JPS6256495A - Novel production of tetrathiafulvalene derivative - Google Patents

Novel production of tetrathiafulvalene derivative

Info

Publication number
JPS6256495A
JPS6256495A JP19534885A JP19534885A JPS6256495A JP S6256495 A JPS6256495 A JP S6256495A JP 19534885 A JP19534885 A JP 19534885A JP 19534885 A JP19534885 A JP 19534885A JP S6256495 A JPS6256495 A JP S6256495A
Authority
JP
Japan
Prior art keywords
formula
alkali metal
expressed
butyne
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19534885A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Rei Mikawa
三川 礼
Tadashi Nakamura
正 中村
Osamu Yamazaki
治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP19534885A priority Critical patent/JPS6256495A/en
Publication of JPS6256495A publication Critical patent/JPS6256495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

PURPOSE:To obtain the titled compound promising as a donor molecule of organic superconductors in high yield and good reproducibility, by reducing dithiapendione, reacting the resultant reduction product with a 3-halo-1-butyne and alkali metal alkoxide one after another, neutralizing the reaction product and treating the neutralization product with a weak acid. CONSTITUTION:Dithiapendione expressed by formula I is first reduced with an alkali metal alkoxide in, e.g. an alcoholic solvent and the resultant compound expressed by formula II is reacted with a 3-halo-1-butyne expressed by formula III (X is halogen) to give a compound expressed by formula IV, which is then reacted with an alkali metal alkoxide expressed by the formula (RO)<->M<+> (R is lower alkyl; M is alkali metal) to afford a compound expressed by formula V. An organic solvent incompatible with water is normally added to the reaction mixture, and acetic acid, etc., is used to neutralize the reaction mixture. The organic layer is separated and collected. A weak acid, e.g. p-toluenesulfonic acid, is then added to the above-mentioned organic layer and the resultant mixture is heat-treated, e.g. at 60-80 deg.C for several tens of min - several hr, to afford the aimed compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機超電導体のドナー分子として有望な、テ
トラチアフルバレン(TTF)、J導体ノ新規な製法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel method for producing tetrathiafulvalene (TTF), a J conductor, which is a promising donor molecule for organic superconductors.

〔発明あ背景〕[Background of the invention]

197111年代に入って、テトラチアフルバレン・7
゜7.8.8−テトラシアノキノジメタン錯体(TTF
−TCNQ錯体)が有機物として最初に一次元金属電導
を示して以来、この低分子低次元電導体の分野は一挙に
開花し、1980年代に入るとTTF誘導体であるテト
ラメチルテトラセレナフルバレン塩に超電導性があるこ
とが見出され、更に、ここ1.2年の研究は、ビス(エ
チレンジ千オ)−テトラチアフルバレン(BEDT−T
TF)塩に集中している。このBEDT−TTF塩の特
徴の1つとしては、1分子に8個ある硫黄原子によって
隣接カラムとの間に相互作用を生じ、2次元性が増大し
たことに起因して、これまでカラム方向にしか高い導電
性を示さなかったものが、カラムと垂直な方向にも示す
ようになったことが挙げられる。しかし、これの最大の
狙いは、2次元性を増すことによってフェルミ面を曲線
化させることにより、低次元電導体の宿命ともいうべき
バイエルス転移(金属−絶縁体転移)を抑制することに
あった。
In the 1971s, Tetrathiafulvalene 7
゜7.8.8-tetracyanoquinodimethane complex (TTF
-TCNQ complex) was the first organic substance to exhibit one-dimensional metal conductivity, and the field of low-molecular, low-dimensional conductors blossomed all at once, and in the 1980s, tetramethyltetraselenafulvalene salt, a TTF derivative, developed. It has been discovered that there is superconductivity, and further research in the past 1.2 years has shown that bis(ethylene dithio)-tetrathiafulvalene (BEDT-T
TF) Concentrated in salt. One of the characteristics of this BEDT-TTF salt is that the eight sulfur atoms in one molecule interact with adjacent columns, increasing its two-dimensionality. One example of this is that materials that previously only exhibited high conductivity now also exhibit high conductivity in the direction perpendicular to the column. However, the main aim of this was to curve the Fermi surface by increasing its two-dimensionality, thereby suppressing the Beiers transition (metal-insulator transition), which is the fate of low-dimensional conductors. .

BEDT−TTF塩としては、Re04塩が4Kbar
以下の圧力で超電導になることが見出され、ごく最近で
はI3塩、Br2I塩等のハロゲン塩が圧力をかけなく
ても超電導になることが見出されている。
As BEDT-TTF salt, Re04 salt is 4Kbar
It has been discovered that superconductivity occurs at the following pressures, and more recently it has been discovered that halogen salts such as I3 salts and Br2I salts become superconducting even without applying pressure.

しかしながら、このBEDT−TTFは分子の両端が−
cH2−cH2−となっている為、平面分子ではなく、
このことは主導性錯体の形成にとって不利であると考え
られる。そこで、より高電導性の錯体を形成するべく、
より平面性を上げるためにBEDT−TTFの両端に二
毛結合を導入し、更に、溶解性を増すためにメチル基に
導入したドナー分子ビス (ジメチルビニレンジチオ)
−テトラチアフルバレン(以下、BDMVDT−TTF
と略す、)が提案されており(R,R,Schumak
erら、J、 Phys、 (Paris)、 44.
 C3−11! (1983))、その合成法について
の極〈簡単な記述がある。この合成ルートは概略下記の
如くである。
However, in this BEDT-TTF, both ends of the molecule are -
Because it is cH2-cH2-, it is not a planar molecule,
This is considered to be disadvantageous for the formation of the leading complex. Therefore, in order to form a complex with higher conductivity,
Bivalent bonds were introduced at both ends of BEDT-TTF to further increase planarity, and donor molecule bis (dimethylvinylene dithio) was introduced into the methyl group to increase solubility.
-Tetrathiafulvalene (hereinafter referred to as BDMVDT-TTF)
) has been proposed (R, R, Schumak
er et al., J. Phys. (Paris), 44.
C3-11! (1983)), there is a very simple description of its synthesis method. This synthetic route is roughly as follows.

しかし、このSchumake rらの方法は、該文献
中に反応条件、溶媒、反応試薬等の合成法の詳細な記述
はなく、また、収率、再現性等に問題があって(本発明
者らの追試によれば目的物は痕跡量しか得られなかった
。)、必らずしも充分満足し得る製法であるとはいえな
い。従って、有機超電導体を与えるドナー分子として極
めて有望なりDMVDT−TTFのより高収率で、再現
性のよい製法の出現が渇望されている現状にある。
However, the method of Schumaker et al. does not have detailed descriptions of the synthesis method such as reaction conditions, solvents, and reaction reagents in the literature, and also has problems with yield, reproducibility, etc. (the inventors et al. (According to a follow-up test, only trace amounts of the desired product were obtained.) Therefore, it cannot be said that the manufacturing method is completely satisfactory. Therefore, there is a current need for a method for producing DMVDT-TTF, which is extremely promising as a donor molecule for providing organic superconductors, with higher yield and better reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明は上記した如き現状に鑑みなされたもので、有機
超電導体を与えるドナー分子として極めて有望なりDM
VDT−TTFの新規で、より高収率且つ再現性のよい
製造法を提供することをその目的とする。
The present invention was made in view of the current situation as described above, and is extremely promising as a donor molecule for providing organic superconductors.
The purpose is to provide a new method for producing VDT-TTF with higher yield and better reproducibility.

〔発明の構成〕[Structure of the invention]

本発明は、 式 式 HeミC−c−cu3 (但し、Xはハロゲン原子を表わす、)で示される3−
ハロー1−ブチンと反応させ、次いで、 式    (RO)−M” (但し、Rは低級アルキル基を表わし、Mはアルカリ金
属を表わす、) で示されるアルカリ金属アルコキシドと反応させ、中和
後、これを更に弱醜で加熱処理することを特徴とする、 式 で示されるビス(ジメチルビニレンジチオ)−テトラチ
アフルバレンの製造法である。
The present invention provides 3-
It is reacted with halo-1-butyne, and then reacted with an alkali metal alkoxide represented by the formula (RO)-M'' (where R represents a lower alkyl group and M represents an alkali metal), and after neutralization, This is a method for producing bis(dimethylvinylene dithio)-tetrathiafulvalene represented by the formula, which is characterized by further heat-treating the product under mild conditions.

本発明の合成ルートは概略下記の通りである。The synthetic route of the present invention is roughly as follows.

本発明の製造法に於て用いられるジチアペンジオンの還
元剤としては、例えば[B]→[C1の工程で用いられ
ると同じ、式(RO)−M”で示されるアルカリ金属ア
ルコキシドが挙げられる。式(RO)”M”で示される
アルカリ金属アルコキシドのRとしては、例えばメチル
基、エチル基、プロピル基、ブチル基等の低級アル午ル
基が挙げられ、河としてはナトリウム、カリウム、リチ
ウム等のアルカリ金属が挙げられる。
Examples of the reducing agent for dithiapenedione used in the production method of the present invention include alkali metal alkoxides represented by the formula (RO)-M'', which are the same as those used in the step [B]→[C1. (RO) Examples of R in the alkali metal alkoxide represented by "M" include lower alkali groups such as methyl, ethyl, propyl, and butyl; examples include sodium, potassium, and lithium. Examples include alkali metals.

本発明の製造法に於て用いられる、式IC=C=C−C
H3で示される3−ハロー1−ブチンのXとしては、用
いられる酸類としては、例えば、塩酸、硫酸等の鉱酸類
、例えば、酢酸、P−)ルエンスルホン酸等の有機酸類
等が挙げられるが、これらに限定元工程に於て、還元剤
として1例えばアルカリ金属アルコキシドを用いた場合
には1反応は通常、アルコール系溶媒中で行なわれる。
The formula IC=C=C-C used in the production method of the present invention
Examples of the acids used for X in 3-halo-1-butyne represented by H3 include mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid and P-)luenesulfonic acid. In these limiting steps, when an alkali metal alkoxide, for example, is used as a reducing agent, the reaction is usually carried out in an alcoholic solvent.

従って、アルカリ金属アルコキシドを用いる代りに、ア
ルコール系溶媒中、金属アルカリを用いても全く同様の
結果が得られることはいうまでもない0反応は通常加温
下、好ましくは溶媒還流下に行なわれる。
Therefore, it goes without saying that the same results can be obtained by using a metal alkali in an alcoholic solvent instead of using an alkali metal alkoxide, and the zero reaction is usually carried out under heating, preferably under reflux of the solvent. .

反応時間は反応温度によって若干の差はあるが、通常1
〜数時間で充分である。中間体[AI は空気に対して
不安定なので、アルカリ金属アルコキシドのアルコール
溶液(アルカリ金属のアルコール溶液)は脱酸素バブリ
ングを行なった後、これを用いなければならない。また
、アルコール系溶媒は脱水したものを用いるべきである
ことはいうを待たない。ジチアペンジオンに対するアル
カリ金属アルコキシド(又はアルカリ金属)の使用量は
、ジチアペンジオンに対し、4倍モルが理論量なので、
4倍モル以上であれば特に支障はないが、通常は4〜5
倍モルが好ましく用いられる。
The reaction time varies slightly depending on the reaction temperature, but is usually 1
~A few hours is sufficient. Since the intermediate [AI] is unstable in air, an alcoholic solution of an alkali metal alkoxide (alcoholic solution of an alkali metal) must be used after deoxidizing bubbling. It goes without saying that the alcoholic solvent should be dehydrated. The amount of alkali metal alkoxide (or alkali metal) to be used for dithiapendione is 4 times the theoretical amount by mole of dithiapendione, so
There is no particular problem if it is 4 times the mole or more, but usually 4 to 5 times
Double molar ratio is preferably used.

ジチアペンジオンの還元剤としては、アルカリ金属アル
コキシドの他に、例えばL iA IH4、LiB(C
2H5)3H、アルキルリチウム、NaH等も挙げられ
る。この場合、溶媒はテトラヒドロフラン、ジエチルエ
ーテル等のエーテル系溶媒が用いられる。
As reducing agents for dithiapenedione, in addition to alkali metal alkoxides, for example, LiA IH4, LiB(C
2H5)3H, alkyl lithium, NaH, etc. may also be mentioned. In this case, the solvent used is an ether solvent such as tetrahydrofuran or diethyl ether.

ジチアペンナジオンと還元剤との反応生成物([AI)
は単離するqとなく、次の3−ハロー1−ブチンとの反
応に供される。
Reaction product of dithiapennadione and reducing agent ([AI)
is subjected to the next reaction with 3-halo-1-butyne without q being isolated.

還元生成物 [AIと3−ハロー1−ブチンとの反応は
、発熱反応であり、特に加温する必要はなく、要すれば
冷却下、通常40℃以下で行なわれる。また、反応時間
は反応温度によって若干具なるが、通常30分乃至数時
間で充分である。3−/\コロ−−ブチンはそのままで
用いてもよいが、通常は前の反応で用いられたと同じ溶
媒、例えばアルカリ金属アルコキシドで還元した場合に
はアルコール系溶媒に溶解して用いられる。この場合も
脱酸素゛バブリングを行なわなければならないことはい
うまでもない、3−ハローl−ブチンの使用量は、ジチ
アペンジオンに対して2倍モルが理論量なので、これ以
上であれば特にM1限はないが、通常は2〜3倍モル程
度用いられる。ジチアペンジオンの還元生成物と、3−
ハロー1−ブチンとの反応生成物([B])は不安定で
あり、通常、単離が困難なのでそのまま次の反応に供さ
れる。即ち、この反応液にジチアペンジオンに対し2倍
モル以上のアルカリ金属アルコキシドのアルコール溶液
(ジチアベンジオンに対し2倍モル以上のアルカリ金属
のアルコール溶液)を加え、50℃乃至溶媒還流下で3
0分乃至数時間反応させる0反応後、反応液に水と、水
と相溶性のない有機溶剤中和した後、有機層を分取し、
要すればカラムクマドグラフィー等により精製すれば[
C]が得られる。次いで、これを例えば、ベンゼン、ト
ルエン等の溶媒中5例えばp−)ルエンスルホン酸の如
き弱酸で数十分乃至数時間加熱処理(例えば80〜80
℃)とすることにより異性化させれば目的とす6BDM
VDT−TTFが得らtする。 こh4要すれば、再結
晶(例えばアセトニトリル等による)、カラムグロマト
グラフイー等通常用いられる精製手段により適宜精製す
れば、より高品質のBDMVDT−TTFが得うレル。
Reduction product [The reaction between AI and 3-halo-1-butyne is an exothermic reaction, and there is no need for particular heating, and if necessary, it is carried out under cooling, usually at a temperature below 40°C. The reaction time varies depending on the reaction temperature, but 30 minutes to several hours is usually sufficient. 3-/\Colo--butyne may be used as it is, but it is usually used after being dissolved in the same solvent used in the previous reaction, for example, in the case of reduction with an alkali metal alkoxide, in an alcoholic solvent. Needless to say, deoxygenation (bubbling) must be carried out in this case as well.The theoretical amount of 3-halo-l-butyne to be used is twice the mole of dithiapenedione, so if it is more than this, it must be used especially at the M1 limit. However, it is usually used in an amount of about 2 to 3 times the mole. The reduction product of dithiapendione and 3-
The reaction product ([B]) with halo-1-butyne is unstable and usually difficult to isolate, so it is directly subjected to the next reaction. That is, an alcoholic solution of an alkali metal alkoxide in an amount of at least 2 times the mole relative to the dithiapendione (an alcoholic solution of an alkali metal alkoxide in an amount equal to or more than 2 times the mole relative to the dithiabendione) was added to this reaction solution, and the mixture was heated at 50°C or under reflux of the solvent for 30 minutes.
After 0 minutes to several hours of reaction, the reaction solution is neutralized with water and an organic solvent that is incompatible with water, and the organic layer is separated.
If necessary, it can be purified by column chromatography etc. [
C] is obtained. Next, this is heated in a weak acid such as p-)luenesulfonic acid in a solvent such as benzene or toluene for several tens of minutes to several hours (e.g. 80 to 80
℃) to isomerize the target 6BDM.
VDT-TTF is obtained. If necessary, higher quality BDMVDT-TTF can be obtained by appropriately purifying it by a commonly used purification means such as recrystallization (for example, with acetonitrile) or column chromatography.

本発明の製造法に於て、出発原料として用いられるジチ
アベニ/ジオンは、例えば、J、 Am、 Che■。
In the production method of the present invention, the dithiabeni/dione used as a starting material is, for example, J, Am, Che■.

Sac、、 99.5521 (1977)に記載の方
法に従い、イソブロビルギサントゲン酸塩とジグロル酢
酸メチルとをアセトン溶媒中で反応させ、得られた2、
2−ビス (0−イソプロピルジチオカルボニル)アセ
テートを濃硫酸で処理し、次いで氷水で処理ら、これを
同文献の方法に従って、脱水ベンゼン中、還流下に亜リ
ン酸トリアルキルと反応させれば容易にこれを得ること
ができる。
According to the method described in Sac.
2-Bis(0-isopropyldithiocarbonyl)acetate can be easily treated with concentrated sulfuric acid, then treated with ice water, and then reacted with trialkyl phosphite under reflux in dehydrated benzene according to the method of the same document. You can get this.

また、本発明で用いる3−ハロー1−ブチンは1例えば
、J、 −Am、 Cbeya、 Soc、、85.5
2 (1983)に記載の方法に準じて、3−ブチン−
2−オールと三ハロゲン化リンとを脱水ピリジン溶媒中
で反及びこれらの異性体の混合物が得られる。この混合
物もまたBDMVDT−TTFと同様の用途が充分期待
できる。
Further, the 3-halo-1-butyne used in the present invention is 1, for example, J, -Am, Cbeya, Soc, 85.5
2 (1983), 3-butyne-
The 2-ol and the phosphorus trihalide are dehydrated in pyridine solvent and a mixture of these isomers is obtained. This mixture is also fully expected to be used in the same way as BDMVDT-TTF.

以下に、参考例及び実施例を挙げるが5本発明はこれら
参考例、実施例により何ら制約を受けるものではない。
Reference Examples and Examples are listed below, but the present invention is not limited in any way by these Reference Examples and Examples.

〔実施例〕〔Example〕

参考例1.チアペンジオンノ合成 イソプロピルキサントゲン酸ソーダ25gのアセトン溶
液300−にジクロル酢醜メチル11.3 gを室温で
撹拌下体々に滴下し1滴下後更に2時間撹拌した。反応
液を濾過して食塩を除いた後アセトンを留去し、これに
n−ヘキサンを加えて析出した食塩を更に濾過して除き
、n−へキサンを留去してオイルを得た。別の容器に4
00−の濃硫酸を入れて0℃に冷却し、これに撹拌下ジ
エチルエーテル14dを徐々に加えた。これに先のオイ
ルを0〜5°Cで滴下し、滴下後18℃になるまで撹拌
を続けた。この反応液を約1kgの氷に少量ずつ加え1
表面に浮いてきた白色の固体をグラスフィルターで吸引
か過した。これを水で1回、50dの水冷エチルエーテ
ルで2回洗浄し、減圧乾燥後クロロホルムで再結晶して
白色針状結晶7.6gを得た。収率46%。
Reference example 1. Thiapendiono Synthesis 11.3 g of methyl dichloroacetate was added dropwise to a solution of 25 g of sodium isopropylxanthate in 300 g of acetone at room temperature with stirring, and after one drop was added, the mixture was further stirred for 2 hours. After filtering the reaction solution to remove the common salt, acetone was distilled off, n-hexane was added thereto, the precipitated common salt was further filtered and removed, and n-hexane was distilled off to obtain an oil. 4 in another container
00- concentrated sulfuric acid was added thereto and cooled to 0°C, and diethyl ether 14d was gradually added thereto with stirring. The above oil was added dropwise to this at 0 to 5°C, and stirring was continued until the temperature reached 18°C after the dropwise addition. Add this reaction solution little by little to about 1 kg of ice.
The white solid that floated to the surface was suctioned or filtered through a glass filter. This was washed once with water and twice with 50 d of water-cooled ethyl ether, dried under reduced pressure, and recrystallized from chloroform to obtain 7.6 g of white needle crystals. Yield 46%.

参考例2.ジチアベンジオンの合成 窒素気流下、脱水ベンゼン 20−に、参考例1、で得
たチアベンジオン1.7gを加え、撹拌還流下、これに
亜リン酸トリメチル8.2+slを滴下し1滴下@2時
間還流撹拌を行なった0反応終了後、生じた沈澱を枦取
し、熱ベンゼンで数回洗浄した後、減圧乾燥してジチア
ペンジオンの淡緑色粉末 1.48gを得た。収率93
%。
Reference example 2. Synthesis of dithiabendione 1.7 g of the thiabendione obtained in Reference Example 1 was added to dehydrated benzene 20- in a nitrogen atmosphere, and 8.2+ sl of trimethyl phosphite was added dropwise to this under stirring and reflux. 1 drop @ reflux stirring for 2 hours. After the completion of the reaction, the resulting precipitate was collected, washed several times with hot benzene, and then dried under reduced pressure to obtain 1.48 g of a pale green powder of dithiapendione. Yield 93
%.

参考例3.3−ブロモー1−ブチンの合成乾燥窒素雰囲
気下、三臭化リン6.31 gに脱水ピリジン 0.0
078m/を一15℃で加え、これに、撹拌下3−ブチ
ンー2−オール 4.44gと脱水ピリジン 0.23
−の混合液を一15℃で3時間を要して滴下した0滴下
後、−15℃で更に2時間撹拌した後、反応液を氷水中
に注入し、生じたオイル状の沈澱物を200wtのジエ
チルエーテルで抽出した。
Reference Example 3. Synthesis of 3-bromo-1-butyne Under a dry nitrogen atmosphere, 6.31 g of phosphorus tribromide was mixed with 0.0 g of dehydrated pyridine.
078 m/g was added at -15°C, and to this was added 4.44 g of 3-butyn-2-ol and 0.23 g of dehydrated pyridine under stirring.
The mixture of - was added dropwise over a period of 3 hours at -15°C. After stirring for another 2 hours at -15°C, the reaction solution was poured into ice water, and the resulting oily precipitate was collected at 200 wt. Extracted with diethyl ether.

エーテル層を水で2回、重曹水で2回、更に水で2回洗
浄した後、塩化カルシウムで乾燥し、二一チルを留去し
て3−ブロモー1−ブチンの無色透明液体 3.5gを
得た。収率41.4%。
The ether layer was washed twice with water, twice with aqueous sodium bicarbonate, and then twice with water, dried over calcium chloride, and 21-tyl was distilled off to give 3.5 g of a colorless transparent liquid of 3-bromo-1-butyne. I got it. Yield 41.4%.

実施例1゜ 反応は全て脱酸素乾燥窒素雰囲気下に行なった。Example 1゜ All reactions were conducted under a deoxygenated dry nitrogen atmosphere.

参考例2.で得たジチアベンジオン 144mg(0,
374!11101)に、金属ナトリウム35mg (
1,52mmol)を加えた脱水エタノール溶液 10
dを脱酸素バブリングした後滴下注入し、撹拌下、2時
間還流した。反応後室温にもどし、これに参考例3で得
た3−ブロモ−1−ブチン 100厘g  (0,75
2mmol)を脱水エタノール 5mlで希釈し、脱酸
素バブリングした後滴下した6滴下後、室温で1時間撹
拌した後、これに更に、金属ナトリウム 18mgを加
えた脱水エタノール溶液 5■lを脱酸素バブリングし
た後湾下し、1時間還流撹拌を行なった。これを再度室
温にもどし、水100−とジエチルエーテル200rI
lを加えた後塩酸で中和した。
Reference example 2. Dithiabendione 144 mg (0,
374!11101), 35 mg of metallic sodium (
Dehydrated ethanol solution containing 1,52 mmol) 10
d was added dropwise after deoxidizing bubbling, and the mixture was refluxed for 2 hours with stirring. After the reaction, the temperature was returned to room temperature, and 100 g of 3-bromo-1-butyne obtained in Reference Example 3 (0,75
2 mmol) was diluted with 5 ml of dehydrated ethanol and added dropwise after deoxidizing bubbling.After adding 6 drops, stirring at room temperature for 1 hour, 5 ml of dehydrated ethanol solution containing 18 mg of sodium metal was further deoxidized and bubbling was carried out. The mixture was lowered and stirred under reflux for 1 hour. Return this to room temperature again, and add 100ml of water and 200ml of diethyl ether.
1 was added, and the mixture was neutralized with hydrochloric acid.

エーテル層を分取し、硫酸マグネシウムで乾燥後エーテ
ルを留去し、得られた生成物をカラムクロマトグラフィ
ー[充填剤 ワコーゲルC−200(和光純薬工業株製
)、流出液 n−ヘキサン:クロロ*)Lム= 4 :
 1]で精製した。これをベンゼンに溶解し、4倍モル
のp−1ルエンスルホン酸を加えて2時間還流反応させ
た0反応液を室温に戻し、水100111で2回水洗し
た後、ベンゼン層を芒硝で乾燥し、然る後ベンゼンを留
去して粗BDMVDT−TTFII町を得た。これをカ
ラムクロマトグラフィー[充填剤 フコ−ゲルC−20
0,流出液 n−ヘキザン:クロロホルム=4:l]で
精製し、゛精BDMVDT−TTFの淡黄包晶17りを
得た。収$10.4%、 m、p、 240℃rags
  :  438m” NMR(CS2):  2.00 δ I R(am−’)  : y  2980.2920
.11300.1440゜1370.870,785゜ 元素分析値 計算値($): C38,50,H2,77、S  5
8.73実測値($): C38,18,H2,73,
S  59.10実施例2゜ 実施例1.に於て、3−プロモーl−ブチンlQQmy
を用いる代りに、3−クロロ−1−ブチン70 mlを
用いて、実施例1.と同様に反応、処理し、実施例1.
と同様の結果が得られた。
The ether layer was separated, dried over magnesium sulfate, the ether was distilled off, and the resulting product was subjected to column chromatography [filling material: Wakogel C-200 (manufactured by Wako Pure Chemical Industries, Ltd.), effluent: n-hexane: chloro]. *) Lm = 4:
1]. This was dissolved in benzene, 4 times the mole of p-1 toluenesulfonic acid was added, and the reaction mixture was refluxed for 2 hours. The reaction solution was returned to room temperature, washed twice with 100111 water, and the benzene layer was dried with sodium sulfate. Then, benzene was distilled off to obtain crude BDMVDT-TTFII. This was subjected to column chromatography [filling material Fuco-gel C-20].
0, effluent n-hexane:chloroform=4:l] to obtain 17 pale yellow peritectics of purified BDMVDT-TTF. Yield $10.4%, m, p, 240℃ rags
: 438m" NMR (CS2): 2.00 δ I R(am-') : y 2980.2920
.. 11300.1440° 1370.870,785° Elemental analysis value calculation value ($): C38,50, H2,77, S 5
8.73 Actual value ($): C38,18, H2,73,
S 59.10 Example 2゜Example 1. In , 3-promo l-butyne lQQmy
Example 1. instead of using 70 ml of 3-chloro-1-butyne. The reaction and treatment were carried out in the same manner as in Example 1.
Similar results were obtained.

実施例3゜ 実施例1.をスケールアップし、ジチアベンジオン 2
.88gを用いて、実施例1と同様に反応、処理L4B
DMVDT−TTF  O,38gを得た。
Example 3゜Example 1. scaled up and dithiabenedione 2
.. Using 88g, react and treat L4B in the same manner as in Example 1.
38 g of DMVDT-TTF O was obtained.

収率11%、尚、m、p、、 NMR,11/3.I 
Rは実施例1で得られたものと全く同じであった。
Yield 11%, m, p, NMR, 11/3. I
R was exactly the same as that obtained in Example 1.

また、同じスケールで更に2回再現実験を行なったが、
全く同様の結果が得られ、再現性が高いことを示した。
In addition, the experiment was repeated two more times on the same scale, but
Exactly the same results were obtained, indicating high reproducibility.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は有機超電導体のドナー分子と
して極めて有望なビス(ジメチルビニレンジチオ)−テ
トラチアフルバレンの新規で。
As described above, the present invention is directed to novel bis(dimethylvinylene dithio)-tetrathiafulvalene, which is extremely promising as a donor molecule for organic superconductors.

且つ従来法よりも収率が高く再現性の良い製造法を提供
するものである点に於て顕著な効果を奏するものであり
、斯業に貢献するところ矢なる発明である。
Moreover, the present invention has a remarkable effect in that it provides a manufacturing method with a higher yield and better reproducibility than conventional methods, and is an important invention that contributes to this industry.

Claims (1)

【特許請求の範囲】 式 ▲数式、化学式、表等があります▼ で示されるジチアペンジオンを、還元後、 式 ▲数式、化学式、表等があります▼ (但し、xはハロゲン原子を表わす。) で示される3−ハロ−1−ブチンと反応させ、次いで、 式(RO)^−M^+ (但し、Rは低級アルキル基を表わし、Mはアルカリ金
属を表わす。) で示されるアルカリ金属アルコキシドと反応させ、中和
後、これを更に弱酸で加熱処理することを特徴とする、 式 ▲数式、化学式、表等があります▼ で示されるビス(ジメチルビニレンジチオ)−テトラチ
アフルバレンの製造法。
[Claims] Dithiapenedione represented by the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ is reduced, and the dithiapendione is represented by the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, x represents a halogen atom.) and then with an alkali metal alkoxide represented by the formula (RO)^-M^+ (wherein, R represents a lower alkyl group and M represents an alkali metal). A method for producing bis(dimethylvinylene dithio)-tetrathiafulvalene represented by the following formula:
JP19534885A 1985-09-04 1985-09-04 Novel production of tetrathiafulvalene derivative Pending JPS6256495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19534885A JPS6256495A (en) 1985-09-04 1985-09-04 Novel production of tetrathiafulvalene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19534885A JPS6256495A (en) 1985-09-04 1985-09-04 Novel production of tetrathiafulvalene derivative

Publications (1)

Publication Number Publication Date
JPS6256495A true JPS6256495A (en) 1987-03-12

Family

ID=16339670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19534885A Pending JPS6256495A (en) 1985-09-04 1985-09-04 Novel production of tetrathiafulvalene derivative

Country Status (1)

Country Link
JP (1) JPS6256495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165877A (en) * 2010-02-09 2011-08-25 Ricoh Co Ltd Organic transistor using tetrathiafulvalene derivative and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165877A (en) * 2010-02-09 2011-08-25 Ricoh Co Ltd Organic transistor using tetrathiafulvalene derivative and method of manufacturing the same

Similar Documents

Publication Publication Date Title
DE2202689C3 (en) Sulphones and processes for their preparation
Ulbricht Syntheses with pyrimidine-lithium compounds
US4868322A (en) Process for preparing trithiocarbonic acid diesters
EP0478065B1 (en) New intermediate for making 3-oxo-4-aza-androst-1-ene 17beta-ketones
EP0044650B1 (en) Aldehyde adducts and a process for separating aldehydes involving them
JPS6256495A (en) Novel production of tetrathiafulvalene derivative
US4061660A (en) Process for synthesis of coenzyme Q compounds
US6476250B1 (en) Optically active fluorinated binaphthol derivative
White Complex Salts of Monosubstituted Amides with the Hydrohalic Acids and the Halogens
US4450274A (en) Preparation of ethambutol-diisoniazide methane sulfonic acid salt
US4691062A (en) Process for the production of 4-chloro-butanals
JPS6054396A (en) Novel manufacture of hydrocarbon
JP2513222B2 (en) Novel pyrimidine derivative
JPS6226260A (en) 7,7,8,8-tetracyanoquinodimethan-2,5-ylene-(3-propionic acid) and production thereof
KR820001386B1 (en) Process for preparation of 5-methyl-4(2-aminoethyl) thio ethyl imidazol
KR860001312B1 (en) Process for preparing malonic acid derivatives
CA1049035A (en) Process for the preparation of triesters and products thus obtained
EP0612760B1 (en) Method for purification of estramustin phosphate or salt thereof
JPS61112056A (en) Imidazole derivative and production thereof
Klemm et al. Synthesis and tautomerism of ethyl 2‐(2‐benzothiazolyl)‐2‐(6‐purinyl) acetate and related compounds
KR830002203B1 (en) Method for preparing isopropyl 4, 10-dihydro-10-oxothieno [3, 2-c] [1] benzoxepin-8-acetate
JPS5919535B2 (en) Method for producing r-ionone and its derivatives
KR900007370B1 (en) Process for the preparation of 2,4-dibromo-5-fluorobenroicacid
KR910001236B1 (en) Process for the preparation of 2-(4-amino phenyl0-2-methyl propyl alcohol
GB2122185A (en) Process for the preparation of alkyl-3-oxotetrahydrothiophene- carboxylates