JPS6256925A - Liquid crystal display printing device - Google Patents

Liquid crystal display printing device

Info

Publication number
JPS6256925A
JPS6256925A JP60197912A JP19791285A JPS6256925A JP S6256925 A JPS6256925 A JP S6256925A JP 60197912 A JP60197912 A JP 60197912A JP 19791285 A JP19791285 A JP 19791285A JP S6256925 A JPS6256925 A JP S6256925A
Authority
JP
Japan
Prior art keywords
liquid crystal
image
linear light
display
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197912A
Other languages
Japanese (ja)
Inventor
Shohei Naemura
省平 苗村
Keiichi Kubota
恵一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60197912A priority Critical patent/JPS6256925A/en
Priority to US06/905,009 priority patent/US4699498A/en
Publication of JPS6256925A publication Critical patent/JPS6256925A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40056Circuits for driving or energising particular reading heads or original illumination means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/032Details of scanning heads ; Means for illuminating the original for picture information reproduction
    • H04N1/036Details of scanning heads ; Means for illuminating the original for picture information reproduction for optical reproduction

Abstract

PURPOSE:To make a TV display of high resolution and also to perform screen projection and image copying by a photosensitive body through a simple constitution by imposing intensity modulation upon the luminous flux of a linear light source by a liquid crystal shutter, and writing an image on a liquid crystal panel and forming a latent image on the photosensitive body. CONSTITUTION:The luminous flux 2 of the linear light source 1 is intensity- modulated by the liquid crystal optical shutter 3 into luminous flux 2', which is reflected by a rotary polygon mirror 4 to write an image on the liquid crystal panel 5, so that the image is projected on a screen 7 through a projection optical system 12. Part 2'' of the luminous flux, on the other hand, is reflected by a mirror 8 and converged on the photosensitive body 9 to transfer and fix a visible image on paper 11. Therefore, the TV display and screen display of high resolution become possible even when the shutter 3 which operates at a high speed is used, a display screen can be copied when necessary, and the liquid crystal shutter 3 and liquid crystal panel 5 are inexpensive, so the device is manufactured at low cost.

Description

【発明の詳細な説明】 (技術分野) 本発明は、投写方式の画像表示と電子写真方式の印刷と
の両機能を備えた液晶表示印刷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a liquid crystal display printing device having both functions of projection-type image display and electrophotographic printing.

(従来技術とその問題点) 投写型の表示装置は大画面表示が可能であることから、
教育用、会議・講演用、娯楽用等に広く需要が見込まれ
ており、その方式もカソード・1フイ・チーーブ(、C
RT)表示画面を直接波投映する方式や油膜上に書込ん
だ画像を投映する方式等が実用化されている。しかし、
CR’l’方式は画面が暗いという欠点を有し、更に両
方式とも装置が極めて高価である点が共通した欠点であ
る。近年、これらの欠点を克報し几新しい投写型大画面
表示方式として液晶表示装置を用いる方式が盛んに研究
されている。
(Prior art and its problems) Projection type display devices are capable of displaying large screens;
Widespread demand is expected for educational purposes, conferences/lectures, entertainment, etc., and the method is also cathode
(RT) A method in which a display screen is directly projected by waves, a method in which an image written on an oil film is projected, etc. have been put into practical use. but,
The CR'l' method has the disadvantage that the screen is dark, and both methods have a common disadvantage that the equipment is extremely expensive. In recent years, a method using a liquid crystal display device has been actively researched as a new projection type large screen display method to overcome these drawbacks.

投写型大画面表示に用いられる液晶表示装置は画像書込
方法に工っで、マトリクス電極による電界書込型、CR
Tによる光書込型、レーザによる熱書込型に大別される
。これらの中で、熱コ込型は、低価格であるという液晶
表示装置共通の長所に加えて、高分解能が得られる等の
優れた性能を有しており、投写型液晶表示装置の研究開
発の主流となっている。この方式は、1/−ザ光を吸収
して熱に変換する機能をもった光吸収膜を備えた液晶パ
ネル上を、レーザ光を強度変調しながら二次元的に走査
し、液晶の熱光学効果に基づいて、強いレーザ光の照射
を受けて昇温した部分の液晶が光散乱状態になるのを利
用して表示画像を書込む方式である。すなわち、1−−
ザ光は極めて細く絞り込むことができるので、高解像度
の表示が可能な反面、レーザ光を二次元的に走査して一
画面を構成するために書込速度が遅く、TV画面等の動
画表示ができない欠点を有している。一方、マトリクス
電極方式電界書込型や、CRT方式光書込要はいずれも
動画表、示の可能な高速書込み性を有しているが、前者
は電極形成上高解像度化に限界があり、後者もCRT画
面で解像度が制約されて、いずれもレーザ熱1込型はど
の高解像度は得られない。この工う1c従来は、高解像
度でかつ動画表示が可能な投写型液晶表示装置というも
のは得られず、低価格の液晶表示装置で1例えば大画面
の高精細TV表示を行なうのは不可能であった。
Liquid crystal display devices used for projection-type large-screen display have improved image writing methods, such as electric field writing type using matrix electrodes, CR
It is roughly divided into optical writing type using T and thermal writing type using laser. Among these, the heat-containing type has the common advantage of low cost, which is common to liquid crystal display devices, and also has excellent performance such as high resolution, and is a popular choice for research and development of projection type liquid crystal display devices. It has become the mainstream. This method scans a liquid crystal panel two-dimensionally while modulating the intensity of a laser beam, which is equipped with a light-absorbing film that absorbs 1/- laser light and converts it into heat. Based on this effect, a display image is written by utilizing the fact that the liquid crystal in a portion that has heated up due to irradiation with strong laser light enters a light scattering state. That is, 1--
Since the laser beam can be narrowed down extremely narrowly, it is possible to display high-resolution images, but the writing speed is slow because one screen is constructed by scanning the laser beam two-dimensionally, making it difficult to display moving images on TV screens, etc. It has the disadvantage that it cannot be used. On the other hand, the matrix electrode type electric field writing type and the CRT type optical writing type both have high-speed writing properties that can display moving images, but the former has a limit to high resolution due to the electrode formation. The resolution of the latter is also limited by the CRT screen, and it is not possible to obtain any high resolution with the laser heating 1-included type. Conventionally, it has not been possible to obtain a projection type liquid crystal display device that is capable of displaying moving images with high resolution, and it is impossible to perform, for example, large-screen high-definition TV display with a low-cost liquid crystal display device. Met.

一方、表示画面のハードコピーを取りたいという要望は
強く、表示装置と印刷装置の両機能を備えた装置の実用
化が強く望まれている。近年、電子黒板と工ばれる装置
の普及が著しいのも、この要望の表われである。・電子
式の液晶表示装置と印刷装置を一体化した従来の液晶表
示印刷装置としては、例えば本発明者らに工って開発さ
れた小型高解像度プロジェクタ・プリンタがある。これ
は前述のレーザ熱書込型の投写型液晶表示装置とレーザ
スキャン型の電子写真方式印刷装置を一体化した構造の
ものである。その詳細は昭和60年度電子通信学会総合
全国大会講演論文集分冊5の第5−137  頁に記載
されている。しかし、この従来の液晶表示印刷装置は1
/−ザ熱書込方式であるので、前述の如<TV画面等の
動画表示はできず、会議資料等の静止画表示とその表示
画像の印刷を目的としたものであった。従って、高精訓
TV表示等も可能な大画面表示装置において、随時表示
画面のハードコピーを印i、nllすることはできなか
った。
On the other hand, there is a strong desire to make a hard copy of the display screen, and there is a strong desire to put into practical use a device that has both the functions of a display device and a printing device. This desire is reflected in the remarkable spread of electronic whiteboards in recent years. - As a conventional liquid crystal display printing device that integrates an electronic liquid crystal display device and a printing device, there is, for example, a small high-resolution projector/printer developed by the present inventors. This has a structure in which the aforementioned laser thermal writing type projection type liquid crystal display device and laser scanning type electrophotographic printing device are integrated. The details are described on pages 5-137 of Volume 5 of the 1985 IEICE Comprehensive National Conference Lecture Proceedings. However, this conventional liquid crystal display printing device has only one
Since it is a thermal writing method, it is not possible to display moving images such as on a TV screen as described above, and its purpose is to display still images such as conference materials and print the displayed images. Therefore, it has not been possible to print a hard copy of the display screen at any time on a large screen display device that is capable of displaying high definition TV.

(発明の目的) 本発明の目的)ま、高i弄像変のTV表示が可能な大画
面投写型表示1帽f−r:あると同時に、必要に応じて
表示[Iii面のハードコピーを印刷することもでき、
かつ低両格化の可能な液晶表示印刷装置を提供すること
にある。
(Object of the invention) Objective of the invention) A large screen projection display capable of displaying high-intensity images on a TV. You can also print
Another object of the present invention is to provide a liquid crystal display printing device that can be made low-ambiguous.

(発明の(構成) 本発明の液晶表示印刷装置は、線状光源と、一次元の画
素配列を形成する透明電極を設けた2枚の基板の間隙に
強誘電性液晶を挾持してなる液晶光シャッターと、1枚
には光導電体膜を設けた2枚の電極基板の間隙に液晶を
挾持してなる液晶パネルと、前記線状光源から発し前記
液晶光シャッターにLっで一次元方向に空間的に強度変
調を受けた線状光束の一部を前記導電体膜上に前記一次
元方向と直交する方向に走査する走査手段と、前記線状
光束の一部が前記光導電体膜の光導電効果に工って生じ
させる前記液晶パネルの液晶に印加される電圧の強度分
布に従って電気光学効果に構成する潜像に応じて媒体上
に画像を転写する感光ドラムとを含んで構成される。
(Structure of the Invention) The liquid crystal display printing device of the present invention is a liquid crystal display device comprising a linear light source and a ferroelectric liquid crystal sandwiched between two substrates provided with transparent electrodes forming a one-dimensional pixel array. an optical shutter; a liquid crystal panel comprising a liquid crystal sandwiched between two electrode substrates, one of which has a photoconductor film; scanning means for scanning a part of the linear light flux spatially intensity-modulated onto the conductor film in a direction orthogonal to the one-dimensional direction; and a photosensitive drum that transfers an image onto a medium according to a latent image formed by an electro-optic effect according to the intensity distribution of a voltage applied to the liquid crystal of the liquid crystal panel produced by the photoconductive effect of the liquid crystal panel. Ru.

(発明の作用・原理) 本発明の液晶表示印刷装置の動作を説明するために、ま
ず液晶光?ヤッターの動、作を説明する。
(Operation/Principle of the Invention) In order to explain the operation of the liquid crystal display printing device of the present invention, first, what is the liquid crystal light? Explain the movements and actions of Yatter.

第2図は本発明の投写型液晶装置を構成する液晶光シャ
ッターに用いられる強誘電性液晶の動作を説明する図で
ある。第2図に示すように自発分極21をもった液晶分
子22が層構造をとると同時にらせん構造を形成してい
る。このような液晶の一例はカイラルスメクチック液晶
と工ばれる種類のものである。このままでは自発分極は
らせん軸23のまわりに均一に分布して打消しあってい
るが、この工うな液晶を、そのらせん軸と平行な2枚の
基板で挾み、かつその間隙、すなわち液晶の厚さを少な
くともらせん構造のピッチ長以下に薄くすると、液晶分
子22は自発分極21が基板に対して垂直となるような
2つの配向状態のいずれかに強制的に配向させられる。
FIG. 2 is a diagram illustrating the operation of the ferroelectric liquid crystal used in the liquid crystal optical shutter constituting the projection type liquid crystal device of the present invention. As shown in FIG. 2, liquid crystal molecules 22 having spontaneous polarization 21 take on a layered structure and at the same time form a helical structure. An example of such a liquid crystal is a type called a chiral smectic liquid crystal. In this state, the spontaneous polarization is uniformly distributed around the helical axis 23 and cancels each other out, but if this unconventional liquid crystal is sandwiched between two substrates parallel to the helical axis, and the gap between them, that is, the liquid crystal When the thickness is reduced to at least the pitch length of the helical structure, the liquid crystal molecules 22 are forced to align in one of two orientation states in which the spontaneous polarization 21 is perpendicular to the substrate.

第3図はその様子を示す図であり領域Aは自発分極21
が下側の基板31に向いた状態、領域Bは自発分極21
が上側の基板32に向いた状態である。第4図は、第3
図に示す状態を基板の上面からみた図であり、領域人と
領域Bとでは液晶分子が41.42の異なる配向状態を
とっていることを示している。
Figure 3 is a diagram showing this situation, and region A is the spontaneous polarization 21.
is facing the lower substrate 31, region B is spontaneously polarized 21
is facing the upper substrate 32. Figure 4 shows the third
This is a diagram of the state shown in the figure viewed from the top surface of the substrate, and shows that the liquid crystal molecules in the region and region B have 41.42 different alignment states.

例えば、第4図に示す工うな状態を2枚の互いに偏光方
向が直光する偏光板で挾み、かつ1枚の偏光板の偏光方
向43を配向状態41の液晶分子の方向に一致させて観
察すると、領域人は暗くみえ、領域Bは明るくみえる。
For example, the state shown in FIG. 4 is sandwiched between two polarizing plates whose polarization directions are direct to each other, and the polarization direction 43 of one polarizing plate is made to match the direction of the liquid crystal molecules in the alignment state 41. When observed, the area person appears dark and area B appears bright.

領域Bが最も明るくみえるのに配向状態42の液晶分子
の方向が2枚の偏光板の偏光方向(互いに直交)の中間
方向。
Although region B appears brightest, the direction of the liquid crystal molecules in alignment state 42 is in the middle direction between the polarization directions of the two polarizing plates (which are orthogonal to each other).

すなわち2枚の偏光板の偏光方向それぞれから45° 
ずれた場合であることは容易にわかる。
That is, 45 degrees from each of the polarization directions of the two polarizing plates.
It is easy to see that this is a case of deviation.

この工うに、強誘電性を示すカイラルスメクチック液晶
を極めて間隙の狭い2枚の基板で挾もと、液晶分子は光
学的に識別される2つの配向状態のいずれかをとる工う
になる。しかも、強誘電性液晶はその自発分極が外部電
界と直接的に応答して、電界方向に配向する。従って、
外部から基板と直交する方向の直流電界を印加して、そ
の向きを反転すると、それに応じて自発分極の向きが反
転する。すなわち、第4図の領域人と領域Bとが電気的
にスイッチングされる訳で、これは2枚の基板の内面に
透明電極の類を形成しておくことによって容易に実現で
きる。しかも、この゛電気的スイッチング現象が自発分
極と外部電界との直接的な応答によるものであるために
他めて高速であり、例えばアプライド・フィジクスーレ
ターズ(AppliedPhysics  Lette
rs)の第36巻、$11号(1980年発行)の89
9頁から901頁にかけて掲載されたノーエル・ニー・
クラーク(NoelA、C1ark)  とスベン・チ
ー・ラゲルバル(SvenT 、Lagerwall 
)の論文によるとマイクロ秒程度の高速応答も確認され
ている。
In this way, when a chiral smectic liquid crystal exhibiting ferroelectricity is sandwiched between two substrates with an extremely narrow gap, the liquid crystal molecules can take one of two optically recognized orientation states. Furthermore, the spontaneous polarization of the ferroelectric liquid crystal directly responds to an external electric field and aligns in the direction of the electric field. Therefore,
When a direct current electric field in a direction perpendicular to the substrate is applied from the outside and its direction is reversed, the direction of spontaneous polarization is reversed accordingly. That is, the region man and region B in FIG. 4 are electrically switched, and this can be easily realized by forming transparent electrodes or the like on the inner surfaces of the two substrates. Moreover, since this electrical switching phenomenon is due to a direct response between spontaneous polarization and an external electric field, it is extremely fast.
rs) Volume 36, No. 11 (published in 1980), 89
Noel Ni. Published from pages 9 to 901
Clark (NoelA, C1ark) and SvenT, Lagerwall
), a high-speed response on the order of microseconds has also been confirmed.

(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図である。紙面と直交
する方向の線状光源1を発した光束2は、液晶光シャッ
ター3で強度変調を受けて光束2′となり、回転多面鏡
4に工って反射され液晶パネル5に達する。
FIG. 1 is a block diagram of an embodiment of the present invention. A light beam 2 emitted from a linear light source 1 in a direction perpendicular to the paper plane undergoes intensity modulation by a liquid crystal light shutter 3 to become a light beam 2', which is reflected by a rotating polygon mirror 4 and reaches a liquid crystal panel 5.

第5図は第1図に示す液晶光シャッター3の正面図で、
強誘電性液晶を侠む2枚の基板51お工び52に形成す
る電極53お工び54を例えば図示の工うな形状にして
、1柩53おLび54の交差する部分で形成される画素
55が一次元の配列(第1図における紙面と直角な方向
の配列)をなすようにし、この画素55の配列と並行の
1腺状光源1からの光束2を画素55の配列に入射させ
ると共に、この画素55の配列の各電極53に画像に応
じた信号電圧を印加することに工って、画素55の配列
を通過した線状光束2′は一次元方向に空間的に強度変
調を受けることになる、天に、この強貴変調を受けた線
状光束2′ を照射することに工って、液晶パネル5に
画像を書込む動作について説明する。第6図は第1図(
(示す液晶パネル5の断面図である。61お工び62は
ガラス基板で、その内面にはそれぞれ透明電極63お工
び64が形成され、さらに1枚の基板61には光導電体
膜65、遮光膜66、ミラー67が設けられ、2枚のガ
ラス基板61.62の間隙には液晶68が侠まれている
。液晶68は向えばハイブリッド電界効果モードの名称
で公知の動作をするネフチック液晶である。この工つな
・〆iり造の液晶パネル5iて、第6図の紙面に垂直な
方向に一次元の空間的強間変調を受けた前述の線状光束
2を照射し、画像信号を線1賃次【て切換えつつ、線状
光束2を式氏面下方、71の方向に走査する。
FIG. 5 is a front view of the liquid crystal optical shutter 3 shown in FIG.
The electrodes 53 and 54 formed on the two substrates 51 and 52 holding the ferroelectric liquid crystal are formed into the shape shown in the figure, for example, and are formed at the intersections of the 1 coffin 53 and the L and 54. The pixels 55 are arranged in a one-dimensional array (in the direction perpendicular to the plane of the paper in FIG. 1), and the light beam 2 from the glandular light source 1 parallel to the array of pixels 55 is made to enter the array of pixels 55. At the same time, by applying a signal voltage according to the image to each electrode 53 of this array of pixels 55, the linear light beam 2' that has passed through the array of pixels 55 is spatially intensity-modulated in one-dimensional direction. The operation of writing an image on the liquid crystal panel 5 by irradiating the sky with the linear light beam 2' subjected to strong modulation will be explained. Figure 6 is similar to Figure 1 (
(This is a cross-sectional view of the liquid crystal panel 5 shown. 61 and 62 are glass substrates, and transparent electrodes 63 and 64 are formed on their inner surfaces, and one substrate 61 has a photoconductor film 65. , a light-shielding film 66, and a mirror 67 are provided, and a liquid crystal 68 is placed in the gap between the two glass substrates 61 and 62.The liquid crystal 68 is a Neftic liquid crystal that operates in what is known as a hybrid field effect mode. The manufactured liquid crystal panel 5i is irradiated with the linear light beam 2 that has undergone one-dimensional spatial strong modulation in the direction perpendicular to the plane of the paper in FIG. The linear light beam 2 is scanned in the direction 71 below the screen while switching the signal on a line-by-line basis.

すなわち強度変調を受けて液晶光シャッターを透過した
光束の一部2′は回転多面鏡4に工って反4・iされ、
第6図の嘴成の液晶パネル5の光導電体膜上に集光され
る。光束2′は回転多面鏡の回転にLって、光導電体膜
上を紙面右から左の方向に走査される。
That is, a portion 2' of the light beam that has undergone intensity modulation and transmitted through the liquid crystal light shutter is reflected by the rotating polygon mirror 4 and is reflected by 4.
The light is focused on the photoconductor film of the liquid crystal panel 5 shown in FIG. The light beam 2' scans the photoconductor film from right to left in the drawing as the polygon mirror rotates.

この光束2′の走査にエリ二次元画像が液晶パネル5の
光導電体膜65上に形成される。前述の液” 晶光シャ
ッター3はマイクロ秒台で極めて高速にオンオフするの
で、例えば線順次走査で走査本数が1000本の画面を
フレーム時間30ミリ秒で形成することも容易に可能で
ある。(この場合は1本あたり30マイクロ秒の走査と
なる。)しかし、この工うにして光導電体膜65上に形
成された画像は線順次に削減し、このままでは二次元画
像として視認することはできない。液晶パネル5はこの
画像を可視化するだめのものである。
A two-dimensional image is formed on the photoconductor film 65 of the liquid crystal panel 5 by scanning with this light beam 2'. Since the aforementioned liquid crystal light shutter 3 turns on and off extremely rapidly on the order of microseconds, it is easily possible, for example, to form a screen with 1000 scan lines in a frame time of 30 milliseconds using line sequential scanning. (In this case, the scanning time is 30 microseconds per line.) However, the image formed on the photoconductor film 65 in this way is reduced line-by-line, and cannot be visually recognized as a two-dimensional image as it is. The liquid crystal panel 5 is only for visualizing this image.

液晶パネルの液晶68の層には電極63お工び64を介
して、電源69によって交流電圧が全面に印加されてい
る。しかし、電極63と64の間隙には液晶680層と
直列に光導電体膜65が挿入されており、この膜65は
光照射をうけない暗状態においては液晶と較べて高抵抗
であるために外部から印加された電圧は液晶には作用し
ない。
An AC voltage is applied to the entire surface of the liquid crystal layer of the liquid crystal panel by a power source 69 via electrodes 63 and 64. However, a photoconductor film 65 is inserted between the electrodes 63 and 64 in series with the liquid crystal 680 layer, and this film 65 has a higher resistance than the liquid crystal in a dark state where it is not exposed to light. Externally applied voltage does not act on the liquid crystal.

しかし、前述のごとくして光導電体膜65上に形成され
た画像に対応して、光照射をうけた部分は光導電体膜6
5が部分的に低抵抗となり、この部分に対応する液晶6
Bには外部からの電圧が作用する。この工うにして、光
導電体膜65上に形成された明暗にぶる画像は、液晶6
8に作用する電圧の強度分布像に変換され、それに応じ
て液晶68が公知の電気光学効果に工っで可視画像を形
成する。
However, corresponding to the image formed on the photoconductor film 65 as described above, the portions irradiated with light are exposed to the photoconductor film 65.
5 has a low resistance partially, and the liquid crystal 6 corresponding to this part
An external voltage acts on B. In this way, the bright and dark image formed on the photoconductor film 65 is
8 is converted into an intensity distribution image, and in response, the liquid crystal 68 forms a visible image using a known electro-optic effect.

例にあげたハイブリッド電界効果モードは印加電圧の高
速変化に対応して累積応答を示し、残像効果に工って、
液晶パネル5の液晶層に形成された画像は線順次リフレ
ッシェ書込みによっても可視儂として視認される。累積
効果・残像効果KLらず、例えば前述の強誘電性液晶の
高速メモリー聾の電気光学効果を用いても液晶パネルに
可視画像を形成できるのは勿論であり、液晶パネルに用
いられる液晶の動作モードはどの工うなものでも工い。
The example hybrid field effect mode exhibits a cumulative response in response to rapid changes in applied voltage, and takes advantage of the afterimage effect to
The image formed on the liquid crystal layer of the liquid crystal panel 5 can also be visually recognized by line-sequential refresh writing. It goes without saying that a visible image can be formed on a liquid crystal panel even by using the electro-optic effect of the high-speed memory deafness of the ferroelectric liquid crystal described above, in addition to the cumulative effect and afterimage effect, and the operation of the liquid crystal used in the liquid crystal panel You can use whatever mode you want.

本実施例では、この工うにして液晶パネル5に形成され
た画像は、第1図に示すキセノンランプ6を光源とする
通常の投写光学系12を用いてスクリーン7上に投写さ
れる。第6図の液晶パネル5では投写光72を反射する
ミラー67と、投写光が光導電体膜に照射されて誤動作
するのを防ぐための遮光膜66が形成されている。
In this embodiment, the image thus formed on the liquid crystal panel 5 is projected onto the screen 7 using a normal projection optical system 12 using the xenon lamp 6 shown in FIG. 1 as a light source. The liquid crystal panel 5 shown in FIG. 6 includes a mirror 67 that reflects the projection light 72 and a light shielding film 66 that prevents the projection light from being irradiated onto the photoconductor film and causing malfunction.

一方、液晶光シャッタで強度変調をうけた光束の一部2
“はミラー8で反射して、感光体ドラム90表面に集光
される。トネ光体ドラム9は高速回転しているので液晶
パネル5の光導電体YGs上に形成されたのと同じ二次
元の光学像が感光体ドラム9の光導電体膜上にも形成さ
れ、光照射をうけた部分の光導電体が導電性となること
にエフて電to7分布にLるa像に変換される。この感
光体ドラム9の表面に形成されたJ像はドラム90回転
と共にトナー10が付層して、トナー10に↓る画像と
なり、ドラム9に接触して移動する紙11の面上に転写
され、定着されて印刷される。
On the other hand, part 2 of the light flux that has been intensity-modulated by the liquid crystal optical shutter
" is reflected by the mirror 8 and focused on the surface of the photoconductor drum 90. Since the tone photoconductor drum 9 is rotating at high speed, it is the same two-dimensional light as that formed on the photoconductor YGs of the liquid crystal panel 5. An optical image is also formed on the photoconductor film of the photosensitive drum 9, and as the photoconductor in the irradiated area becomes conductive, it is converted into an image with an electric to7 distribution. The J image formed on the surface of the photosensitive drum 9 is coated with toner 10 as the drum rotates 90 times, and becomes an image ↓ on the toner 10, which is transferred onto the surface of the paper 11 that is moving in contact with the drum 9. The image is then fixed and printed.

この工うに本実施例においては、高速動作が可能な液晶
光シャッター3を用いることに工っで線順次で高速の画
像書込みが可能とな9、TV画面のような動画表示も可
能で、かつ画素数・走査本数ともに充分に多くすること
ができるので高解像度の表示が可能となる。表示画面の
大きさは、投写型であるので任意に設定できることは言
うまでもない。また、液晶光シャッター3や液晶パネル
5等の光学素子が極めて低コストで製造できることは周
知でちり、充分に低価格化が可能である。
In this embodiment, by using a liquid crystal optical shutter 3 capable of high-speed operation, it is possible to write images line-by-line at high speed 9, and display moving images like a TV screen. Since both the number of pixels and the number of scanning lines can be sufficiently increased, high-resolution display is possible. Needless to say, the size of the display screen can be arbitrarily set since it is a projection type. Further, it is well known that optical elements such as the liquid crystal optical shutter 3 and the liquid crystal panel 5 can be manufactured at extremely low cost, and the cost can be sufficiently reduced.

本実施例においては、液晶光シャッター3の画素55の
配列は1ミリメートルあたり166画素約64ミリメー
トル長にわたって1024画素が形成され、駆動回路素
子数を低減して低価格化を図−る目的で8画素毎が画素
群を形成して、いわゆる8分の1デユーテイの時分割駆
動を行なフている。
In this embodiment, the arrangement of pixels 55 of the liquid crystal light shutter 3 is 166 pixels per millimeter, and 1024 pixels are formed over a length of about 64 mm, and 8 pixels are arranged for the purpose of reducing the number of drive circuit elements and lowering the cost. Each pixel forms a pixel group, and time-division driving with a so-called 1/8 duty is performed.

1画素あたりの駆動時間は4マイクロ秒であるので、全
画素の、駆動時間は32マイクロ秒である。
Since the driving time per pixel is 4 microseconds, the driving time of all pixels is 32 microseconds.

回転多面鏡4の回転による光束2′の光導電体膜65上
の走査長は約64ミリメートルであり、フ1ノーム時間
は33ミリ秒、l走査本あたりの所要駆動時間32マイ
クロ秒であるから、走査本1024本が可能である。す
なわち、33ミリ秒のフ1/−ム時間で1024X10
24画素の書込みが可能となり、高精細TV画面の表示
が可能である。
The scanning length of the light beam 2' on the photoconductor film 65 due to the rotation of the rotating polygon mirror 4 is approximately 64 mm, the norm time is 33 milliseconds, and the required driving time per scan line is 32 microseconds. , 1024 scanned lines are possible. That is, 1024X10 with a frame time of 33 ms.
Writing of 24 pixels is possible, and high-definition TV screen display is possible.

本実施例の液晶パネル5の光導・4体膜65は硫化カド
ミウム膜であり、遮光膜66はカドミウムテルル膜、ミ
ラー67は誘電体ミラーである。
The light guide/four-body film 65 of the liquid crystal panel 5 of this embodiment is a cadmium sulfide film, the light shielding film 66 is a cadmium telluride film, and the mirror 67 is a dielectric mirror.

また本実tS例の液晶を具体的に示せば、通常のツイス
トネマチック屋のネマチック液晶であり、ハイブリッド
電界効果モードで動作する。従って液晶パネル5には偏
光子が取付けられているが図では省略した。これは液晶
光シャッター3についても同じである。本実施例の液晶
、パネル5における画像表示の応答速度は約30ミリ秒
である。
Further, to be more specific, the liquid crystal of this actual tS example is a normal twisted nematic liquid crystal and operates in a hybrid field effect mode. Therefore, although a polarizer is attached to the liquid crystal panel 5, it is omitted from the drawing. This also applies to the liquid crystal light shutter 3. The response speed of image display on the liquid crystal panel 5 of this embodiment is approximately 30 milliseconds.

表示画像はs o o wのキセノンランプ6を光源と
する投写光学系によって1,5メートル角のスクリーン
7上に投写される。スクリーン上での明るさは約300
フートランバートであり、表示コントラストは5:1で
ある。
The displayed image is projected onto a 1.5 meter square screen 7 by a projection optical system using a SOOW xenon lamp 6 as a light source. The brightness on the screen is about 300
footlambert, and the display contrast is 5:1.

本実施例の感光体ドラム9の光導電体膜はやはり硫化カ
ドミウムであり、この露光時間は1.5マイクロ秒以上
あればよく、従って感光体ドラム9上の潜像およびトナ
ーで象は表示と同じ1面33ミリ秒で形成可能であるが
、定着速度で制限〜される結果、印刷速度は1枚あたり
1秒である。この速度は印刷速度として充分な速度であ
り、また画質も16ドツト/ミリと極めて高品質のハー
ドコピーが得られる。
The photoconductor film of the photoreceptor drum 9 in this embodiment is also made of cadmium sulfide, and the exposure time only needs to be 1.5 microseconds or more. Although it can be formed in the same 33 milliseconds per page, the printing speed is 1 second per sheet as a result of being limited by the fixing speed. This speed is sufficient as a printing speed, and an extremely high quality hard copy of 16 dots/mm can be obtained.

(発明の効果) 以上述べたように、本発明によれば高解像度のTV表示
が可能な大画面の投写型表示と同時に。
(Effects of the Invention) As described above, according to the present invention, high-resolution TV display is possible at the same time as large-screen projection type display.

必要に応じてハードコピーを取ること力\゛でき、かつ
低価格化の可能な液晶表示印刷装置が得られる。
It is possible to obtain a liquid crystal display printing device that can print hard copies as needed and can be manufactured at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は液晶光シ
ャッターに用いられる強誘電性液晶の液晶分子が形成す
るらせん配列状態を示す模式図、第3図および第4図は
それぞれ強誘導電性液晶分子のらせんが消滅した配列状
態を模式的に示す側面図および平面図、第5図は第1図
に示す液晶光シャッターの正面図、第6図は第1図に示
す液晶パネル5の断面図である。 図において、1は線状光源、2 、2’、 2”は光束
。 11は紙、21は自発分離、22は液晶分子、23はら
せん軸、31.32は基板、41.42は液晶分子がと
る配向方向書、43は直交する2枚の偏光板のうちの1
枚の偏光方向、51゜52はガラス基板、53.54は
透明電極、55は画素、61.62はガラス基板、63
.64は透明電極、65は光導電体膜、66は遮光膜、
67はミラー、68は液晶、69は電源、71は光束2
の走査方向、72は投写光を表わす。 代理人 弁理士  内 原   五 目、。 第 1 @ ネ 2@ ヮと〜ビ1−)+ 第3 回 第4 図 第5図 率6図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram showing a helical arrangement state formed by liquid crystal molecules of a ferroelectric liquid crystal used in a liquid crystal optical shutter, and Figs. 3 and 4 are FIG. 5 is a front view of the liquid crystal optical shutter shown in FIG. 1, and FIG. 6 is shown in FIG. 1. 5 is a cross-sectional view of a liquid crystal panel 5. FIG. In the figure, 1 is a linear light source, 2, 2', and 2'' are luminous fluxes. 11 is paper, 21 is spontaneous separation, 22 is liquid crystal molecules, 23 is a helical axis, 31.32 is a substrate, and 41.42 are liquid crystal molecules. 43 is one of the two orthogonal polarizing plates.
51° 52 is a glass substrate, 53.54 is a transparent electrode, 55 is a pixel, 61.62 is a glass substrate, 63
.. 64 is a transparent electrode, 65 is a photoconductor film, 66 is a light shielding film,
67 is a mirror, 68 is a liquid crystal, 69 is a power supply, 71 is a luminous flux 2
72 represents the projection light. Agent Patent Attorney Gomoku Uchihara. Part 1 @ Ne 2 @ ヮと〜BI1-)+ 3rd Part 4 Figure 5 Figure 6 Rate

Claims (1)

【特許請求の範囲】[Claims] 線状光線と、一次元の画素配列を形成する透明電極を設
けた2枚の基板の間隔に強誘電性液晶を挾持してなる液
晶光シャッターと、1枚には光導電体膜を設けた2枚の
電極基板の間隙に液晶を挾持してなる液晶パネルと、前
記線状光源から発し前記液晶光シャッターによって一次
元方向に空間的に強度変調を受けた線状光束の一部を前
記導電体膜上に前記一次元方向と直交する方向に走査す
る走査手段と、前記線状光速の一部が前記光導電体膜の
光導電効果によって生じさせる前記液晶パネルの液晶に
印加される電圧の強度分布に従って電気光学効果によっ
て前記液晶に形成される画像をスクリーン上に投写する
投写手段と、照射される前記線状光速の残部が形成する
潜像に応じて媒体上に画像を転写する感光ドラムとを含
むことを特徴とする液晶表示印刷装置。
A liquid crystal optical shutter consisting of a ferroelectric liquid crystal sandwiched between two substrates provided with linear light beams and transparent electrodes forming a one-dimensional pixel array, and a photoconductor film provided on one of the substrates. A liquid crystal panel comprising a liquid crystal sandwiched between two electrode substrates, and a part of the linear light beam emitted from the linear light source and spatially intensity-modulated in one dimension by the liquid crystal light shutter are connected to the conductor. a scanning means that scans the body membrane in a direction perpendicular to the one-dimensional direction; and a voltage applied to the liquid crystal of the liquid crystal panel that is caused by a part of the linear light velocity due to the photoconductive effect of the photoconductor film. a projection unit that projects an image formed on the liquid crystal by an electro-optic effect according to an intensity distribution onto a screen; and a photosensitive drum that transfers an image onto a medium according to a latent image formed by the remainder of the linear light velocity that is irradiated. A liquid crystal display printing device comprising:
JP60197912A 1985-09-06 1985-09-06 Liquid crystal display printing device Pending JPS6256925A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60197912A JPS6256925A (en) 1985-09-06 1985-09-06 Liquid crystal display printing device
US06/905,009 US4699498A (en) 1985-09-06 1986-09-08 Image projector with liquid crystal light shutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197912A JPS6256925A (en) 1985-09-06 1985-09-06 Liquid crystal display printing device

Publications (1)

Publication Number Publication Date
JPS6256925A true JPS6256925A (en) 1987-03-12

Family

ID=16382336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197912A Pending JPS6256925A (en) 1985-09-06 1985-09-06 Liquid crystal display printing device

Country Status (1)

Country Link
JP (1) JPS6256925A (en)

Similar Documents

Publication Publication Date Title
US4699498A (en) Image projector with liquid crystal light shutter
US4334734A (en) Optical apparatus for the reproduction of images using a liquid crystal cell
JP2549433B2 (en) Electro-optical modulator driving method and printer
US4392719A (en) Image forming method and apparatus
GB2153129A (en) Liquid crystal display devices
JPS58176620A (en) Optical imaging device
JPS6256925A (en) Liquid crystal display printing device
JPS6256931A (en) Projection type liquid crystal display device
JP3109283B2 (en) Liquid crystal display
JPH0415454B2 (en)
JPS6116982B2 (en)
JPS61183688A (en) Projection type liquid crystal display unit
JP2552877B2 (en) Optical scanning device
JPS61166525A (en) Image forming device
WO1991007851A1 (en) Matrix addressed liquid crystal light valve
JPS6040618B2 (en) image display device
JPS63108323A (en) Image forming device
JPS61182020A (en) Liquid crystal optical modulation element
JPH0488316A (en) Method for driving information output device
JPS60165669A (en) Color image reproducing device
JPS58163943A (en) Image processing method
JPH04161925A (en) Space light modulating element and display therefor
JPS61166522A (en) Image forming device
JPS59166982A (en) Display device
JPH08334780A (en) Liquid crystal display element