JPS6256441A - Production of hydrophilic group-containing aromatic compound substituted with deuterium - Google Patents

Production of hydrophilic group-containing aromatic compound substituted with deuterium

Info

Publication number
JPS6256441A
JPS6256441A JP19723285A JP19723285A JPS6256441A JP S6256441 A JPS6256441 A JP S6256441A JP 19723285 A JP19723285 A JP 19723285A JP 19723285 A JP19723285 A JP 19723285A JP S6256441 A JPS6256441 A JP S6256441A
Authority
JP
Japan
Prior art keywords
deuterium
aromatic compound
hydrophilic group
group
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19723285A
Other languages
Japanese (ja)
Inventor
Masashi Tashiro
田代 昌士
Yuichi Aoki
裕一 青木
Akio Takigawa
滝川 章雄
Koichi Maeda
浩一 前田
Ikuo Tago
田子 育良
Motoaki Yoshida
元昭 吉田
Shoji Mase
間瀬 昇次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19723285A priority Critical patent/JPS6256441A/en
Publication of JPS6256441A publication Critical patent/JPS6256441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound having excellent characteristics such as the improvement of the effect of medicines and agricultural chemicals, from an inexpensive raw material at a low cost, by contacting an aromatic compound having hydrophilic group with a basic heavy water solution in the presence of a catalyst containing plural different metals. CONSTITUTION:The objective compound can be produced economically by contacting (A) an aromatic compound having one or more hydrophilic groups preferably bonded directly to the aromatic ring and especially selected from hydroxyl group, carboxyl group and amino group, especially a phenol derivative with (B) a basic heavy water solution in the presence of (C) a catalyst containing a plurality of different metal atoms, preferably Raney alloy. The process enables the production of the titled compound from an inexpensive raw material such as phenol, at a low cost, without using expensive raw material such as deuterated benzene. Consequently, the weather-resistance of phenolic resin, PET, polycarbonate, etc., can be achieved at a low cost and the modified polymer can be used as a material of optical fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重水素で置換された含親水基芳香族化合物の製
造方法に関し、特にジューテロ化フェノール類の製造に
適した方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a deuterium-substituted hydrophilic group-containing aromatic compound, and particularly to a method suitable for producing deuterated phenols.

〔従来の技術〕[Conventional technology]

一般に重水素で置換された有機化合物は、水素基に比べ
て重水素基がとれにくいことにより多くの優れた特性を
持ち、医薬・農薬の効力の増大やフェノール樹脂、PE
TSt:リカーボネート等の合成樹脂の耐候性の向上、
光ファイバーへの応用など非常に広汎な分野において有
用性が注目されている。重水素で置換された有機化合物
を合成する主な方法としては、 ■ 原料化合物に重水素置換されたものを用いる ■ 不飽和基に重水素を付加させる ■ ハロゲン原子、グリニヤール試薬、有機金属などを
重水素置換する ■ 重水素標識カルボキシル基を脱炭酸する■ 重水ま
たは重水素気体と接触させてH−D変換する方法がある
In general, organic compounds substituted with deuterium have many excellent properties due to the fact that the deuterium group is difficult to remove compared to hydrogen groups, and they have many excellent properties such as increased efficacy of medicines and agricultural chemicals, and phenolic resins and PE.
TSt: Improving the weather resistance of synthetic resins such as recarbonate,
It is attracting attention for its usefulness in a wide range of fields such as optical fiber applications. The main methods for synthesizing deuterium-substituted organic compounds are: ■ Using deuterium-substituted starting compounds ■ Adding deuterium to unsaturated groups ■ Using halogen atoms, Grignard reagents, organic metals, etc. There are two methods: (1) replacing deuterium with decarboxylation (2) decarboxylating the deuterium-labeled carboxyl group; and (2) decarboxylating the deuterium-labeled carboxyl group. There are methods of HD conversion by contacting with heavy water or deuterium gas.

親水基を有した芳香族化合物に関しても上記いずれの方
法も場合に応じて使用し得るが、水素原子のほとんど全
てを重水素原子で置換する場合には■〜■は適当な方法
とはいえない。なぜならば、これら方法は全て特定の官
能基を重水素で置換する方法であって、特定化合物の全
ての水素原子を重水素置換する場合には上記官能基を目
標化合物の全ての水素原子の位置に作る必要があり実用
上不可能に近い。
For aromatic compounds with hydrophilic groups, any of the above methods can be used depending on the case, but when almost all hydrogen atoms are replaced with deuterium atoms, methods ① to ① are not suitable. . This is because all of these methods involve substituting a specific functional group with deuterium, and when replacing all hydrogen atoms in a specific compound with deuterium, the above-mentioned functional group is substituted at all hydrogen atom positions in the target compound. It would be practically impossible to do so.

従って親木基な有する芳香族化合物の重水素置換体を得
るには前述の■および■の方法が適しているといえる。
Therefore, it can be said that the above-mentioned methods (1) and (2) are suitable for obtaining a deuterium-substituted aromatic compound having a parent tree group.

しかしながら前記■の方法では原料となる化合物が既に
重水素置換されていなくてはならないし、合成の過程に
於いて重水素置換率が低下したり、又はLiAj?D4
などの高価な試薬を用いねばならなかったりするので、
結局現在のところ対象化合物を重水または重水素気体と
接触させてH−D変換を行なう方法が最適といえる。
However, in the method (2) above, the compound serving as the raw material must already be substituted with deuterium, and the deuterium substitution rate may decrease during the synthesis process, or LiAj? D4
Because it is necessary to use expensive reagents such as
Ultimately, the best method at present is to bring the target compound into contact with heavy water or deuterium gas to perform HD conversion.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

上記の接触交換法では目標化合物の重水素化率は非常に
低く、例えばざO%程度の交換比率を得るだけでも何度
も操作を繰り返さねばならず効率が極めて悪いという重
大な問題点があった。
In the above catalytic exchange method, the deuteration rate of the target compound is very low, and there is a serious problem in that the operation must be repeated many times just to obtain an exchange rate of about 0%, which is extremely inefficient. Ta.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するために、本発明では親水基
を有する芳香族化合物に、互いに異なる複数種の金属の
複合体から成る触媒の存在下で塩基性重水溶液を接触さ
せる。
In order to solve the above-mentioned conventional problems, in the present invention, an aromatic compound having a hydrophilic group is brought into contact with a basic heavy aqueous solution in the presence of a catalyst consisting of a composite of a plurality of different metals.

本発明で使用する親水基を有する芳香族化合物としては
、ベンゼン系、複素環糸など種々挙げられるが、本発明
方法の効果・が最も大きい化合物は環に直接親木基の結
合したベンゼン系の化合物、すなわちフェノール、ヒド
ロキノン、ピロガロール、ナフチルアルコール、ナフタ
レンカルボン酸、安息香酸、サリチル酸、7タル酸、ト
リメリド酸、アニリン、ジアミノベンゼンなどであり、
特にフェノール、安息香酸、サリチル酸、7タル酵など
でありとりわけフェノールである。
There are various aromatic compounds having a hydrophilic group used in the present invention, such as benzene-based and heterocyclic threads, but the compound with the greatest effect in the method of the present invention is a benzene-based compound in which a parent group is directly bonded to the ring. compounds, namely phenol, hydroquinone, pyrogallol, naphthyl alcohol, naphthalene carboxylic acid, benzoic acid, salicylic acid, heptalacid, trimellidic acid, aniline, diaminobenzene, etc.
In particular, phenol, benzoic acid, salicylic acid, heptal fermentation, and especially phenol.

塩基性重水溶液としては、例えばD20に塩基性物質を
添加したものが好ましく用いられ、塩基性物質には例え
ばNa0D 、 KOD 、 Li0D 、 Na20
03 、 NaDCO3。
As the basic heavy aqueous solution, for example, one obtained by adding a basic substance to D20 is preferably used, and the basic substance includes, for example, Na0D, KOD, Li0D, Na20.
03, NaDCO3.

B aCO3+ ND 3などが挙げられるが中でもN
a0Dが好適である。
Examples include B aCO3+ ND 3, among others N
a0D is preferred.

上記塩基性重水溶液の濃度は実用上の取扱いの容易性を
考慮すると1%〜50%、より好ましくは3〜23%の
範囲が望ましい。
The concentration of the basic heavy aqueous solution is desirably in the range of 1% to 50%, more preferably 3 to 23%, considering ease of practical handling.

本発明で使用する互いに異なる複W1種の金属を含む触
媒としてはラネー合金やLiAJD4などが使用できる
が、安価に入手できるラネー合金が好適である。ラネー
合金は一般にイオン化傾向のi4なる振数の金属の合金
であり、Ni−Al+Cu−AA!のようなラネー合金
が本発明で使用できる。
Raney alloys, LiAJD4, and the like can be used as catalysts containing metals of two different W types used in the present invention, but Raney alloys, which are available at low cost, are preferred. Raney alloys are generally alloys of metals with a frequency of i4 that tend to ionize, and include Ni-Al+Cu-AA! Raney alloys such as Raney alloys can be used in the present invention.

また反応を促進するために加熱、超音波照射等周知の反
応促進手段を併用してもよい。
Further, in order to promote the reaction, well-known reaction promoting means such as heating and ultrasonic irradiation may be used in combination.

〔作  用〕[For production]

本発明によれば、触媒中に含まれる異種金属間の塩基性
水溶液に対する溶解性の差異により溶解性が相対的に高
い方の金属例えばN1−AA’ 、 Cu−AJ系ラネ
ー合金の場合はAlが溶けて溶解性の低い方の金属が多
孔質体として残る。
According to the present invention, due to the difference in solubility in a basic aqueous solution between different metals contained in the catalyst, the metal with relatively higher solubility, for example, N1-AA', in the case of Cu-AJ Raney alloy, Al is melted and the less soluble metal remains as a porous body.

この多孔質体の@細な空孔表面で水が分解されて活性化
し、親木基を有する芳香族化合物のH−D変換が生じ易
くなり高い同位体交換率が得られる。
Water is decomposed and activated on the surface of the fine pores of this porous body, and the aromatic compound having a parent wood group is more likely to undergo HD conversion, resulting in a high isotope exchange rate.

〔実 施 例〕〔Example〕

以下に本発明の具体、的数値例を示す。 Specific numerical examples of the present invention are shown below.

7z/−ル/、ざf!7.2.OXlo−2moleを
70%1JaOD−D20溶液30m1に溶かし、室温
のもとでラネーNi−Al!合金/、09を5分間で加
えた。
7z/-ru/, zaf! 7.2. OXlo-2mole was dissolved in 30ml of 70% 1JaOD-D20 solution and Raney Ni-Al! Alloy/,09 was added for 5 minutes.

100″Cで3時間反応後Niを濾過除去する。濾液は
濃塩酸で酸性(PH−約l)とし、ジクロロメタン(ざ
omlXJ)で抽出し水洗いする。この抽出液は減圧下
で濃縮し無色液体1.!;9を得た。この操作な2回行
なった結果、重水素で置換されたフェノ−ルの収量は八
3りであった。
After reacting at 100"C for 3 hours, Ni is removed by filtration. The filtrate is made acidic (PH - approx. 1) with concentrated hydrochloric acid, extracted with dichloromethane (XomlXJ) and washed with water. This extract is concentrated under reduced pressure to form a colorless liquid. 1.!;9 was obtained. As a result of performing this operation twice, the yield of deuterium-substituted phenol was 83.

得られた重水素置換フェノールの同位体分布を核磁気共
鳴法で測定したところ、a3−/、7 、 d 4−/
、2.J 、 d5−1t、0であった。
When the isotope distribution of the obtained deuterium-substituted phenol was measured by nuclear magnetic resonance method, it was found that a3-/, 7, d4-/
, 2. J, d5-1t, 0.

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来は重ベンゼンから製造する必要があ
って高価であった重フェノールの[iコストが低減され
、たとえばフェノールから出発する各種の化学製品の重
水素化合物の価格も低減する。
According to the present invention, the cost of heavy phenol, which conventionally had to be produced from heavy benzene and was expensive, is reduced, and for example, the cost of deuterium compounds for various chemical products starting from phenol is also reduced.

これによって、医薬・農薬の効力の増大やフェノール樹
脂、PET 、ポリカーボネートなどの合成樹脂の耐候
性の向上が安価なコストで実現できる。
This makes it possible to increase the efficacy of medicines and agricultural chemicals and improve the weather resistance of synthetic resins such as phenol resins, PET, and polycarbonate at low cost.

また光77゛イバーへの応用も可能となる。It also becomes possible to apply it to optical 77-wire networks.

Claims (5)

【特許請求の範囲】[Claims] (1)親水基を有する芳香族化合物に、互いに異なる複
数種の金属を含む触媒の存在下で塩基性重水溶液を接触
させる工程を含むことを特徴とする重水素で置換された
含親水基芳香族化合物の製造方法。
(1) Deuterium-substituted hydrophilic group-containing aromatic compound characterized by a step of contacting an aromatic compound having a hydrophilic group with a basic heavy aqueous solution in the presence of a catalyst containing multiple different metals. Method for producing group compounds.
(2)特許請求の範囲第1項において、前記触媒はラネ
ー合金である重水素で置換された含親水基芳香族化合物
の製造方法。
(2) A method for producing a hydrophilic group-containing aromatic compound substituted with deuterium, wherein the catalyst is a Raney alloy.
(3)特許請求の範囲第1項において、前記親水基を有
する芳香族化合物は、親水基が芳香族環に直接結合した
ものである重水素で置換された含親水基芳香族化合物の
製造方法。
(3) In claim 1, the aromatic compound having a hydrophilic group is a method for producing a deuterium-substituted hydrophilic group-containing aromatic compound in which the hydrophilic group is directly bonded to an aromatic ring. .
(4)特許請求の範囲第3項において、前記芳香族化合
物がフェノール誘導体である重水素で置換された含親水
基芳香族化合物の製造方法
(4) In claim 3, the method for producing a hydrophilic group-containing aromatic compound in which the aromatic compound is substituted with deuterium, which is a phenol derivative.
(5)特許請求の範囲第1項において、前記親水基が水
酸基、カルボキシル基、アミノ基より選ばれた1種また
は2種以上である重水素で置換された含親水基芳香族化
合物の製造方法。
(5) A method for producing a hydrophilic group-containing aromatic compound according to claim 1, wherein the hydrophilic group is substituted with deuterium and is one or more selected from hydroxyl group, carboxyl group, and amino group. .
JP19723285A 1985-09-06 1985-09-06 Production of hydrophilic group-containing aromatic compound substituted with deuterium Pending JPS6256441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19723285A JPS6256441A (en) 1985-09-06 1985-09-06 Production of hydrophilic group-containing aromatic compound substituted with deuterium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19723285A JPS6256441A (en) 1985-09-06 1985-09-06 Production of hydrophilic group-containing aromatic compound substituted with deuterium

Publications (1)

Publication Number Publication Date
JPS6256441A true JPS6256441A (en) 1987-03-12

Family

ID=16371040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19723285A Pending JPS6256441A (en) 1985-09-06 1985-09-06 Production of hydrophilic group-containing aromatic compound substituted with deuterium

Country Status (1)

Country Link
JP (1) JPS6256441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344700A (en) * 1999-06-03 2000-12-12 Sumika Chemical Analysis Service Ltd Reference standard of nonyl phenol
JP2009269825A (en) * 2008-04-30 2009-11-19 Shinshu Univ Method for producing deuterated aromatic carboxylic acid
US8093422B2 (en) 2002-07-26 2012-01-10 Wako Pure Chemical Industries, Ltd. Method for deuteration of an aromatic ring
US9255070B2 (en) 2004-01-23 2016-02-09 Wako Pure Chemical Industries, Ltd. Method of deuteration using mixed catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344700A (en) * 1999-06-03 2000-12-12 Sumika Chemical Analysis Service Ltd Reference standard of nonyl phenol
US8093422B2 (en) 2002-07-26 2012-01-10 Wako Pure Chemical Industries, Ltd. Method for deuteration of an aromatic ring
US9255070B2 (en) 2004-01-23 2016-02-09 Wako Pure Chemical Industries, Ltd. Method of deuteration using mixed catalyst
JP2009269825A (en) * 2008-04-30 2009-11-19 Shinshu Univ Method for producing deuterated aromatic carboxylic acid

Similar Documents

Publication Publication Date Title
Vries et al. The family approach to the resolution of racemates
Kwon et al. One-pot synthesis of imines and secondary amines by Pd-catalyzed coupling of benzyl alcohols and primary amines
Kang et al. Asymmetric oxidative coupling of phenols and hydroxycarbazoles
Trost et al. Effect of ligand structure on the zinc-catalyzed Henry reaction. Asymmetric syntheses of (−)-denopamine and (−)-arbutamine
Leibovitch et al. An Investigation of the Yang Photocyclization Reaction in the Solid State: Asymmetric Induction Studies and Crystal Structure− Reactivity Relationships
Ohkuma et al. Asymmetric hydrogenation of amino ketones using chiral RuCl2 (diphophine)(1, 2-diamine) complexes
Cauble et al. Studies on the enantioselective catalysis of photochemically promoted transformations:“sensitizing receptors” as chiral catalysts
Leyva‐Pérez et al. Multisite organic–inorganic hybrid catalysts for the direct sustainable synthesis of GABAergic drugs
Akagawa et al. Asymmetric Epoxidation of α, β‐Unsaturated Aldehydes in Aqueous Media Catalyzed by Resin‐Supported Peptide‐Containing Unnatural Amino Acids
Rulli et al. Asymmetric organocatalytic aldol reaction in water: mechanistic insights and development of a semi-continuously operating process
CA2596233A1 (en) Method for producing deuterium gas and catalytic deuteration method using deuterium gas obtained thereby
Korneev Hydrocinnamic acids: application and strategy of synthesis
Knölker et al. Asymmetric Catalysis in the Complexation of Prochiral Dienes by the Tricarbonyliron Fragment: A Novel Methodology for the Enantioselective Synthesis of Planar Chiral Tricarbonyl (diene) iron Complexes
JPS6256441A (en) Production of hydrophilic group-containing aromatic compound substituted with deuterium
Harada et al. Merging Brønsted Acid and Hydrogen‐Bonding Catalysis: Metal‐Free Dearomatization of Phenols via ipso‐Friedel‐Crafts Alkylation to Produce Functionalized Spirolactams
Sun et al. Highly selective asymmetry transfer hydrogenation of prochiral acetophenone catalyzed by palladium–chitosan on silica
CN109746042B (en) Catalyst for synthesizing 3-methoxy methyl acrylate and solid-supported and using method
Djakovitch et al. First heterogeneously palladium catalysed α-arylation of diethyl malonate
CN109894082A (en) A kind of preparation method and application of the covalent organic frame composite material of nanometer of flower pattern
EP3524590B1 (en) Method for producing 1, 4-dicyanocyclohexane, 1, 4-bis(aminomethyl)cyclohexane and 1, 4-cyclohexanedicarboxylic acid
DE3870355D1 (en) METHOD FOR PRODUCING 2-METHYL-PENTANDIAMINE BY HYDROGENATING 2-METHYL-GLUTARONITRILE.
Guyon et al. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst
CN101012198A (en) Chiral and non-chiral diimidazolinylbenzene compounds and synthesis method
Blaser et al. Ethyl 2, 4-dioxo-4-phenylbutyrate: a versatile intermediate for the large-scale preparation of enantiomerically pure α-hydroxy and α-amino acid esters
Mousapour et al. First Asymmetric Synthesis of Passerini‐Type Condensation Products in Water Using Pregabalin: A Chiral Amino Acid for the Efficient Asymmetric Induction