JPS6257341B2 - - Google Patents

Info

Publication number
JPS6257341B2
JPS6257341B2 JP52053377A JP5337777A JPS6257341B2 JP S6257341 B2 JPS6257341 B2 JP S6257341B2 JP 52053377 A JP52053377 A JP 52053377A JP 5337777 A JP5337777 A JP 5337777A JP S6257341 B2 JPS6257341 B2 JP S6257341B2
Authority
JP
Japan
Prior art keywords
grid
screen
pattern
conductive layer
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52053377A
Other languages
Japanese (ja)
Other versions
JPS53138294A (en
Inventor
Itaru Kamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP5337777A priority Critical patent/JPS53138294A/en
Publication of JPS53138294A publication Critical patent/JPS53138294A/en
Publication of JPS6257341B2 publication Critical patent/JPS6257341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明はX線撮影用グリツドの製造方法に関す
るものであり、特に電鋳法により鉛スクリーンを
作製し、この鉛スクリーンを複数枚接着積層して
X線撮影用グリツドを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an X-ray imaging grid, and in particular, a lead screen is produced by electroforming, and a plurality of lead screens are bonded and laminated to form an X-ray imaging grid. It relates to a manufacturing method.

X線撮影をする場合、被写体の内部でX線の吸
収と散乱が起こり、X線像は主線束の減弱により
形成されるため、被写体の内部で生じる散乱線は
鮮明なX線像形成をさまたげる。被写体からの散
乱線を除去するため、感光フイルム前面にグリツ
ドが配置される。かかる、グリツド1は第1図に
示される如く、X線遮断物質2と透過物質3とを
適当な厚さに配置してなるものである。しかして
X線撮影に当つて、主線5束は透過物質3を通し
て透過するが、散乱線6は遮断物質2に当たり、
透過しないようにして、主線束のみをグリツド1
を透過するように構成し、鮮明なX線像を得るも
のである。かかるグリツド1の製造に於いて、従
来はt1の厚さの遮断物質2例えば、鉛板とt2の厚
さの透過物質3例えば、プラスチツク板とを矢印
7方向に交互に順次積層して製造していた。一般
にt1,t2はそれぞれ0.05mm、0.3mmであり、又必要
とされるグリツドの幅は40mm位であるから、かか
るグリツドを製造するには極めて多くの枚数の遮
断物質2、透過物質3を積層しなければならない
ため、製造困難なものであつた。
When performing X-ray photography, absorption and scattering of X-rays occur inside the subject, and the X-ray image is formed by attenuation of the principal ray flux, so the scattered rays generated inside the subject hinder the formation of a clear X-ray image. . A grid is placed in front of the photosensitive film to remove scattered radiation from the subject. As shown in FIG. 1, the grid 1 is made up of an X-ray blocking material 2 and a transmitting material 3 arranged at appropriate thicknesses. During X-ray photography, the 5 principal rays pass through the transmitting material 3, but the scattered rays 6 hit the blocking material 2.
Make only the main line bundle grid 1 so that it does not pass through.
The X-ray is constructed so that it transmits light, thereby obtaining a clear X-ray image. In manufacturing such a grid 1, conventionally, a blocking material 2 having a thickness of t 1 and a transparent material 3 having a thickness of t 2 , such as a plastic plate, are alternately and sequentially laminated in the direction of the arrow 7. was manufacturing. Generally, t 1 and t 2 are 0.05 mm and 0.3 mm, respectively, and the required width of the grid is about 40 mm, so in order to manufacture such a grid, an extremely large number of blocking materials 2 and transmitting materials 3 are required. It was difficult to manufacture because it required laminating layers.

本発明は従来のかかる欠点を改良するために発
明されたものであり、電鋳法により鉛スクリーン
を複数枚作製し、これを積層してなるグリツドの
製造方法に関するものである。
The present invention was invented in order to improve these conventional drawbacks, and relates to a method for producing a grid by producing a plurality of lead screens by electroforming and laminating them.

以下、一実施例により本発明を詳細に説明す
る。第2図に示す如く、パターンフイルム10は
製造すべきグリツドのパターン(遮断物質と透過
物質の平面形状)と同様のパターン11を有する
写真フイルムであり、即ち、かかるパターン11
は製造すべきグリツドの遮断物質に相当する幅t1
の透明部分12と透過物質に相当する幅t2の非透
明部分13とよりなるものである。
Hereinafter, the present invention will be explained in detail using one example. As shown in FIG. 2, the pattern film 10 is a photographic film having a pattern 11 similar to the pattern of the grid to be manufactured (planar shape of the blocking material and the transmitting material).
is the width t 1 corresponding to the blocking material of the grid to be produced
, and a non-transparent part 13 having a width t 2 corresponding to the transparent material.

このパターンフイルム10は光学機械等によ
り、パターンを描き、これを銀塩写真フイルムに
縮小撮影等の方法で得ることができる。
This pattern film 10 can be obtained by drawing a pattern using an optical machine or the like and then reducing the pattern onto a silver salt photographic film.

一方、感光板20はX線透過物質例えば、塩化
ビニルシート、ポリエステルシート、ポリカーボ
ネートシート等の合成樹脂シートよりなるスクリ
ーン基材21表面に導電層22を形成し、さらに
その表面にフオトエツチング用感光層23を形成
してなるものである。導電層22の形成方法とし
ては、銅、アルミニウム等のエツチング可能な金
属をメツキ法、塗まつ法、蒸着法等によつてスク
リーン基材に施す、又はスクリーン基材に金属板
を接着する等の方法により形成することができ
る。又、感光層23の形成方法としては、フオト
エツチング用感光剤例えばKPR(イーストマン
コダツク社製)、ポリビニルアルコール等の感光
剤をホワイラー塗布等の方法で形成することがで
きる。
On the other hand, the photosensitive plate 20 has a conductive layer 22 formed on the surface of a screen base material 21 made of an X-ray transparent material such as a synthetic resin sheet such as a vinyl chloride sheet, a polyester sheet, a polycarbonate sheet, and a photosensitive layer for photoetching on the surface. 23. The conductive layer 22 can be formed by applying an etched metal such as copper or aluminum to the screen base material by plating, coating, vapor deposition, etc., or by bonding a metal plate to the screen base material. It can be formed by a method. The photosensitive layer 23 can be formed by using a photosensitive agent such as KPR (manufactured by Eastman Kodak Co., Ltd.), polyvinyl alcohol, etc., by whiter coating.

このようにしてなる感光板20上に前記パター
ンフイルム10を重ね合わせて、密着し、適当な
光源で露光し、現像した後腐蝕液にてエツチング
処理を施し、さらにフオトレジストを剥離して第
3図に示す如き遮断物質を形成すべきパターンに
導電層22′が形成されたスクリーン基材21を
得る。
The pattern film 10 is superimposed on the photosensitive plate 20 formed in this manner, adhered to the photosensitive plate 20, exposed to light with an appropriate light source, developed, and then etched with an etchant. A screen base material 21 is obtained in which a conductive layer 22' is formed in a pattern in which a blocking material is to be formed as shown in the figure.

上記フオトエツチング方法はよく知られた技術
であるので、鮮細な説明は省略する。
Since the above-mentioned photoetching method is a well-known technique, detailed explanation will be omitted.

次にこのようにしてなるスクリーン基材21に
X線遮断物質例えば、鉛を電鋳して第4図に示す
如きスクリーン基材21上の導電層22′上に遮
断物質24の電鋳されたスクリーン25を得る。
遮断物質の電鋳厚d2としては、スクリーンのピツ
チにもよるが0.4mmmm〜0.6mmmmが適当であり、そ
れ以上厚く形成すると遮断物質24のパターン精
度が得られないので、好ましくなく、又あまり薄
くすると積層枚数を増さなければならず好ましく
ない。
Next, an X-ray blocking material such as lead is electroformed on the screen base material 21 thus formed, and a blocking material 24 is electroformed on the conductive layer 22' on the screen base material 21 as shown in FIG. Screen 25 is obtained.
The appropriate electroforming thickness d2 of the blocking material is 0.4mmmm to 0.6mmmm, although it depends on the pitch of the screen.If it is formed thicker than that, the pattern accuracy of the blocking material 24 cannot be obtained, so it is not preferable and If it is made thinner, the number of laminated sheets must be increased, which is not preferable.

このようにして得られたスクリーン25を複数
枚作製し、第5図に示す如く接着剤30により位
置を合わせて接着積層してX線撮影用グリツド3
1を完成する。
A plurality of screens 25 obtained in this manner are manufactured, and as shown in FIG.
Complete 1.

この積層に当つて接着剤30として光硬化性樹
脂例えば、アサヒフオトレジスト(旭化成社製)
を用い、先ず1枚目のスクリーン25と2枚目
のスクリーン25とを接着剤30を介して位置
を合わせて重ね合わせ、適当な光源により光を当
てて接着剤30を硬化せしめ、次に3枚目のスク
リーン25を同様な方法で接着し、順次積層す
ることにより、スクリーン25の遮断物質24の
相互の位置を正確に接着することができる。
In this lamination, a photocurable resin is used as the adhesive 30, such as Asahi Photoresist (manufactured by Asahi Kasei Co., Ltd.).
First, the first screen 25 1 and the second screen 25 2 are aligned and overlapped via the adhesive 30, and the adhesive 30 is cured by applying light from an appropriate light source. By bonding the third screen 253 in the same manner and stacking them one after another, the mutual positions of the blocking materials 24 of the screen 25 can be bonded accurately.

このようにして4〜7枚のスクリーン25を積
層してX線撮影用グリツド31を完成する。
In this way, four to seven screens 25 are stacked to complete the X-ray imaging grid 31.

又、従来のグリツドは遮断物質2が全て平行に
配置されていたため、その周縁に於いて主線5束
に対し遮断物質2が平行にならず、カツトオフが
生じたが、これを解消するグリツドとして、第6
図に示す如く1枚目〜n枚目の各スクリーンの遮
断物質24〜24oの配置を主線5に対し平行
となるように配置すれば良い。
In addition, in the conventional grid, all the blocking substances 2 were arranged in parallel, so the blocking substances 2 were not parallel to the 5 main line bundles at the periphery, resulting in cut-off, but as a grid to solve this problem, 6th
As shown in the figure, the blocking materials 24 1 to 24 o of the first to nth screens may be arranged parallel to the main line 5.

この場合、各スクリーン25〜25oを作る
ための対応したパターンのパターンフイルムを用
意し製造すれば良い。
In this case, pattern films with corresponding patterns for making each screen 25 1 to 25 o may be prepared and manufactured.

又、従来のグリツドの製法では万線状のグリツ
ドしか製造し得なかつたが、パターンフイルムの
パターンを格子状、蜂の巣状とすることにより、
格子状、蜂の巣状のグリツドが製造し得る。これ
により両方向の散乱線を除去し得る。
In addition, conventional grid manufacturing methods could only produce grids in the form of parallel lines, but by making the pattern of the pattern film into a grid or honeycomb pattern,
Lattice-like, honeycomb-like grids can be produced. This makes it possible to remove scattered radiation in both directions.

本発明は以上の如き構成であるから、従来の製
造方法に比較し、極めて容易に製造し得るととも
に、周縁部に於ける主線束のカツトオフの無いグ
リツドを得ることができ、又、任意のパターンの
グリツドが製造し得る。従つて両方向散乱線を除
去できるグリツドを製造し得る。
Since the present invention has the above-described structure, it can be manufactured extremely easily compared to conventional manufacturing methods, and it is also possible to obtain a grid without cut-off of the main wire bundle at the periphery. grids can be produced. It is therefore possible to produce a grid that can eliminate bidirectionally scattered radiation.

<実施例 1> 万線状パターンを作成し、これを感光フイルム
と一定スペースをあけて配置し、光源を左右に振
ることにより、透明部の幅を調節する方式により
感光フイルムを撮影し、現像処理して透明部分の
幅0.05mm、非透明部分の幅0.3mmの万線パターン
のパターンフイルムを用意した。次に、厚さ0.15
mmのポリエステルシートに銅を2〜3μm厚に銅
をメツキして導電層を形成し、フオトエツチング
用感光剤としてKPRをホワイラー塗布し、感光
板を得た。次に、該感光板にパターンフイルムを
密着して重ね合わせ、水銀燈で露光し、KPR用
現像剤にて現像した。次に、塩化第二鉄溶液にて
フオトレジストの形成されてない部分の導電層を
腐蝕し、次に、トリクレンによりフオトレジスト
を剥離して導電層をパターン化した。
<Example 1> A linear pattern is created, placed at a certain distance from the photosensitive film, and the photosensitive film is photographed and developed using a method in which the width of the transparent part is adjusted by swinging the light source from side to side. After processing, a patterned film with a line pattern with a width of 0.05 mm in the transparent part and a width of 0.3 mm in the non-transparent part was prepared. Then thickness 0.15
A conductive layer was formed by plating copper to a thickness of 2 to 3 .mu.m on a 2-3 .mu.m thick polyester sheet, and a photosensitive plate was obtained by whiter coating KPR as a photosensitizer for photoetching. Next, a pattern film was closely placed on the photosensitive plate, exposed to light using a mercury lamp, and developed using a KPR developer. Next, the portions of the conductive layer where the photoresist was not formed were corroded with a ferric chloride solution, and then the photoresist was peeled off with trichlene to pattern the conductive layer.

次に、この導電層に鉛を0.5〜0.6mm厚に電鋳し
て遮断層を形成し、スクリーンを得た。
Next, a shielding layer was formed by electroforming lead to a thickness of 0.5 to 0.6 mm on this conductive layer to obtain a screen.

同様の工程で5枚のスクリーンを用意し、アサ
ヒフオトレジストを塗布して1枚目のスクリーン
と2枚目のスクリーンを位置合わせして、重ね合
わせ、水銀燈により光を当てて前記光硬化性樹脂
を硬化して1枚目のスクリーンと2枚目のスクリ
ーンとを接着した。
Prepare five screens in the same process, apply Asahi photoresist, align the first screen and second screen, overlap them, and apply light with a mercury lamp to make the photocurable resin. was cured to adhere the first screen and the second screen.

同様の工程で全5枚のスクリーンを接着積層し
てX線撮影用グリツドを完成した。
Using the same process, all five screens were glued and laminated to complete an X-ray imaging grid.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図
は従来のグリツドの断面図、第2図〜第5図は本
発明の製造工程を示す断面図であり、第2図は露
光工程、第3図はパセターン化された導電層の形
成されたスクリーン基材、第4図はスクリーン、
第5図は完成されたグリツドをそれぞれ示し、第
6図は他の実施例のグリツドの断面図である。 5……主線、6……散乱線、10……パターン
フイルム、11……パターン、20……感光板、
21……スクリーン基材、22……導電層、23
……感光層、25……スクリーン、30……接着
剤、31……グリツド。
The drawings show one embodiment of the present invention; FIG. 1 is a sectional view of a conventional grid, FIGS. 2 to 5 are sectional views showing the manufacturing process of the present invention, and FIG. 2 is a sectional view of the exposure process. , FIG. 3 shows a screen base material on which a patterned conductive layer is formed, FIG. 4 shows a screen,
FIG. 5 shows each completed grid, and FIG. 6 is a cross-sectional view of another embodiment of the grid. 5... Main line, 6... Scattered line, 10... Pattern film, 11... Pattern, 20... Photosensitive plate,
21... Screen base material, 22... Conductive layer, 23
...Photosensitive layer, 25...Screen, 30...Adhesive, 31...Grid.

Claims (1)

【特許請求の範囲】 1 X線透過物質よりなるスクリーン基材にグリ
ツドのパターンに対応するパターンの導電層が形
成され、該導電層にX線遮断物質が電鋳されたス
クリーンを複数枚接着積層してなるX線撮影用グ
リツドの製造方法において、X線透過物質よりな
るスクリーン基材にフオトエツチング法により所
望のパターンの導電層を形成し、該導電層にX線
遮断物質を電鋳してスクリーンを得、該スクリー
ンを複数枚接着剤にて接着することを特徴とする
X線撮影用グリツドの製造方法。 2 接着剤が光硬化性樹脂である第1項記載のX
線撮影用グリツドの製造方法。
[Claims] 1. A conductive layer with a pattern corresponding to the grid pattern is formed on a screen base material made of an X-ray transparent material, and a plurality of screens each having an X-ray blocking material electroformed on the conductive layer are bonded and laminated. In the method for manufacturing an X-ray imaging grid, a conductive layer with a desired pattern is formed on a screen base material made of an X-ray transparent material by a photoetching method, and an X-ray blocking material is electroformed on the conductive layer. A method for producing an X-ray imaging grid, which comprises obtaining a screen and bonding a plurality of screens with an adhesive. 2. X according to item 1, wherein the adhesive is a photocurable resin.
A method of manufacturing a grid for radiography.
JP5337777A 1977-05-10 1977-05-10 Xxray camera grid and method of producing same Granted JPS53138294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5337777A JPS53138294A (en) 1977-05-10 1977-05-10 Xxray camera grid and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5337777A JPS53138294A (en) 1977-05-10 1977-05-10 Xxray camera grid and method of producing same

Publications (2)

Publication Number Publication Date
JPS53138294A JPS53138294A (en) 1978-12-02
JPS6257341B2 true JPS6257341B2 (en) 1987-11-30

Family

ID=12941121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5337777A Granted JPS53138294A (en) 1977-05-10 1977-05-10 Xxray camera grid and method of producing same

Country Status (1)

Country Link
JP (1) JPS53138294A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024156B3 (en) * 2007-05-24 2008-12-11 Siemens Ag X-ray absorption grating
JP5660910B2 (en) * 2010-03-30 2015-01-28 富士フイルム株式会社 Method for manufacturing grid for radiographic imaging
CN105139913B (en) * 2015-09-08 2017-10-13 清华大学 A kind of grating and radiation imaging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074391A (en) * 1973-10-31 1975-06-19
JPS5074389A (en) * 1973-10-31 1975-06-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074391A (en) * 1973-10-31 1975-06-19
JPS5074389A (en) * 1973-10-31 1975-06-19

Also Published As

Publication number Publication date
JPS53138294A (en) 1978-12-02

Similar Documents

Publication Publication Date Title
US4951305A (en) X-ray grid for medical radiography and method of making and using same
US4465540A (en) Method of manufacture of laminate radiation collimator
US4288697A (en) Laminate radiation collimator
US3037419A (en) Directional light-transmissive screen
US3706486A (en) Reinforced lenticular sheet with plural apertured sheets
US4992699A (en) X-ray phosphor imaging screen and method of making same
US2806958A (en) Radiographic diaphragm and method of making the same
JP2015092289A (en) Method of manufacturing light control panel
WO1985005190A1 (en) Method of forming non-continuous films on rugged or wavy surface of object
JPS5639533A (en) Photographic plateholder for x-ray
JPH0682604B2 (en) X-ray mask
JP2007095915A (en) Manufacturing method of composite filter for display
JPS6257341B2 (en)
JP3989329B2 (en) Optical functional element and manufacturing method thereof
US4269915A (en) Information carrier original for zero order diffraction projection
US4416019A (en) Device for producing images of a layer of an object from multiple shadow images with varying degrees of overlap
US5408295A (en) Method of making stereoscopic images in a circular pattern
CN108388076B (en) Mask plate, mask method and manufacturing method thereof and mask system
WO2020228241A1 (en) Method for manufacturing collimator, collimator, optical fingerprint module, and electronic device
JP4067162B2 (en) Manufacturing method of visual field selective sheet
JP3230105B2 (en) X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern
JPS6131864B2 (en)
JP2015125393A (en) Stereoscopic image formation device, and method of manufacturing the same
JPS60243837A (en) Obtulator disc used for optical transducer
JP2011117161A (en) Film for light shielding window