JPS6256934A - Driving method for liquid crystal matrix panel - Google Patents

Driving method for liquid crystal matrix panel

Info

Publication number
JPS6256934A
JPS6256934A JP19801285A JP19801285A JPS6256934A JP S6256934 A JPS6256934 A JP S6256934A JP 19801285 A JP19801285 A JP 19801285A JP 19801285 A JP19801285 A JP 19801285A JP S6256934 A JPS6256934 A JP S6256934A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
pulse
selection period
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19801285A
Other languages
Japanese (ja)
Inventor
Hisahide Wakita
尚英 脇田
Tsuyoshi Kamimura
強 上村
Hiroyuki Onishi
博之 大西
Shiyuuko Ooba
大庭 周子
Isao Oota
勲夫 太田
Shingo Fujita
晋吾 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19801285A priority Critical patent/JPS6256934A/en
Priority to US06/903,773 priority patent/US5010327A/en
Priority to DE8686306893T priority patent/DE3686219T2/en
Priority to EP86306893A priority patent/EP0214856B1/en
Publication of JPS6256934A publication Critical patent/JPS6256934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To perform a display of high quality on a high-duty single-paper matrix driving basis by making scanning pulses narrower in width in a nonselection period than in a selection period. CONSTITUTION:When the display panel which has ferroelectric liquid crystal charged between substrates is driven, the scanning pulses are made narrower in width in the nonselection period than in the selection period, a reset pulse having wide pulse width is applied at the end of the nonselection period to reset picture elements, which are inverted when the pulses is the latter half of the selection period is an on voltage and do not change in state when an off voltage. Thus, only an effective voltage is raised without inverting liquid crystal molecules to performs an excellent contrast display with high duty.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶を液晶層として持つ液晶マトリッ
クスパネルの駆動法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for driving a liquid crystal matrix panel having a ferroelectric liquid crystal as a liquid crystal layer.

従来の技術 近年、応答速度が速くメモリー性のある強誘電性液晶の
報告がなされている(例えば、竹添秀夫、福田敦夫、久
世栄−;「工業材料」、第31巻、第10号、22)。
Prior Art In recent years, reports have been made on ferroelectric liquid crystals with fast response speed and memory properties (for example, Hideo Takezoe, Atsuo Fukuda, Sakae Kuze; "Industrial Materials", Vol. 31, No. 10, 22). ).

以下、図面を用いて従来の強誘電性液晶パネルの一列に
ついて説明する。第6図は従来のスメクチック液晶パネ
ルの構造を示すものである。第6図において1はガラス
基板、2はITOより成る透明電極、4は強誘電性液晶
層、6は液晶分子のCダイレクタ−16は双極子モーメ
ントである。
Hereinafter, one row of conventional ferroelectric liquid crystal panels will be described with reference to the drawings. FIG. 6 shows the structure of a conventional smectic liquid crystal panel. In FIG. 6, 1 is a glass substrate, 2 is a transparent electrode made of ITO, 4 is a ferroelectric liquid crystal layer, 6 is a C director of liquid crystal molecules, and 16 is a dipole moment.

強誘電性液晶は一般に分子長軸に垂直な方向に双極子モ
゛−メントをもっておシ、薄膜化により自発分極を持つ
ようになる。強誘電性を示すカイラルスメクチック相の
列を用いて強誘電性液晶の表記方法を第7図に示す。第
7図(IL)は分子層の法線に対し分子長軸が+θ度傾
いた状態、第7図(b)は−〇度傾いた状態の強誘電性
液晶の表記法である。7は層の法線、8は分子の長軸方
向n、9は双極子モーメン)Ps、10はnを!7平面
上に投影した時のCダイレクタ−C111は分子長軸の
法線に対する傾き角±θ度である。以上のような構造を
持つ強誘電性液晶パネルについて、以下その動作原理に
ついて図を参照しながら説明する。
Ferroelectric liquid crystals generally have a dipole moment in the direction perpendicular to the long axis of the molecules, and as they become thinner, they come to have spontaneous polarization. FIG. 7 shows a method of representing a ferroelectric liquid crystal using an array of chiral smectic phases exhibiting ferroelectricity. FIG. 7(IL) shows a representation of a ferroelectric liquid crystal in a state where the long axis of the molecules is tilted by +θ degrees with respect to the normal to the molecular layer, and FIG. 7(b) shows a state in which the molecular long axes are tilted by −0 degrees. 7 is the normal to the layer, 8 is the longitudinal direction of the molecule n, 9 is the dipole moment) Ps, 10 is n! The C director -C111 when projected onto the 7-plane is an inclination angle of ±θ degrees with respect to the normal to the long axis of the molecule. The operating principle of the ferroelectric liquid crystal panel having the above structure will be explained below with reference to the drawings.

第8図に従来の強誘電性液晶パネルの表示方法の原理図
を示す。12は層法線に対して分子長軸が+θ度傾いた
液晶分子、13は一θ度傾いた液晶分子、14は紙面表
方向の双極子モーメント、16は紙面裏方向の双極子モ
ーメント、16は2枚の偏光板の方向である。さて、第
8図(&)は電圧無印加の状態、第8図(b)は紙面表
から裏へ正の電圧を印加した場合、第8図(0)は紙面
裏から表へ正の電圧を印加した場合の動作原理である。
FIG. 8 shows a principle diagram of a conventional ferroelectric liquid crystal panel display method. 12 is a liquid crystal molecule whose long axis of the molecule is tilted by +θ degree with respect to the layer normal, 13 is a liquid crystal molecule whose molecular axis is tilted by 1θ degree, 14 is a dipole moment in the direction of the front of the page, 16 is a dipole moment in the direction of the back of the page, 16 is the direction of the two polarizing plates. Now, Figure 8 (&) shows the state in which no voltage is applied, Figure 8 (b) shows the case where a positive voltage is applied from the front to the back of the paper, and Figure 8 (0) shows the positive voltage applied from the back to the front of the paper. This is the operating principle when applying .

このように電圧の印加方向によりセル全体が±θ度傾い
た2つの状態をとシ、したがって、電気光学効果による
複屈折または2色性を利用すれば明暗を表すことができ
る。
In this way, two states in which the entire cell is tilted by ±θ degrees depending on the direction of voltage application can be created, and therefore brightness and darkness can be expressed by using birefringence or dichroism due to the electro-optic effect.

以上が強誘電性液晶パネルの表示原理だが、マトリック
ス駆動法としては、従来の電圧平均化法を少し変更した
駆動法がある。第9図はその一例で、2つのフィールド
からな’)、3Aバイアスの電圧平均化法に基づいた波
形を、フィールド毎にパルスの極性及び、オン電圧とオ
フ電圧を逆転させている。オン電圧vdでは分子は反転
するがオフ電圧Vd−2・vhでは反転しない。したが
ってオン状態は第1フイールドで設定され、オフ状態は
第2フイールドで設定されている。(例えば、反日、出
口、居住、甲斐:ニス・アイ・ディ′86ダイジエスト
、1985年、136頁(T。
The above is the display principle of a ferroelectric liquid crystal panel, but as a matrix drive method, there is a drive method that is slightly modified from the conventional voltage averaging method. FIG. 9 is an example of this, in which the waveform is based on a voltage averaging method with a 3A bias consisting of two fields, and the polarity of the pulse and the on-voltage and off-voltage are reversed for each field. The molecule is inverted at the on-voltage vd, but not at the off-voltage Vd-2·vh. Therefore, the on state is set in the first field, and the off state is set in the second field. (For example, anti-Japan, exit, residence, Kai: Niss I D'86 Digest, 1985, p. 136 (T.

HムRADム、M、TムGtTCHI、に、IWASム
、M、にム工:  SID  ’85 Digest(
1985)p、131)発明が解決しようとする問題点 強誘電性液晶の閾値電圧は印加されるパルス幅が長くな
ると絶対値が小さくなる。したがって、上記のように電
圧平均化法に準じた波形では、走査電極の非選択期間に
、絵素のパターンによっては、走査電極の選択期間に印
加されるパルス電圧の2倍のパルス幅のパルス電圧が印
加されるのでバイアス比を小さくして電圧値を小さくし
なければならない。バイアス比を小さくすると、オン電
圧とオフ電圧の比も小さくなるので閾値特性が急峻でな
いと、表示が不可能になる。
HMU RADMU, M, TMU GtTCHI, IWASMU, M, NIMU: SID '85 Digest (
1985) p. 131) Problems to be Solved by the Invention The threshold voltage of a ferroelectric liquid crystal becomes smaller in absolute value as the applied pulse width becomes longer. Therefore, with a waveform based on the voltage averaging method as described above, during the non-selection period of the scan electrode, depending on the pixel pattern, a pulse with a pulse width twice as long as the pulse voltage applied during the selection period of the scan electrode may be applied. Since a voltage is applied, the bias ratio must be reduced to reduce the voltage value. When the bias ratio is decreased, the ratio of the on voltage to the off voltage is also decreased, so unless the threshold characteristic is steep, display becomes impossible.

また、上記従来の方法はパネルの基板表面の効果による
メモリーがあることを前提としており、厚セル等のメモ
リー効果のないか、もしくは弱いパネルではコントラス
トの高い表示は望めない。
Further, the above conventional method is based on the assumption that there is memory due to the effect of the surface of the substrate of the panel, and a display with high contrast cannot be expected with a panel such as a thick cell that has no or weak memory effect.

本発明は上記問題点に鑑み、強誘電性液晶表示パネルを
、パネルの閾値特性やメモリー効果の良否に関わらず、
高デユーティ−の単純マトリックス駆動で表示品位の高
い表示ができる、液晶マトリックスパネルの駆動法を与
えるものである。
In view of the above problems, the present invention provides a ferroelectric liquid crystal display panel, regardless of the quality of the threshold characteristics and memory effect of the panel.
The present invention provides a driving method for a liquid crystal matrix panel that allows high-quality display with high-duty simple matrix driving.

問題点を解決するための手段 上記問題点を解決するために本発明の液晶マトリックス
パネルの駆動法は、対向面に電極を有する一対の基板間
に誘電異方性が負の強誘電性液晶を挾持し、マ) IJ
ソックス状絵素を形成する液晶マ) IJフックスネル
の駆動法において、非選択期間の走査電圧パルスのパル
ス幅を選択期間の走査電圧パルスのパルス幅より短くし
たことを特徴とする液晶マトリックスパネルの駆動法を
与えるものである。また、非選択期間の走査電圧パルス
のパルス幅は前記パルス電圧値での上記強誘電性液晶の
応答時間より短いとき本発明の駆動法は効果的である。
Means for Solving the Problems In order to solve the above problems, the method for driving a liquid crystal matrix panel of the present invention uses a ferroelectric liquid crystal with negative dielectric anisotropy between a pair of substrates having electrodes on opposing surfaces. Clamping, ma) IJ
(Liquid crystal matrix forming sock-like picture elements) Driving of a liquid crystal matrix panel according to IJ Fuchsnell's driving method, characterized in that the pulse width of the scanning voltage pulse in the non-selection period is made shorter than the pulse width of the scanning voltage pulse in the selection period. It is the law-giver. Further, the driving method of the present invention is effective when the pulse width of the scanning voltage pulse during the non-selection period is shorter than the response time of the ferroelectric liquid crystal at the pulse voltage value.

さらに、走査電極の非選択期間に絵素に印加されるパル
ス電圧の振幅が前記誘電異方性により分子配向の安定化
効果が生ずる程度に大きいとき、本発明の駆動法は特に
有効である。
Further, the driving method of the present invention is particularly effective when the amplitude of the pulse voltage applied to the picture element during the non-selection period of the scanning electrode is large enough to produce a stabilizing effect on molecular orientation due to the dielectric anisotropy.

作用 強誘電性液晶分子の反転は自発分極と電界との相互作用
によりおころが、この刀身外に従来のネマチック液晶と
同様に誘電異方性と実効値電圧とに比例する力が強誘電
性液晶分子にも作用する。
The inversion of the ferroelectric liquid crystal molecules occurs due to the interaction between spontaneous polarization and the electric field, but outside of this blade there is a force proportional to the dielectric anisotropy and the effective voltage that causes the ferroelectric property to change. It also acts on liquid crystal molecules.

強誘電性液晶の誘電異方性が負の場合には、実効値電圧
に比例した力は次の二つの影響を液晶ノ(ネルに及ぼす
ことが筆者らの実験により分っている。
The authors' experiments have shown that when the dielectric anisotropy of ferroelectric liquid crystal is negative, a force proportional to the effective voltage has the following two effects on the liquid crystal channel.

第一は、印加電圧の実効値に比例して分子が基板表面に
並行になろうとする力が大きくなル、この力がPsと電
界との相互作用による力より大きいときは絵素の状態は
保持される。すなわち、メモリー性を高める効果が生ず
る。第二は、閾値特性が改善される効果である。第1の
効果゛を生む前記の力により、実効値電圧が大きくなる
と全体に閾値電圧は上がるが、特性が急峻になるのが実
験により確かめられた。本発明の駆動法は前記の二つの
効果を有効に活かすため、非選択期間の絵素には選択期
間に絵素に印加されるパルスより)(ルス幅の短いパル
ス電圧を加えている。強誘電性液晶の閾値電圧にはパル
ス幅依存性があり、)(ルス幅が短いほど閾値電圧は高
い。本駆動法では)くルス幅が短いので閾値電圧は高く
電圧を上げても絵素の状態は変化しないが、実効値だけ
が大きくなって、上記の二つの効果が強く作用すること
により高品位の表示が得られる。
First, the force that forces molecules to become parallel to the substrate surface increases in proportion to the effective value of the applied voltage.When this force is greater than the force caused by the interaction between Ps and the electric field, the state of the pixel is Retained. In other words, the effect of improving memory performance is produced. The second effect is that the threshold characteristics are improved. It has been confirmed through experiments that due to the above-mentioned force that produces the first effect, as the effective value voltage increases, the threshold voltage increases overall, but the characteristics become steeper. In order to make effective use of the above two effects, the driving method of the present invention applies a pulse voltage with a pulse width shorter than that applied to the picture element during the selection period to the picture element during the non-selection period. The threshold voltage of a dielectric liquid crystal has pulse width dependence.) (The shorter the pulse width, the higher the threshold voltage. In this driving method) Since the pulse width is short, the threshold voltage is high and the pixel does not change even if the voltage is increased. Although the state does not change, only the effective value increases, and the above two effects act strongly, resulting in a high-quality display.

実施例 以下に実施例を示す。Example Examples are shown below.

本実施[HJで用いた液晶はエステル系の強誘電性液晶
の混合物で、その常訪電異方性は負である。また、配向
は従来のラビング法により行い、基板間距離は約3.6
μmである。一般に、ラビングにより配向させると、剪
断応力による配向、或いは温度勾配による配向よりも、
電圧−透過光量の特性は緩慢になシ、従って従来の電圧
平均化法に準じた駆動法ではバイアス比をあまり小さく
できない。
The liquid crystal used in this experiment [HJ] was a mixture of ester-based ferroelectric liquid crystals, and its constant electric anisotropy was negative. In addition, the orientation was performed by the conventional rubbing method, and the distance between the substrates was approximately 3.6
It is μm. In general, orientation by rubbing is more effective than orientation by shear stress or temperature gradient.
The characteristic of voltage versus amount of transmitted light is slow, and therefore the bias ratio cannot be made very small using a driving method based on the conventional voltage averaging method.

実際、本実施列で用いた液晶マ) IJフックス示パネ
ルでは、第9図の従来の駆動法では様々に条件を変えて
も1/100以上のデユーティ−比では、表示が不可能
であった。
In fact, with the liquid crystal IJ hook display panel used in this experiment, it was impossible to display at a duty ratio of 1/100 or more even under various conditions using the conventional driving method shown in Figure 9. .

第6図(b)は第5図(1L)のような波形をパネルに
印加し実効値を変化させて閾値特性を計測した結果であ
る。実効値が上がるにつれて閾値電圧が上昇し特性が急
峻になるのがわかる。また、実効値が増すとメモリー効
果が増すことも同時に確認されている。
FIG. 6(b) shows the results of measuring the threshold characteristics by applying the waveform shown in FIG. 5(1L) to the panel and changing the effective value. It can be seen that as the effective value increases, the threshold voltage increases and the characteristics become steeper. It has also been confirmed that the memory effect increases as the effective value increases.

第1図、第2図は実際に強誘電性液晶表示パネルに印加
した本発明の第1の実施列の駆動波形である。第1図(
!L)は走査電極、信号電極に印加される電圧、第1図
(b)はパネルに印加される電圧を表す。本実施列では
非選択期間の最後に走査電極にパルス幅の広いリセット
パルスを印加することにより絵素をリセット状態にし、
選択期間の後半のパルスがオン電圧なら反転し、オフ電
圧なら状態は変化しない。また、すべてのパルスは交流
であるので液晶は劣化しない。第1図(b)において、
Vo=20ボルト、f O=300 p 5eOVc=
30ボルト、バイアス比1/&=発、デユーティ−比1
/10oOで良好なコントラストの表示が見られた。第
2図は本駆動波形と絵素の透過光量の変化の様子を表し
ている。
FIGS. 1 and 2 show driving waveforms of the first embodiment of the present invention actually applied to a ferroelectric liquid crystal display panel. Figure 1 (
! L) represents the voltage applied to the scanning electrode and the signal electrode, and FIG. 1(b) represents the voltage applied to the panel. In this example, a reset pulse with a wide pulse width is applied to the scanning electrode at the end of the non-selection period to put the picture element in a reset state.
If the pulse in the second half of the selection period is an on voltage, it will be inverted, and if it is an off voltage, the state will not change. Also, since all pulses are alternating current, the liquid crystal does not deteriorate. In FIG. 1(b),
Vo=20 volts, f O=300 p 5eOVc=
30 volts, bias ratio 1/&=, duty ratio 1
/10oO, a display with good contrast was observed. FIG. 2 shows the actual drive waveform and the change in the amount of light transmitted through the picture element.

第3図および第4図は第2の実施列の駆動波形を示した
図であ釈本実施列では走査電極の1選択期間の後半の2
つの交流パルスを閾値電圧以上にし前半の2つの交流パ
ルスを閾値電圧以下にして絵素をオン状態にし、絵素を
オフにする時はその逆にしている。本実施列においても
、第1の実施列と全くおなし条件で良好な表示が得られ
た。
3 and 4 are diagrams showing drive waveforms in the second implementation column.
One AC pulse is set above the threshold voltage and the first two AC pulses are set below the threshold voltage to turn on the picture element, and when turning off the picture element, the reverse is done. In this practical row as well, a good display was obtained under the same condition as in the first practical row.

発明の効果 本発明の液晶マトリックスパネルの駆動法は、強誘電性
液晶の閾値電圧がパルス幅依存性を持つことを利用し、
非選択期間に印加されるパルス幅を短くし振幅を大きく
することによυ、分子を反転させずに実効値電圧のみを
大きくできるぷ動性となっている。この結果、強誘電性
液晶の誘電異方性が負のとき実効値電圧に比例して液晶
分子に作用する強制力が強まり、メモリー効果が増大し
、閾値特性が急峻になって、高デユーティ−でも非常に
良好なコントラストの表示および光スイッチングが可能
となる。
Effects of the Invention The liquid crystal matrix panel driving method of the present invention utilizes the fact that the threshold voltage of ferroelectric liquid crystal has pulse width dependence,
By shortening the pulse width and increasing the amplitude of the pulse applied during the non-selection period, υ provides a dynamic property in which only the effective value voltage can be increased without inverting the numerator. As a result, when the dielectric anisotropy of the ferroelectric liquid crystal is negative, the forcing force acting on the liquid crystal molecules becomes stronger in proportion to the effective voltage, the memory effect increases, the threshold characteristics become steeper, and the higher the duty cycle becomes. However, very good contrast display and optical switching are possible.

及び透過光量のグラフ、第6図(IL)は液晶への印加
電圧の波形図、第6図(b)は強誘電性液晶の電圧−透
過率特性図、第6図は強誘電性液晶パネルの断面図、第
7図(iL) 、 (b)はカイラルスメクチックC液
晶の表記法を示す模式図、第8図(a) 、 (b) 
、 (C)は従来の強誘電性液晶パネルの表示の原理を
示す原理図、第9図は従来の電圧駆動法を示す波形図で
ある。
Figure 6 (IL) is a waveform diagram of voltage applied to the liquid crystal, Figure 6 (b) is a voltage-transmittance characteristic diagram of ferroelectric liquid crystal, and Figure 6 is a graph of the amount of transmitted light. 7(iL) and (b) are schematic diagrams showing the notation of chiral smectic C liquid crystal, and FIGS. 8(a) and (b).
, (C) is a principle diagram showing the display principle of a conventional ferroelectric liquid crystal panel, and FIG. 9 is a waveform diagram showing the conventional voltage driving method.

1・・・・・・ガラス基板、2・・・・・・透明電極、
3・・・・[・配向膜、4・・・・・・強誘電性液晶層
、5・・・・・・液晶分子のCダイレクタ−16・・・
・・・双極子モーメント、7・・・・・・層の法線、8
・・・・・・分子の長軸方向n、9・・・・・・双極子
モーメント、10・・・・・・Cダイレクタ−111・
・・・・・分子長軸の層法線に対する傾き角±θ度、1
2・・・・・・層法線に大して分子長軸が+θ度傾いた
液晶分子、13・・・・・・−θ度傾いた液晶分子、1
4・・・・・・紙面表方向の双極子モーメント、16・
・・・・・紙面裏方向の双極子モーメント、16・・・
・・・2枚の偏光板の方向。
1...Glass substrate, 2...Transparent electrode,
3... [Alignment film, 4... Ferroelectric liquid crystal layer, 5... C director of liquid crystal molecules 16...
...Dipole moment, 7...Normal of layer, 8
......Long axis direction of molecule n, 9...Dipole moment, 10...C director-111.
...Inclination angle of the long axis of the molecule with respect to the layer normal ±θ degrees, 1
2...Liquid crystal molecule whose long axis of the molecule is tilted by +θ degrees with respect to the layer normal, 13...Liquid crystal molecule whose molecular axis is tilted by -θ degrees, 1
4...Dipole moment in the direction of the surface of the paper, 16.
...Dipole moment toward the back of the paper, 16...
...Direction of the two polarizing plates.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ((L) tb) 第2図 第3図 (の Cb) 第4図 第5図 400)s@C 電L Vo 第8図 (α)
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ((L) tb) Figure 2 Figure 3 (Cb) Figure 4 Figure 5 400) s@C Electric L Vo Figure 8 (α)

Claims (6)

【特許請求の範囲】[Claims] (1)対向面に電極を有する一対の基板間に誘電異方性
が負の強誘電性液晶を挾持し、マトリックス状の絵素を
形成する液晶マトリックスパネルの駆動法において、非
選択期間の走査電圧パルスのパルス幅を選択期間の走査
電圧パルスのパルス幅より短くしたことを特徴とする液
晶マトリックスパネルの駆動法。
(1) In the driving method of a liquid crystal matrix panel in which a ferroelectric liquid crystal with negative dielectric anisotropy is sandwiched between a pair of substrates having electrodes on opposing surfaces to form a matrix of picture elements, scanning during a non-selection period is performed. A method for driving a liquid crystal matrix panel, characterized in that the pulse width of a voltage pulse is made shorter than the pulse width of a scanning voltage pulse during a selection period.
(2)非選択期間の走査電圧パルスのパルス幅は前記パ
ルス電圧値での上記強誘電性液晶の応答時間より短いこ
とを特徴とする特許請求の範囲第1項記載の液晶マトリ
ックスパネルの駆動法。
(2) The method for driving a liquid crystal matrix panel according to claim 1, wherein the pulse width of the scanning voltage pulse during the non-selection period is shorter than the response time of the ferroelectric liquid crystal at the pulse voltage value. .
(3)絵素に印加される駆動波形が走査電極の1選択期
間内で交流波形になることを特徴とする特許請求の範囲
第1項記載の液晶マトリックスパネルの駆動法。
(3) The method for driving a liquid crystal matrix panel according to claim 1, wherein the driving waveform applied to the picture element becomes an alternating current waveform within one selection period of the scanning electrode.
(4)走査電極の1回の選択期間に4つのパルス電圧が
絵素に印加され、第1と第2のパルスおよび第3と第4
のパルスはそれぞれパルス幅が等しく、電圧値の絶対値
が等しいが極性が逆であり、第1と第3のパルスの極性
も逆であり、第1と第2のパルス電圧値か第3と第4の
パルス電圧値のいずれか一方は閾値電圧以上で、他方は
閾値電圧以下であることを特徴とする特許請求の範囲第
1項記載の液晶マトリックスパネルの駆動法。
(4) Four pulse voltages are applied to the picture element during one selection period of the scanning electrode, the first and second pulses, the third and fourth pulses
The pulses have the same pulse width, the absolute value of the voltage value is the same, but the polarity is opposite, the polarity of the first and third pulses is also opposite, and the voltage value of the first and second pulse is different from that of the third pulse. 2. The method of driving a liquid crystal matrix panel according to claim 1, wherein one of the fourth pulse voltage values is equal to or higher than the threshold voltage, and the other is equal to or lower than the threshold voltage.
(5)第1と第2のパルスを1回めの走査で印加し、第
3と第4のパルスを2回めの走査で印加することを特徴
とする特許請求の範囲第4項記載の液晶マトリックスパ
ネルの駆動法。
(5) The first and second pulses are applied in the first scan, and the third and fourth pulses are applied in the second scan. Driving method of liquid crystal matrix panel.
(6)走査電極の非選択期間に絵素に印加されるパルス
電圧の振幅は前記誘電異方性により分子配向の安定化効
果が生ずる程度に大きくすることを特徴とする特許請求
の範囲第1項記載の液晶マトリックスパネルの駆動法。
(6) The amplitude of the pulse voltage applied to the picture element during the non-selection period of the scanning electrode is made large enough to produce a stabilizing effect on molecular orientation due to the dielectric anisotropy. Driving method of liquid crystal matrix panel described in Section 2.
JP19801285A 1985-09-06 1985-09-06 Driving method for liquid crystal matrix panel Pending JPS6256934A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19801285A JPS6256934A (en) 1985-09-06 1985-09-06 Driving method for liquid crystal matrix panel
US06/903,773 US5010327A (en) 1985-09-06 1986-09-05 Method of driving a liquid crystal matrix panel
DE8686306893T DE3686219T2 (en) 1985-09-06 1986-09-05 METHOD FOR CONTROLLING A LIQUID CRYSTAL GRID SCREEN.
EP86306893A EP0214856B1 (en) 1985-09-06 1986-09-05 Method of driving liquid crystal matrix panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19801285A JPS6256934A (en) 1985-09-06 1985-09-06 Driving method for liquid crystal matrix panel

Publications (1)

Publication Number Publication Date
JPS6256934A true JPS6256934A (en) 1987-03-12

Family

ID=16384040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19801285A Pending JPS6256934A (en) 1985-09-06 1985-09-06 Driving method for liquid crystal matrix panel

Country Status (1)

Country Link
JP (1) JPS6256934A (en)

Similar Documents

Publication Publication Date Title
JP2802685B2 (en) Ferroelectric liquid crystal device
US5047757A (en) Method of addressing a ferroelectric liquid crystal display
US5136408A (en) Liquid crystal apparatus and driving method therefor
JPH02153322A (en) Liquid crystal electrooptical device
JPS61249025A (en) Liquid crystal optical element
JPH04249290A (en) Driving method for liquid crystal electrooptic element
JPS6256934A (en) Driving method for liquid crystal matrix panel
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP2519420B2 (en) Ferroelectric liquid crystal electro-optical device
JPS6256937A (en) Driving method for liquid crystal matrix display panel
JPH0792562B2 (en) Driving method for liquid crystal display device
JPS62262833A (en) Driving method for liquid crystal matrix panel
JPS62299820A (en) Driving method for liquid crystal electrooptic element
JP2519421B2 (en) Ferroelectric liquid crystal electro-optical device
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPS6256935A (en) Driving method for liquid crystal matrix panel
JP2827269B2 (en) Driving method of liquid crystal element
CA1304485C (en) Liquid crystal display element and method for driving same
JP2568508B2 (en) Ferroelectric matrix liquid crystal display
JPH1067987A (en) Liquid crystal electrooptical device
JPS6256936A (en) Driving method for liquid crystal matrix display panel
JP2973242B2 (en) Driving method of liquid crystal electro-optical element
JP2665331B2 (en) Driving method of ferroelectric liquid crystal display device
JP2626973B2 (en) Ferroelectric liquid crystal electro-optical device
JPH01304430A (en) Liquid crystal device and driving method