JPS6256983B2 - - Google Patents

Info

Publication number
JPS6256983B2
JPS6256983B2 JP54088466A JP8846679A JPS6256983B2 JP S6256983 B2 JPS6256983 B2 JP S6256983B2 JP 54088466 A JP54088466 A JP 54088466A JP 8846679 A JP8846679 A JP 8846679A JP S6256983 B2 JPS6256983 B2 JP S6256983B2
Authority
JP
Japan
Prior art keywords
indicator
current
resistance
equation
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54088466A
Other languages
Japanese (ja)
Other versions
JPS5612558A (en
Inventor
Eiji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP8846679A priority Critical patent/JPS5612558A/en
Priority to GB8015247A priority patent/GB2056095B/en
Priority to BR8003495A priority patent/BR8003495A/en
Priority to US06/163,224 priority patent/US4336494A/en
Publication of JPS5612558A publication Critical patent/JPS5612558A/en
Publication of JPS6256983B2 publication Critical patent/JPS6256983B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は絶縁抵抗計に関するものである。[Detailed description of the invention] The present invention relates to an insulation resistance meter.

絶縁抵抗計はJISC1302により、その細目が定
められており、指示計のスケール上に対数に近似
した目盛で絶縁抵抗値を表示する必要がある。
The details of the insulation resistance meter are determined by JISC1302, and the insulation resistance value must be displayed on the scale of the indicator in a scale that approximates a logarithm.

従来の絶縁抵抗計の対数変換回路としては、ツ
エナーダイオードのツエナー特性を利用した回路
(例えば実願昭43−43862号)、ダイオードによる
近似折線による回路(例えば実願昭51−115893
号)などがあつたが、前者は特別に選別したツエ
ナーダイオードを必要とし、後者は多くの部品点
数を必要としていた。
Conventional logarithmic conversion circuits for insulation resistance meters include circuits that utilize the Zener characteristics of Zener diodes (for example, Utility Model Application No. 43,862/1986), and circuits based on approximate broken lines using diodes (eg, Utility Model Application No. 115,893/1989).
However, the former required a specially selected Zener diode, and the latter required a large number of parts.

本発明は、シリコンダイオードの順方向の電圧
と電流とが対数関係にあることを利用して、極く
簡単な回路構成の対数変換回路を備えた絶縁抵抗
計を提供するものである。
The present invention utilizes the logarithmic relationship between forward voltage and current of a silicon diode to provide an insulation resistance meter equipped with a logarithmic conversion circuit having an extremely simple circuit configuration.

第1図は本発明に係る絶縁抵抗計が実現しよう
とする指示計のスケールの一例を示す図である。
第1図において、1は指示計の指針を示し、指示
計に電流が流れないときは∞の位置を示す。スケ
ール長の約1/3にあたる第1図のイの区間は被測
定抵抗Rxの逆数に対応する目盛となつており、
ロの区間は被測定抵抗Rxの対数に対応する目盛
となつている。これを被測定抵抗Rxに流れる電
流Iと指示計電流Imとの関係で示したのが第
2図である。第2図は、例えば被測定抵抗Rxに
流れる電流IlがImAのとき指示計の指針がフル
スケール振れて第1図のゼロを示し、電流Il
1μA以下のとき指示計の指針は振れず第1図の
∞を指示することを表わしている。更に電流Il
が約1〜10μAの区間では、指示計電流Imは電
流Ilに比例し、電流Ilが約10μAを越えると指示
計電流Imは電流Ilの対数に比例することを表わし
ている。
FIG. 1 is a diagram showing an example of the scale of an indicator that is intended to be realized by an insulation resistance meter according to the present invention.
In FIG. 1, 1 indicates the pointer of the indicator, and when no current flows through the indicator, it indicates the ∞ position. The section A in Figure 1, which is about 1/3 of the scale length, is a scale corresponding to the reciprocal of the resistance to be measured Rx.
The section B is a scale corresponding to the logarithm of the resistance to be measured Rx. FIG. 2 shows this in terms of the relationship between the current I flowing through the resistance to be measured Rx and the indicator current Im. Figure 2 shows that, for example, when the current I l flowing through the resistance to be measured Rx is ImA, the pointer of the indicator swings to the full scale and indicates zero in Figure 1, and when the current I l is less than 1 μA, the pointer of the indicator swings to the full scale. ∞ in Figure 1. Furthermore, the current I l
In the range from about 1 to 10 μA, the indicator current Im is proportional to the current I l , and when the current Il exceeds about 10 μA, the indicator current Im is proportional to the logarithm of the current I l.

第3図は本発明の一実施例を示す図である。第
3図において、Eは直流の高圧電源、D1,D2
互に熱的なバランスがとれたダイオードである。
FIG. 3 is a diagram showing an embodiment of the present invention. In FIG. 3, E is a DC high-voltage power supply, and D 1 and D 2 are diodes that are thermally balanced.

s,r1は抵抗、Mは内部抵抗rnを有する指示
計、1,2は被測定抵抗が接続される測定端子で
ある。測定端子1,2間には、高圧電源Eとダイ
オードD1と抵抗r1の直列回路が接続される。ダイ
オードD1の両端に、指示計Mと抵抗rsとダイオ
ードD2の直列回路が接続される。
r s and r 1 are resistances, M is an indicator having an internal resistance r n , and 1 and 2 are measurement terminals to which resistances to be measured are connected. A series circuit consisting of a high-voltage power supply E, a diode D1 , and a resistor r1 is connected between the measurement terminals 1 and 2. A series circuit of an indicator M, a resistor r s and a diode D 2 is connected to both ends of the diode D 1 .

このように構成接続された第3図装置の動作を
以下に説明する。
The operation of the apparatus shown in FIG. 3 configured and connected in this manner will be described below.

測定端子1,2間には被測定抵抗Rxが接続さ
れる。高圧電源Eから被測定抵抗Rxに流れる電
流Il、指示計Mに流れる電流をImとする。
A resistance to be measured Rx is connected between measurement terminals 1 and 2. Let Il be the current flowing from the high-voltage power supply E to the resistor to be measured Rx, and Im be the current flowing to the indicator M.

一般にダイオードの両端の順方向の電圧をV
d、同じく順方向に流れる電流をIdとすると(1)式
の関係が成り立つことが知られている。
Generally, the forward voltage across the diode is V
It is known that the relationship of equation (1) holds if d is the current flowing in the forward direction and I d is the current flowing in the forward direction.

d=Is・{exp(q・Vd/k・T)−1} (1) Is:逆方向飽和電流 q:電子の電荷 k:ボルツマン定数 T:絶対温度 (1)式は(2)式に書き換えることができる。I d = Is・{exp(q・V d /k・T)−1} (1) Is: Reverse saturation current q: Electron charge k: Boltzmann constant T: Absolute temperature (1) Equation (2) It can be rewritten as a formula.

d=k・T/q{ln(Is+Id)−lnIs} (2) 一方第3図のダイオードD1の両端の電圧をVD
、ダイオードD2の両端の電圧をVD2とすると(3)
式が成り立つ。
V d =k・T/q{ln(Is+I d )−lnIs} (2) On the other hand, let the voltage across the diode D 1 in Figure 3 be V D
1. If the voltage across diode D2 is V D2 (3)
The formula holds true.

D1=VD2+(rs+rn)・Im (3) (2)式と(3)式から次の(4)式が成り立つ。 V D1 =V D2 +( rs + r n )·Im (3) The following equation (4) is established from equations (2) and (3).

Im=1/r+r・k・T/q{ln(Is+Il−Im)
−ln(Im +Is)} (4) 指示計電流Imが大きい場合、すなわち第1図
のロの区間の場合はダイオードD1,D2に流れる
電流が大きいことは抵抗rs,rnの作用とにより
Is≪Im≪Ilなる関係が成り立つ。従つて(4)式は(5)
式に書き換えることができる。
Im=1/ rs + rn・k・T/q{ln(Is+Il−Im)
-ln(Im +Is)} (4) When the indicator current Im is large, that is, in the case of section B in Figure 1, the large current flowing through the diodes D 1 and D 2 is due to the effect of the resistors r s and r n depending on
The relationship Is≪Im≪Il holds true. Therefore, equation (4) becomes (5)
It can be rewritten as a formula.

k・T/(r+r)・q・lnIl =Im+k・T/(r+r)・q・lnIm (5) 第4図は(5)式の右辺を改めてYと置いて、その
関係を示したもので、第4図において、直線は
Y=Imを示し、曲線はY=k・T/(r+r)・
q・lnImを 示し、点線はY=Im+k・T/(r+r)・q・
lnImを示し ている。第4図は前記したように指示計電流Im
が大きい領域でかつIs≪Im≪Ilとして描いたもの
であるから、第4図のロの区間(第1図のロの区
間に相当)のグラフは指示計電流Imに対応する
大きさを正しく表わしている。一方、第4図のイ
の区間は指示計電流Imが上記の条件と異なり小
さい領域であるため指示計電流Imに対応する大
きさを正しく表わしていない。以上から第4図ロ
の区間では、直線が支配的であるため次の(6)式
が成り立つ。
k・T/( rs + r n )・q・lnIl = Im+k・T/( rs + r n )・q・lnIm (5) In Figure 4, the right side of equation (5) is replaced with Y, and the This shows the relationship. In Figure 4, the straight line indicates Y=Im, and the curve indicates Y=k・T/( rs + r n )・
q・lnIm is shown, and the dotted line is Y=Im+k・T/( rs + r n )・q・
Showing lnIm. Figure 4 shows the indicator current Im as described above.
is a large area and is drawn as Is≪Im≪Il, so the graph of section B in Fig. 4 (corresponding to section B in Fig. 1) correctly shows the magnitude corresponding to indicator current Im. It represents. On the other hand, since the section A in FIG. 4 is a region where the indicator current Im is small, unlike the above conditions, it does not correctly represent the magnitude corresponding to the indicator current Im. From the above, in the section B of Figure 4, straight lines are dominant, so the following equation (6) holds true.

Im≒k・T/(r+r)・q・LnIl (6) 指示計電流Imが大きいとき、すなわち第1図
のロの区間では(6)式より指示計電流Imは被測定
抵抗Rxに流れる電流Ilの対数に比例する。
Im≒k・T/( rs + r n )・q・LnIl (6) When the indicator current Im is large, that is, in the section B in Fig. 1, from equation (6), the indicator current Im is the resistance to be measured Rx It is proportional to the logarithm of the current Il flowing through.

次に指示計電流Imが小さいとき、(rs+r
n)・Imは小さい値となる。従つて(4)式から(7)式
が導びき出される。
Next, when the indicator current Im is small, (r s + r
n )・Im will be a small value. Therefore, equation (7) can be derived from equation (4).

+I−I/I+I≒1 (7) (7)式から次式が成り立つ。 I s +I l -I n /I n +I s ≈1 (7) From equation (7), the following equation holds true.

Im≒I/2 (8) すなわち、指示計電流Imが小さいとき(第1
図のイの区間)は、(8)式より指示計電流Imは被
測定抵抗Rxに流れる電流Ilに比例する。
Im≒I l /2 (8) In other words, when the indicator current Im is small (the first
In the section A in the figure), the indicator current Im is proportional to the current I l flowing through the resistance to be measured Rx from equation (8).

以上のことから第1図のイの区間では被測定抵
抗Rxが非常に大きくIl=E/Rxとすることができ、 従つて第1図のイの区間は(9)式に示す如く被測定
抵抗Rxの逆数に対応した目盛となる。
From the above, in the section A in Fig. 1, the resistance to be measured Rx is very large and can be set as I l = E/Rx. Therefore, in the section A in Fig. 1, the resistance to be measured is The scale corresponds to the reciprocal of the measured resistance Rx.

Im≒E/2・Rx (9) 第1図のロの区間では被測定抵抗Rxが比較的
小さいため抵抗r1を無視できずIl=E/Rx+rとな る。従つて第1図のロの区間は(10)式に表わされる
関係となる。
Im≈E/2·Rx (9) In the section (b) of FIG. 1, the resistance to be measured Rx is relatively small, so the resistance r 1 cannot be ignored and Il=E/Rx+r 1 . Therefore, the section B in FIG. 1 has the relationship expressed by equation (10).

Im≒k・T/(r+r)・q{lnE−ln(Rx+r1
}(10) すなわち、第1図のロの区間は被測定抵抗Rx
の対数値に近似的に比例した目盛となつている。
Im≒k・T/( rs + rn )・q{lnE−ln(Rx+ r1 )
}(10) In other words, the section B in Figure 1 is the resistance to be measured Rx
The scale is approximately proportional to the logarithm of .

第3図では、本発明をわかり易く説明するため
にダイオードD1,D2をそれぞれ1個のダイオー
ドから成る構成として説明したが、ダイオード
D1,D2は複数個のダイオードを並列又は直列に
組み合せで構成してよく、この場合は、ダイオー
ドの組み合せにより指示計の感度を変えたり、指
示計の目盛を目的に合せて変えたりすることがで
きる効果を有する。例えば、第5図に示すように
ダイオードD2をn個の並列接続したダイオード
で構成すれば、(4)式には定数項が入り、(8)式では
右辺の定数が変つてくる。
In FIG. 3, in order to explain the present invention in an easy-to-understand manner, the diodes D 1 and D 2 have been explained as having a configuration each consisting of one diode.
D 1 and D 2 may be constructed by combining multiple diodes in parallel or in series. In this case, the sensitivity of the indicator can be changed depending on the combination of diodes, and the scale of the indicator can be changed to suit the purpose. It has the effect that it can. For example, if diode D 2 is constructed of n diodes connected in parallel as shown in FIG. 5, a constant term will be included in equation (4), and the constant on the right side of equation (8) will change.

なお本発明におけるダイオードは熱的バランス
がとれたものが望ましく、同一基板上(ウエハー
上)に構成されたダイオードを使用すれば好結果
を得ることができる。
Note that it is desirable that the diodes used in the present invention are thermally balanced, and good results can be obtained by using diodes formed on the same substrate (wafer).

一般に指示計Mには直線性誤差があるが、第1
図の指示計のスケールを印刷で製作したとすれば
指示計Mの直線性誤差を補正するには、(10)式の対
数曲線を変化させることになる。従来は折線回路
にそれぞれ組み込まれた複数個の可変抵抗により
補正を行なつていたが本発明においては、抵抗r
sを可変抵抗とすることにより(10)式から明らかな
如く指示計電流Imを可変することができ、これ
により指示計の直線性誤差を容易に補正すること
ができる。
In general, the indicator M has a linearity error, but the first
If the scale of the indicator shown in the figure is manufactured by printing, then in order to correct the linearity error of the indicator M, the logarithmic curve of equation (10) must be changed. Conventionally, correction was performed using a plurality of variable resistors each incorporated in a broken line circuit, but in the present invention, the resistance r
By setting s to be a variable resistance, the indicator current Im can be varied as is clear from equation (10), and thereby the linearity error of the indicator can be easily corrected.

このように本発明によれば、2つのダイオード
と抵抗と指示計とによる非常に簡単な構成により
絶縁抵抗計の対数変換を行なうことができ、その
効果は極めて大なるものである。
As described above, according to the present invention, logarithmic conversion of an insulation resistance meter can be performed with a very simple configuration consisting of two diodes, a resistor, and an indicator, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は絶縁抵抗計の指示計のスケールの一例
を示す図、第2図は被測定抵抗Rxに流れる電流
lと指示計電流Imとの関係を示した図、第3図
は本発明の一実施例を示す図、第4図は(5)式の関
数を示した図、第5図は本発明の他の実施例を示
す図である。 E……高圧電源、D1,D2……ダイオード、r1
s……抵抗、M……指示計。
Fig. 1 is a diagram showing an example of the scale of an indicator of an insulation resistance meter, Fig. 2 is a diagram showing the relationship between the current I l flowing through the resistance to be measured Rx and the indicator current Im, and Fig. 3 is a diagram showing the present invention. FIG. 4 is a diagram showing the function of equation (5), and FIG. 5 is a diagram showing another embodiment of the present invention. E...High voltage power supply, D1 , D2 ...Diode, r1 ,
r s ...Resistance, M...Indicator.

Claims (1)

【特許請求の範囲】 1 互に熱的なバランスがとれ1個又は複数個の
ダイオードで構成された第1と第2のダイオー
ド、 前記第1のダイオードと、第1のダイオードへ
並列に接続され前記第2のダイオードと抵抗と指
示計とで構成される直列回路とを備えたことを特
徴とする絶縁抵抗計。
[Claims] 1. First and second diodes that are mutually thermally balanced and are composed of one or more diodes, the first diode and the first diode being connected in parallel to the first diode. An insulation resistance meter comprising a series circuit including the second diode, a resistor, and an indicator.
JP8846679A 1979-07-12 1979-07-12 Insulation resistance meter Granted JPS5612558A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8846679A JPS5612558A (en) 1979-07-12 1979-07-12 Insulation resistance meter
GB8015247A GB2056095B (en) 1979-07-12 1980-05-08 Insulation resistance tester
BR8003495A BR8003495A (en) 1979-07-12 1980-06-04 INSULATION RESISTANCE ANALYZER
US06/163,224 US4336494A (en) 1979-07-12 1980-06-26 Insulation resistance tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8846679A JPS5612558A (en) 1979-07-12 1979-07-12 Insulation resistance meter

Publications (2)

Publication Number Publication Date
JPS5612558A JPS5612558A (en) 1981-02-06
JPS6256983B2 true JPS6256983B2 (en) 1987-11-28

Family

ID=13943545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8846679A Granted JPS5612558A (en) 1979-07-12 1979-07-12 Insulation resistance meter

Country Status (1)

Country Link
JP (1) JPS5612558A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186471U (en) * 1982-06-07 1983-12-10 東京都 High insulation resistance measuring device

Also Published As

Publication number Publication date
JPS5612558A (en) 1981-02-06

Similar Documents

Publication Publication Date Title
US4349777A (en) Variable current source
US2389615A (en) Anemometer
GB1577977A (en) Linearized bridge circuit
US3906796A (en) Electronic temperature measuring apparatus
US3805616A (en) Temperature measuring apparatus
US2492901A (en) Biased diode logarithmic compensating circuit for electrical instruments
JPS6256983B2 (en)
US4336494A (en) Insulation resistance tester
US3970933A (en) Device for checking a D.C. source voltage relative to a predetermined value
US3472073A (en) Linearized thermocouple measuring circuit
JPS6256984B2 (en)
Ryde The use of unmatched thermistors for the measurement of temperature difference under varying ambient conditions
US3187576A (en) Electronic thermometer
US3453536A (en) Common power supply resistance bridge system providing excitation,individual bridge sensor resistance,and signal output terminals all referenced to a common potential
KR830000862B1 (en) megger
US3179885A (en) Resistive network temperature compensator using resistors having positive, negative, and zero temperature characteristics
US3104550A (en) Resistance thermometer
Behr The Wenner potentiometer
US3292081A (en) Apparatus for measuring the negative ratio of voltage
SU1288611A1 (en) Resistance meter
JPH0823482B2 (en) Temperature compensation circuit for semiconductor strain gauge
SU513312A1 (en) Thermoanemometer
SU1030760A1 (en) Camera exposure measuring instrument
SU974280A1 (en) Remote converter of resistannce increment to current ratio
JPS5831078Y2 (en) Thermoelectric temperature measuring device