°C are insufficient for complete ferrite formation, and temperatures above 900°C make subsequent pulverization difficult due to grain growth of the particles themselves during the firing process and strong sintering between particles. This is undesirable.

尚、焼成後行う粉砕は、例えばアトマイザー等
の粉砕機が使用でき、特別な粉砕機は必要でな
い。
Incidentally, for the pulverization performed after firing, a pulverizer such as an atomizer can be used, and a special pulverizer is not required.

以上の通りの構成の本発明は、次の通りの効果
を奏するものである。
The present invention configured as described above has the following effects.

即ち、本発明方法によれば、粒子の比表面積が
大きく且つ粒度分布の狭いマグネトプランバイト
型フエライト微粒子粉末を得ることができるの
で、現在最も要求されている記録密度の高い磁気
カード用磁性材料として使用することができる。
That is, according to the method of the present invention, it is possible to obtain a magnetoplumbite type ferrite fine particle powder with a large particle specific surface area and a narrow particle size distribution, so that it can be used as a magnetic material for magnetic cards with high recording density, which is currently most required. can be used.

次に実施例並びに比較例により、本発明を説明
する。
Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、実施例、比較例に於ける粒子の比表面積は
BET法により測定したものであり、生成物の構
造解析にはX線を用いた。磁気測定は直流BHト
レーサー((株)横川電機製作所Type3257)を使用
し、測定磁場10KOeで測定した。
In addition, the specific surface area of particles in Examples and Comparative Examples is
It was measured by the BET method, and X-rays were used to analyze the structure of the product. Magnetic measurements were performed using a DC BH tracer (Yokogawa Electric Manufacturing Co., Ltd. Type 3257) at a measurement magnetic field of 10 KOe.

実施例 1 Fe2O3/BaOのモル比が5.85になるように、酸
化鉄(α−Fe2O3)粉末1100gと炭酸バリウム粉
末239gとを混合するに際して、水ガラス30g
(Fe2O3に対してSiO2換算で0.76重量%に相当)
を添加し、充分混合させた後、該混合物を850℃
で3時間焼成し、次いでこの焼成物を粉砕した。
得られた粒子はX線分析の結果、マグネトプラン
バイト型バリウムフエライト粒子であり、組成分
析の結果Fe2O3/BaO=5.84であつた。
Example 1 When mixing 1100 g of iron oxide (α-Fe 2 O 3 ) powder and 239 g of barium carbonate powder so that the molar ratio of Fe 2 O 3 /BaO was 5.85, 30 g of water glass was mixed.
(Equivalent to 0.76% by weight of SiO 2 based on Fe 2 O 3 )
After adding and mixing thoroughly, the mixture was heated to 850℃.
The fired product was then pulverized.
As a result of X-ray analysis, the obtained particles were found to be magnetoplumbite type barium ferrite particles, and as a result of compositional analysis, Fe 2 O 3 /BaO = 5.84.

得られたマグネトプランバイト型バリウムフエ
ライト微粒子粉末のBET法による比表面積を測
定した結果15.2m2/gであり、電子顕微鏡観察の
結果、粒度分布幅の狭いものであつた。またこの
ものの磁気特性を測定した結果保磁力(IHc):
4320 Oeであつた。
The specific surface area of the resulting magnetoplumbite-type barium ferrite fine particles measured by the BET method was 15.2 m 2 /g, and as a result of electron microscopy observation, the particle size distribution width was narrow. In addition, the magnetic properties of this material were measured and the coercive force (IHc):
It was 4320 Oe.

実施例 2 Fe2O3/SrOのモル比が5.90になるように、酸
化鉄(γ−Fe2O3)粉末1150gと炭酸ストロンチ
ウム粉末188gとを混合するに際して、水ガラス
10g(Fe2O3に対してSiO2換算で0.25重量%に相
当)を添加し、充分混合させた後、該混合物を
800℃で3時間焼成し、次いでこの焼成物を粉砕
した。
Example 2 When mixing 1150 g of iron oxide (γ-Fe 2 O 3 ) powder and 188 g of strontium carbonate powder so that the molar ratio of Fe 2 O 3 /SrO was 5.90, water glass was used.
After adding 10 g (equivalent to 0.25% by weight of SiO 2 based on Fe 2 O 3 ) and mixing thoroughly, the mixture was
It was fired at 800°C for 3 hours, and then the fired product was pulverized.

得られた粒子はX線分析の結果、マグネトプラ
ンバイト型ストロンチウムフエライト粒子であ
り、組成分析の結果Fe2O3/SrO=5.91であつ
た。
As a result of X-ray analysis, the obtained particles were found to be magnetoplumbite type strontium ferrite particles, and as a result of compositional analysis, Fe 2 O 3 /SrO = 5.91.

得られたマグネトプランバイト型ストロンチウ
ムフエライト微粒子粉末のBET法による比表面
積を測定した結果18.1m2/gであり、電子顕微鏡
観察の結果、粒度分布幅の狭いものであつた。ま
たこのものの磁気特性を測定した結果、保磁力
(IHc):44600eであつた。
The specific surface area of the resulting magnetoplumbite type strontium ferrite fine particles measured by the BET method was 18.1 m 2 /g, and the particle size distribution was narrow as observed by electron microscopy. Also, as a result of measuring the magnetic properties of this material, the coercive force (IHc) was 44,600e.

比較例 1 Fe2O3/BaOのモル比が5.85になるように、酸
化鉄(α−Fe2O3)粉末1100gと炭酸バリウム粉
末239gとを充分混合し、該混合物を1250℃で3
時間焼成し、次いでこの焼成物を振動型ボールミ
ルで60分間粉砕処理して得た粒子はX線分析の結
果、マグネトプランバイト型バリウムフエライト
粒子粉末であつた。
Comparative Example 1 1100 g of iron oxide (α-Fe 2 O 3 ) powder and 239 g of barium carbonate powder were sufficiently mixed so that the molar ratio of Fe 2 O 3 /BaO was 5.85, and the mixture was heated at 1250°C for 30 minutes.
The particles obtained by firing for an hour and then pulverizing the fired product in a vibrating ball mill for 60 minutes were found to be magnetoplumbite barium ferrite particles as a result of X-ray analysis.

また、この粒子粉末のBET法による比表面積
を測定した結果5.0m2/gであり、電子顕微鏡観
察の結果、粒度分布幅が拡く粗大粒子が混在して
いるものであつた。また、このものの磁気特性を
測定した結果、保磁力(IHc):3200 Oeであつ
た。
Further, the specific surface area of this particle powder was measured by the BET method and was 5.0 m 2 /g, and as a result of electron microscopy observation, it was found that coarse particles with a wide particle size distribution were mixed therein. Furthermore, as a result of measuring the magnetic properties of this material, the coercive force (IHc) was 3200 Oe.

Claims (1)

【特許請求の範囲】 1 バリウム、ストロンチウム及び鉛からなる群
より選ばれた少なくとも1種の金属元素の化合物
と酸化鉄との混合物を焼成し、粉砕する工程から
成るモル比Fe2O3/MO(M:Ba、Sr、Pbの1種
または2種以上)=5.6〜6.1の組成のマグネトプ
ランバイト型フエライト粒子粉末の製造法におい
て、バリウム、ストロンチウム及び鉛からなる群
より選ばれた少なくとも1種の金属元素の化合物
と酸化鉄とを水ガラスの存在下で混合させた後、
750〜900℃の温度範囲で焼成することを特徴とす
るマグネトプランバイト型フエライト微粒子粉末
の製造法。 2 水ガラスの存在量が酸化鉄(Fe2O3換算)に
対してSiO2換算で0.05〜1.45重量%である特許請
求の範囲第1項記載のマグネトプランバイト型フ
エライト微粒子粉末の製造法。
[Claims] 1. A molar ratio Fe 2 O 3 /MO comprising the step of calcining and pulverizing a mixture of iron oxide and a compound of at least one metal element selected from the group consisting of barium, strontium and lead. (M: one or more of Ba, Sr, and Pb) = At least one selected from the group consisting of barium, strontium, and lead in a method for producing magnetoplumbite-type ferrite particle powder having a composition of 5.6 to 6.1. After mixing a compound of metal elements with iron oxide in the presence of water glass,
A method for producing magnetoplumbite-type ferrite fine particle powder, which is characterized by firing at a temperature range of 750 to 900°C. 2. The method for producing a magnetoplumbite-type ferrite fine particle powder according to claim 1, wherein the amount of water glass present is 0.05 to 1.45% by weight in terms of SiO 2 based on iron oxide (in terms of Fe 2 O 3 ).
JP59019241A 1984-02-03 1984-02-03 Preparation of finely divided powder or ferrite of magnetoplumbite type Granted JPS60166234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019241A JPS60166234A (en) 1984-02-03 1984-02-03 Preparation of finely divided powder or ferrite of magnetoplumbite type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019241A JPS60166234A (en) 1984-02-03 1984-02-03 Preparation of finely divided powder or ferrite of magnetoplumbite type

Publications (2)

Publication Number Publication Date
JPS60166234A JPS60166234A (en) 1985-08-29
JPS6257578B2 true JPS6257578B2 (en) 1987-12-01

Family

ID=11993899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019241A Granted JPS60166234A (en) 1984-02-03 1984-02-03 Preparation of finely divided powder or ferrite of magnetoplumbite type

Country Status (1)

Country Link
JP (1) JPS60166234A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272127A (en) * 1992-03-23 1993-10-19 Takuma Kenki:Kk Stirring apparatus for excavator

Also Published As

Publication number Publication date
JPS60166234A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
Cochardt Modified strontium ferrite, a new permanent magnet material
US11380466B2 (en) Ferrite sintered magnet
EP3473606A1 (en) Ferrite magnetic material and ferrite sintered magnet
CN101106001A (en) Low-temperature coefficient permanent magnet ferrite material and its production method
JPH0986906A (en) Production of functional oxide powder for functional thin film
JPS6257578B2 (en)
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JPH0641374B2 (en) Method for producing high coercive hexagonal acicular crystal ferrite powder
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JPS6217841B2 (en)
JPH0314783B2 (en)
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
JP2779935B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same
JPH066490B2 (en) Method for producing magnetoplumbite-type fine ferrite powder
JPH11307331A (en) Ferrite magnet
JPH066491B2 (en) Method for producing magnetoplumbite-type fine ferrite powder
JP4461276B2 (en) Method for producing magnetic powder
JP3115466B2 (en) Method for producing hexagonal ferrite particles
JPH05275221A (en) Ferrite magnet and its manufacture
JP3144088B2 (en) Manufacturing method of ferrite magnet
JPS6131067B2 (en)
JP2738370B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same
JPH0553045B2 (en)
KR100538874B1 (en) High performance ferrite sintered magnet and producing method of the same
JPH0679967B2 (en) Method for producing magnetoplumbite-type fine ferrite powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term