JPS6256876A - Diagnosing device for motor - Google Patents

Diagnosing device for motor

Info

Publication number
JPS6256876A
JPS6256876A JP60197435A JP19743585A JPS6256876A JP S6256876 A JPS6256876 A JP S6256876A JP 60197435 A JP60197435 A JP 60197435A JP 19743585 A JP19743585 A JP 19743585A JP S6256876 A JPS6256876 A JP S6256876A
Authority
JP
Japan
Prior art keywords
phase
current value
primary
negative sequence
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197435A
Other languages
Japanese (ja)
Inventor
Tsutomu Kuno
勉 久野
Soji Nishimura
荘治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nissin Electric Co Ltd
Priority to JP60197435A priority Critical patent/JPS6256876A/en
Publication of JPS6256876A publication Critical patent/JPS6256876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

PURPOSE:To detect the extent of the loosening of a stator coil precisely even if a primary current contains many opposite-phase current components due to the unbalance of a primary voltage by providing an opposite-phase current value difference calculating means which calculates the amplitude of the mutual difference between the opposite-phase current values. CONSTITUTION:Primary currents of phases U and W among primary currents of phases U, V, and W of a three-phase induction motor 1 are detected by current transformers 12 and 13 and A/D-converted by A/D converters 14 and 15, their waveform data are stored in memories 16 and 17, and the stored data are processed by a CPU 18. Namely, the CPU 18 connects a rated load and no load (or light load) as the load 21 of the motor 11 and carries out waveform data collection processing, Fourier analytic processing, opposite-phase current value calculation processing, etc., to find the opposite-phase current value. Then, the amplitude of the difference between the opposite-phase currents in both primary currents and displays the amplitude on a display device 19 as the standard for the loosening of the stator coil.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、3相誘導電動機のステータコイルのゆるみ
を、ステータコイルに高電圧を印加したり、3相誘導電
動機への1118配線を外すことなく、簡便に検出する
ことができる電動機診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is capable of removing loose stator coils of three-phase induction motors without applying high voltage to the stator coils or disconnecting the 1118 wiring to the three-phase induction motors. The present invention relates to a motor diagnostic device that can easily detect a motor.

従来の技術 3相誘導電動機のステータコイルのゆるみは、3相誘導
電動機の寿命に直結しているため、その有無を定期的に
診断して早期発見に努める必要がある。
BACKGROUND ART Looseness of the stator coil of a three-phase induction motor is directly linked to the life of the three-phase induction motor, so it is necessary to regularly diagnose its presence or absence and try to discover it early.

3相誘導電動機のステータコイルのゆるみの診断は、ス
テータコイルにゆるみが発生すると各相の電流波形が不
平衡となるということを利用して行っていた。
Diagnosis of loosening of the stator coil of a three-phase induction motor has been performed by utilizing the fact that when the stator coil becomes loose, the current waveforms of each phase become unbalanced.

この3相誘導電動機の診断方法(特願昭58−2157
62号)は、3相誘導電動機の回転中の各相の1次電流
波形を検出し、この検出結果に基づいて3相誘導電動機
のステータコイルのゆるみの程度を診断する方法であっ
て、前記各相の1次電流検出波形より各相間の位相差の
最大のものと最小のものとの差に関連づけた位相不平衡
率を求めるとともに、各相の1次′gl流波形の振幅に
最大のものと最小のものとの差に関連づけた振幅不平衡
率を求め、これらによって3相誘導電動機のステータコ
イルのゆるみの程度を判別する方法である。
Diagnosis method for this three-phase induction motor (Patent application No. 58-2157)
No. 62) is a method for detecting the primary current waveform of each phase during rotation of a three-phase induction motor and diagnosing the degree of loosening of the stator coil of the three-phase induction motor based on the detection result, From the primary current detection waveform of each phase, find the phase unbalance rate associated with the difference between the maximum and minimum phase difference between each phase, and also calculate the maximum amplitude of the primary 'gl flow waveform of each phase. This is a method for determining the degree of loosening of the stator coil of a three-phase induction motor by determining the amplitude unbalance factor associated with the difference between the maximum and the minimum values.

発明が解決しようとする問題点 3相誘導電動機の1次電圧が不平衡であって逆相骨が含
まれている場合、1次電流の不平衡は、ステータコイル
のゆるみによって発生する成分と1次電圧の逆相骨によ
って発生する成分の和になるので、上記したように単に
1次電流の不平衡率を求めてステータコイルのゆるみの
程度の目安とするような場合、1次電圧の逆相骨が大き
いと、その分が誤差となって、ステータコイルのゆるみ
の程度を精度良く検知できないという問題があった。
Problem to be Solved by the Invention When the primary voltage of a three-phase induction motor is unbalanced and includes an out-of-phase component, the unbalanced primary current is divided into a component caused by loosening of the stator coil and a component caused by loosening of the stator coil. Since it is the sum of the components generated by the negative phase bone of the primary voltage, when simply determining the unbalance rate of the primary current as described above and using it as a guide to the degree of loosening of the stator coil, the negative phase of the primary voltage If the mating ribs are large, this will cause an error and there is a problem that the degree of loosening of the stator coil cannot be accurately detected.

この発明の目的は、1次電圧の不平衡に起因する逆相電
流成分が1次電流に多く含まれていても、ステータコイ
ルのゆるみの程度を精度良く検知することができる電動
機診断装置を提供することである。
An object of the present invention is to provide a motor diagnostic device that can accurately detect the degree of loosening of a stator coil even if the primary current contains many negative sequence current components due to unbalanced primary voltage. It is to be.

問題点を解決するための手段 この発明の電動機診断装置は、第1図に示すよ・うに、
3相誘導電動機の少くとも2相の1次電流の波形データ
を取り込むデータ取込手段lと、定格負荷時に前記デー
タ取込手段1によって取り込まれた波形データから各相
の1次電流値を求める第1の1次電流値計算手段2と、
この第1の1次電流値計算手段2によって求められた各
相の1次電流値から逆相電流値を求める第1の逆相電流
値計算手段3と、無負荷時または軽負荷時に前記データ
取込手段lによって取り込まれた波形データから各相の
1次電流値を求める第2の1次電流値計算手段4と、こ
の第2の1次電流値計算手段4によって求められた各相
の1次電流値から逆相電流値を求める第2の逆相電流値
計算手段5と、前記第1および第2の逆相電流値計算手
段3.5によってそれぞれ求められた逆相電流値の相互
の差の振幅を求める逆相電流値差計算手段6と、この逆
相電流値差計算手段6の計算結果を表示する表示手段7
とを備えている。
Means for Solving the Problems As shown in FIG.
A data acquisition means 1 that acquires waveform data of the primary current of at least two phases of a three-phase induction motor, and a primary current value of each phase is determined from the waveform data acquired by the data acquisition means 1 at a rated load. a first primary current value calculation means 2;
A first negative-sequence current value calculation means 3 that calculates a negative-sequence current value from the primary current value of each phase obtained by the first primary current value calculation means 2, and A second primary current value calculation means 4 calculates the primary current value of each phase from the waveform data taken in by the acquisition means l, and The second negative sequence current value calculation means 5 which calculates the negative sequence current value from the primary current value, and the mutual relationship between the negative sequence current values calculated by the first and second negative sequence current value calculation means 3.5. negative-sequence current value difference calculation means 6 for calculating the amplitude of the difference, and display means 7 for displaying the calculation results of this negative-sequence current value difference calculation means 6
It is equipped with

作用 この発明の構成によれば、定格負荷時における1次電流
中の逆相電流と無負荷時または軽負荷時における1次電
流中の逆相電流との差の振幅を求め、この振幅をステー
タコイルのゆるみの目安として表示するため、1次電流
中の逆相電流に、ステータコイルのゆるみによる3相誘
導電動機の1次漏れリアクタンスの不平衡に起因する逆
相電流成分の他に、1次電圧の不平衡に起因する逆相電
流成分が多く含まれていても、この1次電圧の不平衡に
起因する逆相電流成分は負荷の大小でほとんど変化せず
、定格負荷時の逆相電流と無負荷時または軽負荷時の逆
相電流との差をとることで、1次電圧の不平衡に起因す
る逆相電流成分は消去され、負荷の大小で変化する1次
漏れリアクタンスの不平衡に起因する逆相電流成分のみ
が残ることになる。
According to the configuration of the present invention, the amplitude of the difference between the negative sequence current in the primary current at the rated load and the negative sequence current in the primary current at no load or light load is determined, and this amplitude is calculated by the stator. In order to display this as a measure of coil loosening, the negative sequence current in the primary current includes the negative sequence current component caused by the imbalance of the primary leakage reactance of the three-phase induction motor due to the loosening of the stator coil. Even if there is a large amount of negative sequence current component due to voltage unbalance, this negative sequence current component due to primary voltage imbalance hardly changes depending on the load size, and the negative sequence current at rated load is By taking the difference between the negative sequence current and the negative sequence current at no load or light load, the negative sequence current component caused by the unbalance of the primary voltage is eliminated, and the unbalance of the primary leakage reactance that changes depending on the load size is eliminated. Only the negative sequence current component caused by is left.

したがって、1次電流中の逆相電流に1次電圧の不平衡
に起因する逆相を流成分が多く含まれていても、これに
影響を受けることなく、ステータコイルのゆるみの程度
を精度良く検知することができる。
Therefore, even if the negative sequence current in the primary current contains many negative phase components due to unbalanced primary voltage, the degree of loosening of the stator coil can be accurately determined without being affected by this. Can be detected.

実施例 この発明の一實施例を第2図ないし第7図に基づいて説
明する。この電動機診断装置は、第2図に示すように、
3相誘導電動機11のU相、■相。
Embodiment A practical embodiment of the present invention will be described with reference to FIGS. 2 to 7. As shown in Fig. 2, this electric motor diagnostic device has the following features:
U phase and ■ phase of the three-phase induction motor 11.

W相の1次電流のうちU相とW相の1次電流を変流器1
2.13で検出し、各々をA/D変喚器14゜15によ
ってA/D変換したのち、各波形データをメモリ16.
17に記憶させ、メモリ16.17に記憶した波形デー
タをCPU18で処理することによってステータコイル
のゆるみの程度を診断結果表示器19に表示させるよう
にしている。
Out of the W-phase primary current, the U-phase and W-phase primary currents are transferred to current transformer 1.
2.13, each waveform data is A/D converted by A/D converter 14.15, and then each waveform data is stored in memory 16.13.
By processing the waveform data stored in the memories 16 and 17 with the CPU 18, the degree of loosening of the stator coil is displayed on the diagnostic result display 19.

20は計測スタートキー、21は誘導モータ11によっ
て駆動される負荷である。
20 is a measurement start key, and 21 is a load driven by the induction motor 11.

以下、CPUI 8の処理動作を第3図および第4図の
フローチャートに基づいて説明する。
The processing operation of the CPUI 8 will be explained below based on the flowcharts of FIGS. 3 and 4.

まず、第3図のように、マニュアル操作により、3相誘
導電動機11の負荷21を定格負荷とし、計測スタート
キー20を押す。
First, as shown in FIG. 3, the load 21 of the three-phase induction motor 11 is set to the rated load by manual operation, and the measurement start key 20 is pressed.

計測スタートキー20が押されると、CPU18はこれ
を検知して、定格負荷時の波形データ収集処理、フーリ
エ解析処理、逆相電流値計算処理等を行って逆相電流値
INI(1N+は複素数)を求め、これを記憶する。
When the measurement start key 20 is pressed, the CPU 18 detects this and performs waveform data collection processing at rated load, Fourier analysis processing, negative sequence current value calculation processing, etc., and calculates the negative sequence current value INI (1N+ is a complex number). Find and memorize this.

ついで、再びマニュアル操作により、3相誘導電動機1
1の負荷21を無負荷または軽負荷とし、計測スタート
キー20を押す。
Then, by manual operation again, the three-phase induction motor 1
Set the load 21 of No. 1 to no load or light load, and press the measurement start key 20.

計測スタートキー20が押されると、CPU18はこれ
を検知して、無負荷時または軽p荷時の波形データ収集
処理、フーリエ解析処理、逆相電流値計算処理等を行っ
て逆相電流値Ixz(Isiは複素数)を求め、これを
記憶する。
When the measurement start key 20 is pressed, the CPU 18 detects this and performs waveform data collection processing, Fourier analysis processing, negative sequence current value calculation processing, etc. during no load or light load, and calculates the negative sequence current value Ixz. (Isi is a complex number) and store it.

ついで、逆相電流値差!。を 1113=INI  Iwt           ・
・・・・・(1)の演算式に基づいて求め、さらに定格
電流値に対する逆相電流値差■。の振幅の比Rateを
に基づいて求める。CPU18は、この処理により逆相
電流値差計算手段6を構成することになる。
Next, the difference in negative sequence current value! . 1113=INI Iwt・
...Calculated based on the calculation formula (1), and also the difference in negative sequence current value with respect to the rated current value ■. The amplitude ratio Rate of is determined based on . Through this processing, the CPU 18 constitutes the negative phase current value difference calculation means 6.

ついで、比Ra teを診断結果表示器19に表示させ
る。cpuisは、この処理により診断結果表示器19
と合わせて表示手段7を構成することになる。
Then, the ratio Rate is displayed on the diagnostic result display 19. Through this process, cpuis displays the diagnostic result display 19.
Together with this, the display means 7 is constructed.

つぎに、波形データ収集、フーリエ解析、逆相電流値計
算等の各処理を第4図により具体的に説明する。
Next, each process such as waveform data collection, Fourier analysis, negative phase current value calculation, etc. will be explained in detail with reference to FIG.

この処理は、まずIJ相、■相3W相の1次電流のうち
U相の1次電流の波形を変流器12で検出してA/D変
換器14によってA/D変換し、得られたU相の波形デ
ータをメモリ16に記憶させ、メモリ16に記憶させた
U相の波形データに対し、フーリエ解析を行い、U相の
1次を流の基本波成分の振幅と位相(U相の1次電流値
+u)を求める。
In this process, the waveform of the primary current of the U phase among the primary currents of the IJ phase, the The U-phase waveform data stored in the memory 16 is subjected to Fourier analysis, and the first order of the U-phase is calculated by calculating the amplitude and phase of the fundamental wave component of the flow (U-phase Find the primary current value +u).

上記と同様にして、W相の1次電流の波形を変流器13
で検出してA/D変換器15によってA/D変換し、得
られたW相の波形データをメモリ17に記憶させ、メモ
リー7に記憶させたW相の波形データに対し、フーリエ
解析を行い、W相の1次電流の基本波成分の振幅と位相
(W相の1次電流値+w)を求める。
In the same manner as above, the waveform of the W-phase primary current is transferred to the current transformer 13.
The W-phase waveform data is detected by the A/D converter 15 and A/D converted by the A/D converter 15, and the obtained W-phase waveform data is stored in the memory 17.Fourier analysis is performed on the W-phase waveform data stored in the memory 7. , find the amplitude and phase of the fundamental wave component of the W-phase primary current (W-phase primary current value + w).

ついで、零相電流はないという条件から、V相の1次電
流の基本波成分の振幅と位相(■相の1次電流値Ivを
、 Iv −(Iu + Iw )        −−(
31に基づいて求める。
Next, from the condition that there is no zero-sequence current, the amplitude and phase of the fundamental wave component of the V-phase primary current (the primary current value Iv of the ■phase is expressed as Iv − (Iu + Iw ) −−(
Obtained based on 31.

ついで、逆相電流IN  (定格負部時1N+1無負荷
時または軽負荷時■H工)を、 1N ”’ −(Iu +a ” Iv +a Iw 
)・・・・・・(4) から求める。ただし、 −1+ 仔j a;□        ・・・・・・(5)である。
Next, the negative sequence current IN (1N + 1 at rated negative section or 1H at no load or light load) is 1N ''' - (Iu +a '' Iv +a Iw
)......(4). However, −1+ child j a; □ ......(5).

この処理は、定格負荷時と無負荷時または軽負荷時とも
同じように行われ、CPU18は、変流器12. 13
. A/D変換器14.15.メモリ16.17と合わ
せて、データ取込手段l、第1および第2の1次電流値
計算手段2.4.第1および第2の逆相を流値計算手段
3.5を構成することになる。
This process is performed in the same way during rated load, no load, or light load, and the CPU 18 performs the same process when the current transformer 12. 13
.. A/D converter 14.15. Together with the memory 16.17, the data acquisition means l, the first and second primary current value calculation means 2.4. The first and second reversed phases constitute a flow value calculation means 3.5.

このように、定格負荷時における逆相電流価と無負荷時
または軽負荷時における逆相電流価との差を求め、さら
にこの逆相電流値差1,12の振幅を定格電流値の振幅
で割って比Ra teを求め、この比Ra teをステ
ータコイルのゆるみの目安として表示する構成であるた
め、逆相1を流値に、ステータコイルのゆるみによる3
相誘導電動機11の1次漏れリアクタンスの不平衡に起
因する逆相tl成分の他に、1次電圧の不平衡に起因す
る逆相電流成分が多く含まれていても、この1次電圧の
不平衡に起因する逆相電流成分は負荷21の大小でほと
んど変化せず、定格負荷時の逆相電流値と無負荷時また
は軽負荷時の逆相電流値との差をとることで、1次電圧
の不平衡に起因する逆相電流成分は消去され、負荷の大
小で変化する1次漏れリアクタンスの不平衡に起因する
逆相電流成分のみが残ることになる。
In this way, find the difference between the negative sequence current value at rated load and the negative sequence current value at no load or light load, and then calculate the amplitude of this negative sequence current value difference 1 and 12 by the amplitude of the rated current value. The ratio R te is obtained by dividing the ratio R te and this ratio R te is displayed as a guideline for the loosening of the stator coil.
In addition to the negative phase tl component caused by the imbalance in the primary leakage reactance of the phase induction motor 11, even if there is a large amount of negative sequence current component caused by the imbalance in the primary voltage, this primary voltage imbalance The negative sequence current component caused by balance hardly changes depending on the size of the load 21, and by taking the difference between the negative sequence current value at rated load and the negative sequence current value at no load or light load, the primary The negative-sequence current component caused by the unbalanced voltage is erased, and only the negative-sequence current component caused by the unbalanced primary leakage reactance, which changes depending on the magnitude of the load, remains.

したがって、逆相it流値に1次電圧の不平衡に起因す
る逆相電流成分が多く含まれていても、これに影響を受
けることなく、ステータコイルのゆるみの程度を精度良
く検知することができる。
Therefore, even if the negative sequence IT current value contains many negative sequence current components due to unbalanced primary voltage, it is possible to accurately detect the degree of loosening of the stator coil without being affected by this. can.

ここで、3相誘導電動機11のステータコイルのゆるみ
の程度が逆相電流値差の振幅に対応する理由について説
明する。
Here, the reason why the degree of loosening of the stator coil of the three-phase induction motor 11 corresponds to the amplitude of the negative sequence current value difference will be explained.

3相誘導を動81111の1次漏れリアクタンスは、ス
ロット漏れリアクタンスとギャップ漏れリアクタンスと
コイルFeaBれリアクタンスとの3要素の和で表わす
ことができる。
The primary leakage reactance of the three-phase induction motor 81111 can be expressed as the sum of three elements: slot leakage reactance, gap leakage reactance, and coil FeaB leakage reactance.

第5図(A)は運転中におけるステータコイル内導体間
絶縁物層が正常な場合のスロット部分の概略図を示し、
第5図(B)は運転中におけるステータコイル内導体間
絶縁物層が異常な場合のスロット部分の概略図を示し、
22はスロット、23けステータコイルであり、23a
は導体、23I)は絶縁物層である。ステータコイル内
導体間絶縁物層か少なくて、ステータコイル23にゆる
みが発生ずると、3相誘導電動機」1の運転中において
、互いの電流によるローレンツ力により第5図(B)の
ようにステータコイル23の導体23aが集中しスロッ
ト22の高さ方向に対しステータコイル23全体が縮む
ことにより、スロット漏れリアクタンスが各相において
増大するとともに、各相の1次漏れリアクタンスに不平
衡を生じることになる。
FIG. 5(A) shows a schematic diagram of the slot portion when the insulating layer between the conductors in the stator coil is normal during operation;
FIG. 5(B) shows a schematic diagram of the slot portion when the insulating layer between the conductors in the stator coil is abnormal during operation.
22 is a slot, 23 stator coils, 23a
is a conductor, and 23I) is an insulating layer. If the insulating layer between the conductors in the stator coil is insufficient and the stator coil 23 becomes loose, the stator may become loose due to the Lorentz force caused by the mutual currents during operation of the three-phase induction motor 1, as shown in Figure 5 (B). As the conductors 23a of the coil 23 concentrate and the entire stator coil 23 contracts in the height direction of the slot 22, the slot leakage reactance increases in each phase, and the primary leakage reactance of each phase becomes unbalanced. Become.

3相誘導電動機11のステータコイルのゆるみに起因す
る1次漏れリアクタンスの不平衡は以下のようにして検
出される。
The unbalance of the primary leakage reactance caused by the loosening of the stator coil of the three-phase induction motor 11 is detected as follows.

第6図は3相誘導電動機11の1相分の等価回路を示し
ている。同図においてx、は1次漏れリアクタンス、r
、はt氏抗、x2はリアクタンス、goはコンダクタン
ス、boはサセプタンス、rヨ/Sは正相電圧に対する
抵抗、rz/2Sは逆相電圧に対する抵抗、Z、は正相
インピーダンス、Z8は逆相インピーダンスである。
FIG. 6 shows an equivalent circuit for one phase of the three-phase induction motor 11. In the figure, x is the primary leakage reactance, r
, is t resistance, x2 is reactance, go is conductance, bo is susceptance, ryo/S is resistance to positive sequence voltage, rz/2S is resistance to negative sequence voltage, Z is positive sequence impedance, Z8 is negative sequence It is impedance.

第6図の等価回路において、正相インピーダンスZP、
逆相インピーダンスZNの値が3相とも同じであるとす
ると、3相分の等価回路は第7図のようになる。同図に
おいて、■oはU相の1次電圧、vvは■相の1次電圧
、■1はW相の1次電圧、IuはU相の1次電流、Iv
は■相の1次電流、I0はW相の1次電流、■は中点電
圧であるoXILlはり相の1次漏れリアクタンス、X
IVは■相の1次漏れリアクタンス、XゆはW相の1次
漏れリアクタンス、Zはインピーダンスで、正相分はZ
、で逆相分はZ。であり、1次漏れリアクタンスxlL
l+  xIV+  xI、Iのみが各相で異なること
になる。
In the equivalent circuit of Fig. 6, the positive sequence impedance ZP,
Assuming that the value of the negative phase impedance ZN is the same for all three phases, the equivalent circuit for the three phases will be as shown in FIG. In the same figure, ■o is the primary voltage of the U phase, vv is the primary voltage of the ■phase, ■1 is the primary voltage of the W phase, Iu is the primary current of the U phase, and Iv
is the primary current of the ■ phase, I0 is the primary current of the W phase, ■ is the midpoint voltage, the primary leakage reactance of the oXIL beam phase, and
IV is the primary leakage reactance of the ■ phase, XY is the primary leakage reactance of the W phase, Z is the impedance, and the positive phase component is Z.
, and the reverse phase component is Z. and the primary leakage reactance xlL
l+ xIV+ xI, only I will be different for each phase.

つぎに、上記等価回路に基づいて1次電流の不平衡の計
算、具体的には正相電流■、および逆相電nIsの計算
を行う手順について説明する。この計算は、1次電圧■
。、V、、V、の不平衡と1次漏れリアクタンスxIL
l+  XIV、X工の不平衡に基づいて1次電流1u
+  Iv、Inの不平衡の計算を行うものである。
Next, a procedure for calculating the imbalance of the primary current, specifically, calculating the positive sequence current (2) and the negative sequence current nIs, will be explained based on the above equivalent circuit. This calculation is based on the primary voltage
. ,V,,V, unbalance and primary leakage reactance xIL
l+ XIV, primary current 1u based on X engineering unbalance
+ This is to calculate the imbalance of Iv and In.

第7図の等価回路において、1次電圧V、、VV。In the equivalent circuit of FIG. 7, the primary voltages V, , VV.

Vwおよび1次漏れリアクタンスxllJ+  Xll
1+  X工を対称分に分解すると次式のようになる。
Vw and primary leakage reactance xllJ+ Xll
When 1+X engineering is decomposed into symmetrical parts, it becomes as follows.

ただし、1次電圧において零相分はないものとしている
However, it is assumed that there is no zero-phase component in the primary voltage.

V、=V、 十V、             ・・・
・・・(6)V、 = a ” V、 + a V、 
        ・・・・・・(71V、 m a V
、 + a ” V、         ・・・・・(
81j X+u−j XIP+ j XIN+ j X
+z     −−fQ)j X+v−ja ” x、
、、+jax、、+ J X+z  −++++11J
X+w−JaX+P”ja”X+n+jX1z   −
−QDただし、■、は正相電圧、■8は逆相電圧、XI
Fは正相リアクタンス、XINは逆相リアクタンス、X
I2は不平衡分に相当するりアクタンスである。
V, = V, 10 V, ...
...(6) V, = a ” V, + a V,
・・・・・・(71V, m a V
, + a ”V, ・・・・・・(
81j X+u-j XIP+ j XIN+ j X
+z −−fQ)j X+v−ja ” x,
,,+jax,,+ J X+z -+++++11J
X+w-JaX+P”ja”X+n+jX1z −
-QD However, ■, is the positive sequence voltage, ■8 is the negative sequence voltage, XI
F is positive sequence reactance, XIN is negative sequence reactance,
I2 is the actance corresponding to the unbalanced component.

また、1次電Uiu 、IV 、1wを対称分に分解す
ると、次式のようになる。ただし、零相分はないものと
する。
Moreover, when the primary electric currents Uiu, IV, and 1w are decomposed into symmetrical components, the following equation is obtained. However, it is assumed that there is no zero-phase component.

L−IP +l、l           ・・・・・
・(2)Iv ”a ” It +a IN     
    ”””α湯[、−a +、 +a ” !、 
        −αすなお、上記各式において、 a=expt+j(2/3)aJ である。
L-IP +l,l...
・(2) Iv “a” It +a IN
“””α-yu[,-a +, +a”! ,
-α In addition, in each of the above formulas, a=expt+j(2/3)aJ.

上記第(6ン式ないし第00式から第7図の等価回路の
回路方程式は、次式のようになる。
The circuit equations of the equivalent circuit of FIG. 7 from Equations 6 to 00 above are as follows.

■。−V、+V。■. -V, +V.

−J X1uIu ”ZF  IF +ZN  IN 
十V= fJ XIP”J XIN” (jX+z+Z
r ))  IP+  (jX+p+jX++i+ (
jx+z+ZH)3Is+V            
   ・・・・・・QIVv=a ” VP +a V
N =  (ja”x+p+jax+N +(jx+z  
+  ZP  )  )a”l  p+ (ja”x+
r+jaxrN+(jx+z + Zw ) l al
*+V               ・・・・・・a
ηV、 =a V、 +a ” V)。
-J X1uIu ”ZF IF +ZN IN
10V= fJ XIP”J XIN” (jX+z+Z
r )) IP+ (jX+p+jX++i+ (
jx+z+ZH)3Is+V
...QIVv=a ” VP +a V
N = (ja”x+p+jax+N +(jx+z
+ ZP ) )a”l p+ (ja”x+
r+jaxrN+(jx+z+Zw) l al
*+V・・・・・・a
ηV, =aV, +a''V).

= fjax+r +ja”x+n ”(jx+z +
 Zp ) ) air+  (jaX+r   +j
azX++++ (jXiz   +  ZN  ) 
 )  aJ  、+V              
 ・・・・・・鱒上記第OQ式ないし第α鴫式から正相
型/ILI Pおよび逆相電流I1.Iは次式のように
なる。
= fjax+r +ja"x+n"(jx+z+
Zp ) ) air+ (jaX+r +j
azX++++ (jXiz + ZN)
) aJ, +V
...... From the above OQ formula to α-th formula, positive phase type/ILI P and negative sequence current I1. I is expressed as follows.

・・・・・・Ol ・・・・・・Q@ 逆相電圧■8が正相電圧■、の1%程度であること、お
よびリアクタンスxlIP+  XINがZr +J 
x+z+  Z N ” J X 1□に比してかなり
小さいことを考慮すると、第α優式および第am式は次
式のようになる。
・・・・・・Ol ・・・・・・Q@ The negative sequence voltage ■8 is about 1% of the positive sequence voltage ■, and the reactance xlIP+XIN is Zr +J
Considering that x+z+Z N '' J

1、#−−−−・■、    ・・・・・・(21)Z
r”jXiz Z工+j Xl2 (以下余白) JXIP           I Zs 十J X+z      Zw + J X+z
・・・・・・(22) 上記第(22)式で表わされる逆相電流r8の第1項は
1次漏れリアクタンスの不平衡による成分であり、第2
項は1次電圧の不平衡による成分である。この逆相電流
1.のうち、1次電圧の不平衡による成分は、第(22
)弐から明らかなように、3相誘導電動機11の負荷2
1の大小によってほとんど変化しないことがわかる。こ
れは逆相インピーダンスZNが負荷の大小によってほと
んど変化しないためである。一方、逆相電流I8のうち
1次漏れリアクタンスの不平衡による成分は、第(22
)式から明らかなように、3相誘導電動機11の負荷2
1が大きくなればなるほど太き(なることがわかる。こ
れは、正相インピーダンスZ、が負荷の大小によって大
きく変化するためである。
1, #----・■, ・・・・・・(21) Z
r”jXiz Z 工+j
......(22) The first term of the negative sequence current r8 expressed by the above equation (22) is a component due to the imbalance of the primary leakage reactance, and the second term is a component due to the imbalance of the primary leakage reactance.
The term is a component due to unbalance of the primary voltage. This negative sequence current 1. Of these, the component due to the unbalance of the primary voltage is the (22nd
) As is clear from 2, the load 2 of the three-phase induction motor 11
It can be seen that there is almost no change depending on the size of 1. This is because the negative phase impedance ZN hardly changes depending on the magnitude of the load. On the other hand, the component of the negative sequence current I8 due to the unbalance of the primary leakage reactance is the (22nd
) As is clear from the equation, the load 2 of the three-phase induction motor 11
It can be seen that the larger 1 is, the thicker it becomes. This is because the positive sequence impedance Z changes greatly depending on the magnitude of the load.

したがって、1次漏れリアクタンスに不平衡が存在すれ
ば、定格負荷時の逆相電流■□から@負荷時または軽負
荷時の逆相電i′11stの差IH3を計算することに
より、1次電圧の不平衡による成分は消去され、1次漏
れリアクタンスの不平衡による成分のみが残ることにな
り、1次漏れリアクタンスの不平衡、すなわち、ステー
タコイルのゆるみの程度を検知することができる。
Therefore, if there is unbalance in the primary leakage reactance, the primary voltage The component due to the unbalance of the stator coil is eliminated, and only the component due to the unbalance of the primary leakage reactance remains, so that the unbalance of the primary leakage reactance, that is, the degree of loosening of the stator coil can be detected.

なお、逆相電流夏、を求めるための第(4)式は、第一
式と第I式にa!を掛けたものと第りa式にaを掛けた
ものとを加算すれば得られる。
In addition, the equation (4) for finding the negative sequence current summer is the first equation and the first equation a! It can be obtained by adding the product obtained by multiplying .

発明の効果 この発明の電動機診断装置によれば、定格負荷時におけ
る1次電流中の逆相?を流と無負荷時または軽負荷時に
おける1次電流中の逆相電流との差の振幅を求め、この
振幅をステータコイルのゆるみの目安として表示するた
め、逆相電流値に、ステータコイルのゆるみによる3相
誘導電動機の1次漏れリアクタンスの不平衡に起因する
逆相電流成分の他に、1次電圧の不平衡に起因する逆相
電流成分が多く含まれていても、これに影響を受けるこ
となく、ステータコイルのゆるみの程度を精度良く検知
することができる。
Effects of the Invention According to the motor diagnostic device of the present invention, it is possible to detect negative phase in the primary current at rated load. In order to calculate the amplitude of the difference between the negative sequence current in the primary current and the negative sequence current in the primary current at no load or light load, and to display this amplitude as a guide to the loosening of the stator coil, the negative sequence current value is added to the negative sequence current value of the stator coil. In addition to the negative sequence current component caused by the unbalance of the primary leakage reactance of the three-phase induction motor due to loosening, even if there is a large negative sequence current component due to the unbalanced primary voltage, there is no effect on this. The degree of loosening of the stator coil can be detected with high accuracy without being affected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示すブロック図、第2図はこ
の発明の一実施例の構成を示すブロック図、第3図およ
び第4図は実施例の動作を示すフローチャート、第5図
は3相誘導電動機のスロット部分の概略図、第6図は3
相誘導電動機の1相分の等価回路、第7図は同じく3相
分の等価回路である。 1・・・データ取込手段、2・・・第1の1次電流値計
算手段、3・・・第1の逆相電流値計算手段、4・・・
第2の1次電流値計算手段、5・・・第2の逆相電流値
計算手段、6・・・逆相電流値差計算手段、7・・・表
示手段
FIG. 1 is a block diagram showing the configuration of this invention, FIG. 2 is a block diagram showing the configuration of an embodiment of this invention, FIGS. 3 and 4 are flowcharts showing the operation of the embodiment, and FIG. A schematic diagram of the slot part of a three-phase induction motor, Figure 6 is 3
An equivalent circuit for one phase of a phase induction motor, and FIG. 7 is an equivalent circuit for three phases. DESCRIPTION OF SYMBOLS 1... Data acquisition means, 2... First primary current value calculation means, 3... First negative phase current value calculation means, 4...
Second primary current value calculation means, 5... Second negative sequence current value calculation means, 6... Negative sequence current value difference calculation means, 7... Display means

Claims (1)

【特許請求の範囲】[Claims] 3相誘導電動機の少くとも2相の1次電流の波形データ
を取り込むデータ取込手段と、定格負荷時に前記データ
取込手段によって取り込まれた波形データから各相の1
次電流値を求める第1の1次電流値計算手段と、この第
1の1次電流値計算手段によって求められた各相の1次
電流値から逆相電流値を求める第1の逆相電流値計算手
段と、無負荷時または軽負荷時に前記データ取込手段に
よって取り込まれた波形データから各相の1次電流値を
求める第2の1次電流値計算手段と、この第2の1次電
流値計算手段によって求められた各相の1次電流値から
逆相電流値を求める第2の逆相電流値計算手段と、前記
第1および第2の逆相電流値計算手段によってそれぞれ
求められた逆相電流値の相互の差の振幅を求める逆相電
流値差計算手段と、この逆相電流値差計算手段の計算結
果を表示する表示手段とを備えた電動機診断装置。
data acquisition means for acquiring the waveform data of the primary current of at least two phases of the three-phase induction motor;
a first primary current value calculation means for calculating a secondary current value; and a first negative sequence current for calculating a negative sequence current value from the primary current value of each phase calculated by the first primary current value calculation means. a value calculation means, a second primary current value calculation means for calculating a primary current value of each phase from the waveform data acquired by the data acquisition means at no load or light load; a second negative sequence current value calculation means for calculating a negative sequence current value from the primary current value of each phase calculated by the current value calculation means, and a negative sequence current value calculated by the first and second negative sequence current value calculation means, respectively. A motor diagnostic device comprising a negative sequence current value difference calculation means for calculating the amplitude of the mutual difference between negative sequence current values, and a display means for displaying the calculation result of the negative sequence current value difference calculation means.
JP60197435A 1985-09-05 1985-09-05 Diagnosing device for motor Pending JPS6256876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197435A JPS6256876A (en) 1985-09-05 1985-09-05 Diagnosing device for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197435A JPS6256876A (en) 1985-09-05 1985-09-05 Diagnosing device for motor

Publications (1)

Publication Number Publication Date
JPS6256876A true JPS6256876A (en) 1987-03-12

Family

ID=16374463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197435A Pending JPS6256876A (en) 1985-09-05 1985-09-05 Diagnosing device for motor

Country Status (1)

Country Link
JP (1) JPS6256876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116606A (en) * 1977-10-11 1987-05-28 ザ ダウ ケミカル コンパニ− Polymerization of vinyl compound
JP2015194447A (en) * 2014-03-31 2015-11-05 株式会社荏原製作所 Monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116606A (en) * 1977-10-11 1987-05-28 ザ ダウ ケミカル コンパニ− Polymerization of vinyl compound
JPH026763B2 (en) * 1977-10-11 1990-02-13 Dow Chemical Co
JP2015194447A (en) * 2014-03-31 2015-11-05 株式会社荏原製作所 Monitoring device

Similar Documents

Publication Publication Date Title
Mirzaeva et al. Advanced diagnosis of stator turn-to-turn faults and static eccentricity in induction motors based on internal flux measurement
Trzynadlowski et al. Comparative investigation of diagnostic media for induction motors: a case of rotor cage faults
Klingshirn et al. Polyphase induction motor performance and losses on nonsinusoidal voltage sources
CN102393507B (en) Motor parameter detection method and motor parameter detection device
CN102426337B (en) Motor parameter detection method and motor parameter detection apparatus
KR101169797B1 (en) Fault detecting system of stator winding of motor
Brown et al. A general method of analysis of three-phase induction motors with asymmetrical primary connections
EP3029478B1 (en) Assessment method for a multi-phase power system
JP5300349B2 (en) Motor control device and motor ground fault detection method
Bouzid et al. Accurate stator fault detection insensitive to the unbalanced voltage in induction motor
CN104682721B (en) Apparatus and method for controlling inverter
Ye et al. Simulation of electrical faults of three phase induction motor drive system
KR101977861B1 (en) Method for determining fault of motor
JPS6256876A (en) Diagnosing device for motor
Lipo Analysis and control of torque pulsations in current fed induction motor drives
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
Jerkan et al. Detection of broken rotor bars in a cage induction machine using dc injection braking
Desai et al. A novel practical approach to identify equivalent circuit parameters of six-phase asymmetrical induction motor
Razafimahefa et al. Modeling and faults detection of small power wound rotor induction machine
JPH03117347A (en) Method of measuring constant of induction motor
Ngote et al. A New Hybrid
JPH0769401B2 (en) Induction motor constant measurement method
Upadhyay et al. A Stator Flux Linkage DC Offset Based Stator Fault Detection For PMSM Drive Systems
Kim et al. A stator turn-fault detection method for inverter-fed IPMSM with high-frequency current injection
JPS61151479A (en) Apparatus for diagnosis of electromotor