JPS6256639B2 - - Google Patents

Info

Publication number
JPS6256639B2
JPS6256639B2 JP8288981A JP8288981A JPS6256639B2 JP S6256639 B2 JPS6256639 B2 JP S6256639B2 JP 8288981 A JP8288981 A JP 8288981A JP 8288981 A JP8288981 A JP 8288981A JP S6256639 B2 JPS6256639 B2 JP S6256639B2
Authority
JP
Japan
Prior art keywords
phase
dimming
control
lamp
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8288981A
Other languages
Japanese (ja)
Other versions
JPS57197798A (en
Inventor
Yoshasu Sakaguchi
Satoshi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8288981A priority Critical patent/JPS57197798A/en
Publication of JPS57197798A publication Critical patent/JPS57197798A/en
Publication of JPS6256639B2 publication Critical patent/JPS6256639B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は放電灯定入力調光装置に関する。[Detailed description of the invention] The present invention relates to a constant input light control device for a discharge lamp.

従来、HIDランプの点灯方式として、第1図に
示す位相制御方式が広く知られている。この方式
はHIDランプLと直列接続された交流制御素子及
び限流インダクタンスで、ランプ電流の限流機能
を果たすことから、限流インダクタンスのV・A
容量を小さくできるメリツトがある。又、交流制
御素子の導通位相を従来は第1図に示すランプ両
端電圧を検出する方法で定めていた。しかし、こ
の方法であると、施工上、制御部contがランプL
と近接する必要があり、しかも、高圧ナトリウム
灯の始動時のキツク電圧より制御部を保護するブ
ロツク回路が必要であつた。このことは、制御部
contがHIDランプLより受ける伝導熱及び高圧パ
ルスで、品質劣化の原因となり、しかも構成部品
点数が多く、コストアプ形状が大となる欠点があ
つた。交流制御素子の導通位相を決定する他の方
法として、ランプ電流を検出する方法があるが、
この方法ではランプと直列に検出要素を接続し、
しかも制御部との絶縁を施す必要があるなど、や
はりコストアツプ、形状が大となる欠点がある。
Conventionally, the phase control method shown in FIG. 1 has been widely known as a lighting method for HID lamps. This method uses an AC control element and current limiting inductance connected in series with the HID lamp L to perform the current limiting function of the lamp current, so the current limiting inductance V・A
It has the advantage of reducing capacity. Furthermore, the conduction phase of the AC control element has conventionally been determined by the method of detecting the voltage across the lamp as shown in FIG. However, with this method, the control section cont
In addition, a block circuit was required to protect the control unit from the kick voltage at the time of starting the high-pressure sodium lamp. This means that the control
The conduction heat and high-pressure pulses that the cont receives from the HID lamp L cause quality deterioration, and there is also a drawback that the number of component parts is large, resulting in a large cost increase. Another method for determining the conduction phase of an AC control element is to detect the lamp current.
This method connects a sensing element in series with the lamp,
Furthermore, it is necessary to provide insulation from the control section, which also has the drawbacks of increasing costs and increasing the size.

一方、システム化、高級化といつた時代の要請
から、点灯装置もデイジタル信号で、点灯状態を
制御し得る機能が必要となつた。これはつまり点
滅・調光パターン制御あるいはスケジユーリング
等のコンピユータによるシステム制御が、省エネ
ルギーの面からも要請され、又IC、LSI技術の著
しい進歩により、マイコンが安価に手に入る様に
なつてきたからである。この様な背景から、デイ
ジタル制御に適した点灯制御方式が考えられてお
り、その1つにランプ電流位相を検出して、その
検出信号により、交流制御素子の導通位相を制御
する方式(以後この方式を位相検知方式と呼称す
る)がある。
On the other hand, due to the demands of the era of systemization and sophistication, it became necessary for lighting devices to have the ability to control the lighting state using digital signals. This means that computer-based system control such as flashing/dimmer pattern control or scheduling is required from the perspective of energy conservation, and with the remarkable progress in IC and LSI technology, microcontrollers are becoming available at low cost. This is because the. Against this background, lighting control methods suitable for digital control have been considered, one of which is a method that detects the lamp current phase and controls the conduction phase of the AC control element using the detected signal (hereinafter referred to as this method). There is a method called the phase detection method).

本発明は放電灯のランプ電流位相に応じて、放
電灯に直列に接続された、交流制御素子の導通位
相を定める位相制御方式の点灯装置で、ランプ電
圧の高いランプに対しても立消えせず、安定に調
光し、かつ調光比を容易に変更できる放電灯定入
力調光点灯装置を提供するにある。
The present invention is a lighting device using a phase control method that determines the conduction phase of an AC control element connected in series with a discharge lamp according to the lamp current phase of the discharge lamp, and does not turn off even for lamps with high lamp voltage. An object of the present invention is to provide a constant input dimming lighting device for a discharge lamp that can stably dim the light and easily change the dimming ratio.

前述した位相検知方式の主回路を第2図に示
す。第2図において1はHIDランプ、2は制御
部、3は主チヨーク、4は交流制御素子、5は副
チヨークを示す。第2図からも分る様に、制御部
2は交流制御素子4の両端電圧及び電源電圧を入
力し、ランプ電流位相を検出している。この検出
する方法の一例として第2図の制御部内端子イ,
ロ間に、絶縁された二次巻線を有したトランスを
接続し、その二次巻線の両端電圧を検出する方法
でよい。この様にすると、ランプ電流がゼロクロ
スすれば、交流制御素子の自己オフ機能で、オフ
し、前記トランスの一次側両端にランプ電流より
90゜進んだ進相電圧が発生し、この電圧は絶縁さ
れた二次巻線へ誘起されることから、ランプ電流
のゼロクロス位相は、二次巻線の両端電圧の立上
り位相となる。そして基準位相を電源電圧のゼロ
クロス位相とすれば、制御部は電源半サイクル毎
に、ランプ電流位相を検出できることになる。
The main circuit of the phase detection method described above is shown in FIG. In FIG. 2, 1 is an HID lamp, 2 is a control section, 3 is a main chain, 4 is an AC control element, and 5 is a sub chain. As can be seen from FIG. 2, the control section 2 receives the voltage across the AC control element 4 and the power supply voltage, and detects the phase of the lamp current. As an example of this detection method, the terminals in the control section in Fig. 2,
A method may be adopted in which a transformer having an insulated secondary winding is connected between the two terminals and the voltage across the secondary winding is detected. In this way, when the lamp current crosses zero, it is turned off by the self-off function of the AC control element, and the lamp current is applied to both ends of the primary side of the transformer.
Since a leading phase voltage that is advanced by 90 degrees is generated and this voltage is induced in the insulated secondary winding, the zero-crossing phase of the lamp current becomes the rising phase of the voltage across the secondary winding. If the reference phase is the zero-crossing phase of the power supply voltage, the control section can detect the lamp current phase every half cycle of the power supply.

第3図は、定入力始動(入力電流がランプ始動
過程において定格時の入力電流以下)制御に必要
な位相検知方式の基本原理図である。イは始動直
後、ロは定格時で、eは電源電圧波形、iはラン
プ電流を示す。HIDランプはランプが始動した直
後、ランプ内の等価コンダクタンスが、定格時に
比べ非常に大きい為、ランプ電流が大きく流れよ
うとする。従つて、このランプ電流を定入力始動
に必要な値までしぼると、ランプ電流のゼロクロ
ス位相T(ここでは交流制御素子のオフ位相)
と、交流制御素子のオフ期間△Tは始動直後と定
格時と大きく異なることがわかる。HIDランプの
始動過程の全過程で、このTと△Tの関係を図示
したものが、第4図である。逆にいえば、第4図
を満たす制御を行えば、定入力始動が得られるわ
けである。つまり、ランプ電流位相Tに応じて、
交流制御素子のオフ期間△Tを第4図の関係をみ
たす様に制御しているわけである。
FIG. 3 is a basic principle diagram of the phase detection method necessary for constant input starting control (input current is less than the rated input current during the lamp starting process). A is immediately after starting, b is at rated time, e is the power supply voltage waveform, and i is the lamp current. Immediately after the HID lamp starts, the equivalent conductance inside the lamp is much larger than at the rated value, so a large amount of lamp current tends to flow. Therefore, when this lamp current is reduced to the value required for constant input starting, the zero cross phase T of the lamp current (here, the off phase of the AC control element)
It can be seen that the off-period ΔT of the AC control element is significantly different from immediately after starting and at the rated time. FIG. 4 illustrates the relationship between T and ΔT during the entire process of starting the HID lamp. In other words, if the control that satisfies the conditions shown in FIG. 4 is performed, constant input starting can be obtained. In other words, depending on the lamp current phase T,
This means that the off period ΔT of the AC control element is controlled so as to satisfy the relationship shown in FIG.

この様な制御を行う定入力点灯装置において、
調光状態へ制御する方法を考える。調光へ切換え
るには交流制御素子の導通位相θ(=T+△T)
を定格時のそれより適当に遅らせる必要がある。
その後希望する調光比に相当する位相関係Tと△
Tを満たす様に制御して安定な調光状態を得るこ
とが可能となる。
In a constant input lighting device that performs such control,
Consider how to control the dimming state. To switch to dimming, conduction phase θ (=T+△T) of AC control element
It is necessary to appropriately delay the rated value.
After that, the phase relationship T and △ corresponding to the desired dimming ratio
It becomes possible to obtain a stable dimming state by performing control so as to satisfy T.

本発明は、ランプ電流位相(T)に応じて交流
制御素子のオフ期間△Tを決定する位相制御によ
る定入力点灯装置に対して、調光機能を付加する
ことを特徴としている。
The present invention is characterized in that a dimming function is added to a constant input lighting device using phase control that determines the off period ΔT of an AC control element according to the lamp current phase (T).

調光制御には2つの大きな課題がある。それは
第1に切換時にランプが立消えしないことであ
り、第2には希望する調光比の調光状態へ制御す
ることである。そこで第1の切換え時のランプ立
消えしない点について考察してみる。まず切換時
のTと△Tの関係について調べると、第5図とな
ることが分る。○ロ点が定格時の関係とすれば、こ
の点から導通位相θ(=T+△T)を増減すると
○ロ−○ハの直線上もしくは延長線上(第5図の破線
上)を切換時のTと△Tの関係がとるということ
である。調べる方法として、第6図の回路で定格
時より瞬時に交流制御素子の導通位相θを切換
え、その1秒後の交流制御素子両端電圧(VTR
)を測定し、VTRcの立上り位相をTとしその
TよりVTRcの立下り位相までの期間を△Tとし
てシンクロスコープを用い測定した。回路定数は
ランプが水銀灯400W(ランプ電圧149V)主チヨ
ークのインピーダンス電圧80V/3.3A、副チヨー
クのインピーダンス電圧68V/0.375A、電源電圧
200Vであり、水銀灯400Wの定格出力は第5図○ロ
において400Wである。
There are two major issues with dimming control. The first is that the lamp does not go out during switching, and the second is that the dimming state is controlled to the desired dimming ratio. Therefore, let us consider the fact that the lamp does not turn off during the first switching. First, if we examine the relationship between T and ΔT at the time of switching, we will find that it is as shown in FIG. If point B is the relationship at the rated value, increasing or decreasing the conduction phase θ (=T + △T) from this point will result in a position on the straight line or extension line (on the broken line in Figure 5) of ○Ro - ○C during switching. This means that there is a relationship between T and △T. To investigate, use the circuit shown in Figure 6 to instantly switch the conduction phase θ of the AC control element from the rated state, and then calculate the voltage across the AC control element (V TR
c ) was measured using a synchroscope, with the rising phase of V TRc being T and the period from T to the falling phase of V TRc being ΔT. The circuit constants are a 400W mercury lamp (lamp voltage 149V), main chain impedance voltage 80V/3.3A, secondary chain impedance voltage 68V/0.375A, power supply voltage.
200V, and the rated output of a 400W mercury lamp is 400W in Figure 5.

調光切換時位相の関係Tと△Tが、第5図破線
上をみたすが△Tが大きくなりすぎるとランプ電
流が絞られすぎ、ランプ電圧の再点弧部分が大き
くなり、ランプが立消えすることになり、△Tを
あまり大きく切換えることはできない。
The phase relationship T and △T at the time of dimming switching satisfies the broken line in Figure 5, but if △T becomes too large, the lamp current will be throttled down too much, the restriking portion of the lamp voltage will become large, and the lamp will go out. Therefore, ΔT cannot be changed too much.

以上の理由により調光制御条件は、切換点がた
とえば○ハであれば、○ハをみたす必要のあることは
明らかである。
For the above reasons, it is clear that the dimming control condition needs to satisfy ○C if the switching point is ○C, for example.

次に第2の課題である狙つた調光比への制御に
ついて、その制御条件を説明する。第6図におい
て定格時より十分時間をかけて徐々に導通位相θ
を遅らせて、調光比60%までの各安定状態の位相
関係Tと△Tを前述の方法で測定すると第5図の
鎖線で示す線上となることがわかつた。このこと
から今、60%調光比の調光状態へ制御するには、
最終的に○ニ点をみたす様な位相制御を行う必要の
あることを示している。
Next, the control conditions for controlling the dimming ratio to be aimed at, which is the second issue, will be explained. In Figure 6, the conduction phase θ is gradually increased over a period of time from the rated time.
When the phase relationship T and ΔT in each stable state up to a dimming ratio of 60% are measured by the method described above, it was found that they lie on the chain line shown in FIG. 5. From this, in order to control the dimming state with a 60% dimming ratio,
This shows that it is necessary to perform phase control that ultimately satisfies the two points.

以上の2つの位相制御条件、つまり調光切換時
の位相関係(第5図の破線)及び調光安定時の位
相関係(第5図の鎖線)を調光制御条件が満たす
必要がある。
The dimming control condition needs to satisfy the above two phase control conditions, that is, the phase relationship during dimming switching (dashed line in FIG. 5) and the phase relationship when dimming is stable (dashed line in FIG. 5).

従つて本発明の調光制御条件は○ハをみたし、し
かも調光比により鎖線の一点を通るTと△Tの関
数を規定するものである。たとえば今かりに70%
調光比へ調光制御する場合は、○ハと○ホを単純に直
線で結んだ関数を制御条件として、○イと○ロを結ぶ
直線の定入力制御条件より切換えればよい。60%
調光比としたい時は○ハと○ニを結ぶ直線を制御条件
に選べばよい。
Therefore, the dimming control condition of the present invention satisfies ◯C, and also defines a function of T and ΔT that passes through one point of the chain line according to the dimming ratio. For example, 70%
When performing dimming control to the dimming ratio, it is sufficient to use a function simply connecting ○C and ○H with a straight line as a control condition, and to switch from a constant input control condition of a straight line connecting ○A and ○B. 60%
If you want to set the dimming ratio, just select the straight line connecting ○C and ○D as the control condition.

実施例 ○ハと○ニを結ぶ直線を制御条件にした定入力調光
制御方法について第7図、第8図で説明する。第
1クロツク及び第2クロツクの周期はそれぞれT
及び△Tの制御し得る最小位相角単位である。電
源投入後より、ランプが始動過程にある間、定入
力条件が実現される。この動作は調光用SWがオ
フしていると、トランジスタQ1を介してINV出力
に“L”出力が出る。その結果定入力条件用の初
期値、加算カウンタ開始位相(T0)、第1クロツ
クの周期を選ぶ。
Embodiment A constant input dimming control method using a straight line connecting ○C and ○D as a control condition will be explained with reference to FIGS. 7 and 8. The periods of the first clock and the second clock are T
and the minimum controllable phase angle unit of ΔT. After power-on, a constant input condition is achieved while the lamp is in the starting process. In this operation, when the dimming switch is off, an "L" output is output to the INV output via the transistor Q1 . As a result, the initial value for the constant input condition, the addition counter start phase (T 0 ), and the period of the first clock are selected.

電源ゼロクロス位相より、位相角T0遅れて、
加算カウンタは△TOに相当する第2クロツクの
デイジタル値を初期値セツトして第1クロツクを
カウント開始する。ランプ電流のゼロクロス位相
が検出されると遅延回路は加算カウンタの内容を
ラツチ(保持)する。そして次の電源ゼロクロス
位相より位相角T0遅れた位相で、加算カウンタ
は初期値セツトしてカウント開始すると同時に、
減算カウンタは遅延回路でラツチされていたカウ
ンタ内容を初期値セツトし、ランプ電流のゼロク
ロス位相迄セツトしつづける。つまり減算カウン
タの初期値は、前の半サイクルのランプ電流位相
Tに相当する値である。そこでランプ電流のゼロ
クロス位相で減算カウンタは第2クロツクを減算
開始し、減算カウンタ内容がゼロとなつた位相
で、トリガパルスを発生する。この様にして定入
力条件aは実現され、ランプは定格点灯に至る。
The phase angle T 0 lags behind the power supply zero cross phase,
The addition counter sets the digital value of the second clock corresponding to ΔTO to an initial value and starts counting the first clock. When the zero-crossing phase of the lamp current is detected, the delay circuit latches (holds) the contents of the addition counter. Then, at a phase delayed by a phase angle T 0 from the next power supply zero cross phase, the addition counter sets its initial value and starts counting, at the same time.
The subtraction counter sets the counter contents latched by the delay circuit to an initial value, and continues to set the counter contents until the zero-crossing phase of the lamp current. That is, the initial value of the subtraction counter is a value corresponding to the lamp current phase T of the previous half cycle. Therefore, the subtraction counter starts subtracting the second clock at the zero-crossing phase of the lamp current, and a trigger pulse is generated at the phase when the content of the subtraction counter becomes zero. In this way, the constant input condition a is achieved, and the lamp reaches its rated lighting.

つづいて任意の時刻で、調光用SWが閉じると
Q0がオンし、INV出力は反転し、“L”より
“H”に変わる。この結果、調光条件用の初期値
加算カウンタ開始位相(T1)第1クロツクの周期
が選ばれる。この時Tと△Tは○ハに移り調光切換
えが完了する。その後、始動過程とは逆にランプ
電圧減少過程に入り、ランプ電流が増加しようと
し、ランプ電流位相が遅れ傾向になり、○ニ点へ向
つて制御されることになる。そして○ニ点で安定し
狙う調光比が得られることになる。
Next, at any time, when the dimmer switch closes,
Q0 turns on, the INV output is inverted, and changes from "L" to "H". As a result, the period of the initial value addition counter start phase (T 1 ) first clock for the dimming condition is selected. At this time, T and △T shift to ◯C, completing the dimming switching. After that, the lamp voltage decreases in the opposite direction to the starting process, the lamp current tries to increase, the lamp current phase tends to lag, and the lamp is controlled toward the ○2 point. Then, the desired dimming ratio can be obtained stably at the two points.

今度は逆に調光用SWが開くと、制御条件がb
からaに変わり、点灯状態は容易に定格点灯を得
ることができる。
This time, when the dimming SW opens, the control condition becomes b.
The lighting state changes from to a, and the lighting state can easily attain the rated lighting.

第2図に示した位相検知方式は、第7図の様な
モデルで表わすと明らかな様に、二線制御が可能
であり、従来にないHIDランプの二線調光が可能
となる。しかも位相検知方式で有利となるデイジ
タル制御を行えば、デイジタルシステム又はマイ
コンシステムと結合が可能であり、調光パターン
制御も容易に行え、HID照明にも大きな省電力効
果をもたらすことができる。
As is clear from the model shown in FIG. 7, the phase detection method shown in FIG. 2 is capable of two-line control, and enables unprecedented two-line dimming of HID lamps. Moreover, if digital control is performed, which is advantageous with the phase detection method, it can be combined with a digital system or a microcomputer system, and dimming pattern control can be easily performed, and HID lighting can also have a large power saving effect.

又調光制御においては、第5図の説明でも明ら
かな様に調光比の選択は制御線の傾きあるいは切
換時の位相関係で決まることから、調光比は容易
に変更でき多段調光あるいは連続調光できる効果
も有している。前記の点灯装置において調光制御
が可能となつた。しかし、単一レベルの調光だけ
ではその場に応じた明るさ、演色性を得ることに
対しては、まだ欠点がある。つまり最近高圧ナト
リウム灯と、マルチハロゲン灯といつた異なつた
種類のランプを2灯点灯し、高効率で、高演色な
照明が要求されている。この場合互いのランプの
調光比を加減することで、任意の演色性が得られ
る利点がある。従つて調光レベルも単一ではな
く、複数レベルの調光が望まれ次の実施例はこの
多段調光を得る手段について行われた。第10図
は被複数の調光条件を行う場合の説明図である。
In addition, in dimming control, as is clear from the explanation of Figure 5, the selection of the dimming ratio is determined by the slope of the control line or the phase relationship at the time of switching, so the dimming ratio can be easily changed and multi-stage dimming or It also has the effect of continuous dimming. Dimming control has become possible in the lighting device. However, there are still drawbacks to obtaining brightness and color rendering properties that are appropriate for each situation with only a single level of dimming. In other words, recently there has been a demand for lighting with high efficiency and high color rendering by lighting two different types of lamps, such as high-pressure sodium lamps and multi-halogen lamps. In this case, there is an advantage that arbitrary color rendering properties can be obtained by adjusting the dimming ratio of the lamps. Therefore, the dimming level is not single, but multiple levels are desired, and the following embodiment is a means for obtaining this multi-level dimming. FIG. 10 is an explanatory diagram when performing a plurality of dimming conditions.

第5図より調光制御条件の傾きを同一とした時
調光比80%、70%、60%の調光条件は第10図の
それぞれb,c,dの様になることは明らかであ
る。このための実施例を第11図に示す。
From Fig. 5, it is clear that when the slope of the dimming control conditions is the same, the dimming conditions for dimming ratios of 80%, 70%, and 60% are as shown in b, c, and d, respectively, in Fig. 10. . An embodiment for this purpose is shown in FIG.

スイツチS1,S2,S3は各々60%、70%、80%調
光用スイツチであり、オンの時調光に入る。又ス
イツチS1,S2,S3はいづれかオンの時は、他のス
イツチは全てオフとなる様にしておく。今、スイ
ツチS1だけオンとなつたとすると、トランジスタ
Q1だけがオンし、インバータINV1の出力は
“H”となる。従つて初期値回路内の値は
01101110(16進数で6E)となる。S1がオフの
時、つまり定格点灯状態ではこの値は01001110
(16進数で4E)だから急に初期値が大きくなる。
この事は△T0が△T3に増加することとなる。
又、スイツチS1,S2,S3の出力はOR回路にそれ
ぞれ入力されており、スイツチのオンを監視し、
いづれかのスイツチが、オンした時(つまり調光
切換が生じた時)、第1クロツクの周期を調光用
に切換える。これはいづれのスイツチが入つても
同じ周期に切りかわる。従つて調光条件b,c,
dは傾きが同一であり、定入力条件とは異なる様
になつている。この傾きは特に定入力条件と変え
る必要はないが、傾きを大きくした方が、調光切
換え時の立消えを防ぐ効果が大きい。
Switches S 1 , S 2 , and S 3 are switches for dimming 60%, 70%, and 80%, respectively, and enter dimming when turned on. Also, when any of the switches S 1 , S 2 , and S 3 is on, all other switches are off. Now, if only switch S1 is turned on, the transistor
Only Q1 is turned on, and the output of inverter INV1 becomes "H". Therefore, the value in the initial value circuit is
01101110 (6E in hexadecimal). When S 1 is off, that is, in the rated lighting state, this value is 01001110
(4E in hexadecimal) Therefore, the initial value suddenly becomes large.
This results in △T 0 increasing to △T 3 .
In addition, the outputs of switches S 1 , S 2 , and S 3 are each input to an OR circuit, which monitors whether the switches are on or not.
When any of the switches is turned on (that is, when dimming switching occurs), the period of the first clock is switched to dimming. This changes at the same cycle no matter which switch is turned on. Therefore, dimming conditions b, c,
d has the same slope and is different from the constant input condition. This slope does not need to be particularly different from the constant input condition, but increasing the slope is more effective in preventing fading during dimming switching.

この実施例によれば調光比を初期値の設定で容
易に変更でき、多段調光が可能となつた。このこ
とから、高圧ナトリウム灯、マルチハロゲン灯と
いつた異種ランプでの混合比を任意に設定でき、
HID照明の屋内照明への展開が容易となる。
According to this embodiment, the dimming ratio can be easily changed by setting the initial value, and multistage dimming is possible. From this, the mixing ratio of different types of lamps such as high-pressure sodium lamps and multi-halogen lamps can be set arbitrarily.
HID lighting can be easily applied to indoor lighting.

又デイジタル値で、調光比を設定できることか
らマイコン制御にも適しており、今後のシステム
商品の中枢となりうる可能性がある。
Furthermore, since the dimming ratio can be set using digital values, it is also suitable for microcomputer control, and has the potential to become the core of future system products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の位相制御方式、第2図は本発明
の位相検知方式の主回路、第3図イ,ロは定入力
始動制御の位相検知方式の基本図、第4図はラン
プ電流のゼロクロス位相Tと交流制御素子のオフ
期間との関係、第5図は定格時、60%、70%、80
%調光時のTと△Tとの関係、第6図はTと△T
とを定める測定回路、第7図は位相検知方式のモ
デル、第8図及び第9図は光入力調光制御方法を
説明するための図面、第10図は複数の調光条件
を説明するための図面、第11図は本発明の他の
実施例を示す。 1……HIDランプ、2……制御部、3……主チ
ヨーク、4……交流制御素子、5……副チヨー
ク。
Figure 1 shows the conventional phase control system, Figure 2 shows the main circuit of the phase detection system of the present invention, Figure 3 A and B show the basic diagram of the phase detection system for constant input starting control, and Figure 4 shows the lamp current The relationship between the zero cross phase T and the OFF period of the AC control element, Figure 5 shows the relationship between the zero cross phase T and the off period of the AC control element, at the rated time, 60%, 70%, 80%.
The relationship between T and △T during % dimming, Figure 6 shows T and △T
Figure 7 is a model of the phase detection method, Figures 8 and 9 are diagrams for explaining the optical input dimming control method, and Figure 10 is for explaining multiple dimming conditions. FIG. 11 shows another embodiment of the present invention. 1...HID lamp, 2...Control unit, 3...Main chain yoke, 4...AC control element, 5...Sub-chiyoke.

Claims (1)

【特許請求の範囲】 1 商用電源に交流制御素子、限流インピーダン
ス及びランプを直列接続し、ランプ電流位相に対
応して、該交流制御素子の導通位相を電源の半サ
イクル毎に制御する制御回路を有する放電灯点灯
装置において、 該制御回路は、ランプ電流位相と、制御すべき
該交流制御素子の導通位相との対応関係を少くと
も2つ以上記憶する素子を備え、 該交流制御素子の導通位相は、電源投入後は前
記対応関係のうち特定の1つにより必ず制御さ
れ、外部スイツチ信号が入力されると、前記特定
の対応関係にかわり、他の対応関係がスイツチ信
号に対応して選択され、これにより制御される様
な制御回路を有したことを特徴とする放電灯定入
力調光点灯装置。 2 所望の調光用スイツチを複数個設け、このス
イツチの中のいずれかをオンとした場合、これに
応じて調光の初期位を定めるようにした特許請求
の範囲第1項記載の放電灯定入力調光点灯装置。
[Scope of Claims] 1. A control circuit that connects an AC control element, a current limiting impedance, and a lamp in series to a commercial power supply, and controls the conduction phase of the AC control element every half cycle of the power supply in accordance with the lamp current phase. In the discharge lamp lighting device, the control circuit includes an element that stores at least two or more correspondences between lamp current phases and conduction phases of the AC control element to be controlled, and After the power is turned on, the phase is always controlled by a specific one of the above-mentioned correspondence relationships, and when an external switch signal is input, another correspondence relationship is selected in response to the switch signal instead of the above-mentioned specific correspondence relationship. 1. A discharge lamp constant input dimmer lighting device, characterized in that it has a control circuit which is controlled by the control circuit. 2. A discharge lamp according to claim 1, wherein a plurality of desired dimming switches are provided, and when one of the switches is turned on, the initial position of dimming is determined accordingly. Constant input dimmer lighting device.
JP8288981A 1981-05-29 1981-05-29 Device for dimming and firing discharge lamp with constant input Granted JPS57197798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8288981A JPS57197798A (en) 1981-05-29 1981-05-29 Device for dimming and firing discharge lamp with constant input

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8288981A JPS57197798A (en) 1981-05-29 1981-05-29 Device for dimming and firing discharge lamp with constant input

Publications (2)

Publication Number Publication Date
JPS57197798A JPS57197798A (en) 1982-12-04
JPS6256639B2 true JPS6256639B2 (en) 1987-11-26

Family

ID=13786832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8288981A Granted JPS57197798A (en) 1981-05-29 1981-05-29 Device for dimming and firing discharge lamp with constant input

Country Status (1)

Country Link
JP (1) JPS57197798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291830U (en) * 1989-01-09 1990-07-20
JPH04101449U (en) * 1991-02-07 1992-09-02 段谷産業株式会社 stairs with storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291830U (en) * 1989-01-09 1990-07-20
JPH04101449U (en) * 1991-02-07 1992-09-02 段谷産業株式会社 stairs with storage

Also Published As

Publication number Publication date
JPS57197798A (en) 1982-12-04

Similar Documents

Publication Publication Date Title
CN1989788B (en) Discharge lamp lighting device and projector
JP3176914B2 (en) Circuit device for discharge lamp lighting
US6046549A (en) Energy saving lighting controller
KR960700471A (en) ENERGY SAVING POWER CONTROL SYSTEM
JP2004312995A (en) Adjustment method of power consumption of loading, adjusting circuit for power consumption of loading, and electric lighting device for lamp
US4219759A (en) Three phase power control unit
JPS6256639B2 (en)
TW512376B (en) Switching device
US7291986B2 (en) Step sinusoidal voltage controlling method for hid, flourescent and incandescent light dimming applications
JPH06163168A (en) Discharge lamp lighting device
JP4379235B2 (en) Light control device
JPS63133499A (en) Dimmer of fluorescent lamp and semiconductor switch
JPS598957B2 (en) Discharge lamp lighting device with dimmer
JPH06111987A (en) Electric discharge lamp lighting device
JP3334006B2 (en) Power control device, dimming device, and lighting device using the same
JP2004194477A (en) Apparatus and method for controlling electric power
JP4239355B2 (en) Discharge lamp lighting device
JPS644319B2 (en)
JP3380154B2 (en) Fluorescent light dimmer
JPH048920B2 (en)
JP2521923Y2 (en) Load control device
JPS58182727A (en) Constant power controller
JPS6361740B2 (en)
KR940007019Y1 (en) Auto-frequence conversion system of dimmer
JPS5991517A (en) Digital stabilizing device of alternating current