JPS6256326B2 - - Google Patents

Info

Publication number
JPS6256326B2
JPS6256326B2 JP56089097A JP8909781A JPS6256326B2 JP S6256326 B2 JPS6256326 B2 JP S6256326B2 JP 56089097 A JP56089097 A JP 56089097A JP 8909781 A JP8909781 A JP 8909781A JP S6256326 B2 JPS6256326 B2 JP S6256326B2
Authority
JP
Japan
Prior art keywords
air
intake
cylinder
supercharging
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089097A
Other languages
Japanese (ja)
Other versions
JPS57203819A (en
Inventor
Yoshio Kizaki
Mitsuharu Nakahara
Hiroaki Sano
Juji Fukushima
Yoshitaka Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP56089097A priority Critical patent/JPS57203819A/en
Publication of JPS57203819A publication Critical patent/JPS57203819A/en
Publication of JPS6256326B2 publication Critical patent/JPS6256326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は、通常の吸気系路と過給機を有した過
給系路とを独立に設けてなる過給機付エンジンに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged engine in which a normal intake system path and a supercharging system path having a supercharger are independently provided.

従来から、この種エンジンとして、例えば、各
シリンダに通常の吸気ポートに加えて過給ポート
を設けておき、ピストンの降下に伴つて生じるシ
リンダ内の負圧を利用して前記吸気ポートから該
シリンダ内に混合気を供給するとともに、過給機
によつて加圧した空気または混合気を前記過給ポ
ートから前記シリンダ内に強制的に供給すること
によつて充填効率を高め出力の向上を図ることが
できるようにしたものが知られている。
Conventionally, in this type of engine, for example, each cylinder is provided with a supercharging port in addition to a normal intake port, and the negative pressure inside the cylinder that is generated as the piston descends is used to transfer air from the intake port to the cylinder. In addition to supplying air-fuel mixture into the cylinder, air or air-fuel mixture pressurized by a supercharger is forcibly fed into the cylinder from the supercharging port to improve charging efficiency and output. What has been made possible is known.

しかして、この種過給方式を採用したエンジン
は、吸入空気量の全量を過給機でシリンダ内に送
り込む必要がないので、過給機を小容量なものに
することができるという利点があるが、その反
面、バルブタイミングの設定等に難点が多くエン
ジンの全回転範囲にわたつて十分な性能を発揮さ
せるのが難しいという問題がある。
However, engines that adopt this type of supercharging system have the advantage of being able to use a small-capacity supercharger, since it is not necessary to send the entire amount of intake air into the cylinder using a supercharger. However, on the other hand, there are many difficulties in setting the valve timing, etc., and it is difficult to achieve sufficient performance over the entire rotation range of the engine.

すなわち、このような構成のものでは吸気ポー
トに設けた吸気バルブの開成期間と過給ポートに
設けた過給バルブの開成期間とのオーバラツプを
大きく設定し吸気バルブが十分に開いている際に
過給バルブをも開いて過給を行なうようにする
と、シリンダ内の圧力が吸気ポート内の圧力より
も高くなりシリンダ内に充填した空気または混合
気が吸気ポートへ逆流して過給効果が損われてし
まうという不都合が特に吸気慣性の小さい低速回
転域において発生し易い。そのため、現実には、
第1図に示すように吸気バルブaの開成期間と過
給バルブbの開成期間とのオーバラツプを零また
は極小の値に設定する必要があり、いきおい各バ
ルブa,bの作動期間をも短縮せざるを得ない。
ところが、このような状況の下で、十分な吸気通
路面積を確保できるように各バルブa,bのリフ
ト量を設定すると該バルブa,bの加速度が大き
くなるため、いわゆる弁のおどり等の異常なバル
ブ挙動を招き易い状態となり正常に運転できる回
転速度が低い値に制限されてしまうという不都合
がある。また、吸気バルブを早い時期に閉じるよ
うに設定すると吸気ポートからの吸入空気量が高
速回転域において極端に低下することになり過給
効果を減殺してしまうという問題がある。すなわ
ち、第2図に示すように、過給を行なわない通常
のエンジンにおいても、吸気バルブを十分な期間
開成させるようにしたもの(実線C)では全回転
域で体積効率が略一定しているのに対し、吸気バ
ルブを早期に閉じるようにしたもの(一点鎖線
d)では高速回転域で体積効率が極端に低下する
という傾向を示すが、この傾向はこの種過給機付
エンジンにおける吸気系路の吸気特性にもそのま
ま受け継がれているものであり、この体積効率の
低下現象によつて過給効果が減殺されるという問
題が生じるわけである。しかして、この問題は過
給ポートから供給する空気量を増加させることに
よつて一応は解消するが、そのようにするために
は過給圧を高めて過給バルブが開く短い期間中に
大量の空気をシリンダ内に送り込む必要があり、
過給機の高能力化が不可欠となるため、過給機の
小形化というこの種過給方式の本来の目的に反す
ることになる。
In other words, with this type of configuration, the overlap between the opening period of the intake valve provided at the intake port and the opening period of the supercharging valve provided at the supercharging port is set to be large, so that when the intake valve is fully open, If the supply valve is also opened to perform supercharging, the pressure inside the cylinder will become higher than the pressure in the intake port, and the air or mixture filled in the cylinder will flow back to the intake port, impairing the supercharging effect. This problem is particularly likely to occur in the low-speed rotation range where intake inertia is small. Therefore, in reality,
As shown in Figure 1, it is necessary to set the overlap between the opening period of intake valve a and the opening period of supercharging valve b to zero or a minimum value, and also to shorten the operating period of each valve a and b. I have no choice but to.
However, under these circumstances, if the lift amount of each valve a and b is set to ensure a sufficient intake passage area, the acceleration of the valves a and b will increase, resulting in abnormalities such as so-called valve dancing. There is a disadvantage that the valve behavior is likely to occur, and the rotational speed at which normal operation can be performed is limited to a low value. Furthermore, if the intake valve is set to close early, the amount of intake air from the intake port will be extremely reduced in the high speed rotation range, which will reduce the supercharging effect. In other words, as shown in Fig. 2, even in a normal engine that does not perform supercharging, the volumetric efficiency is approximately constant over the entire rotation range when the intake valve is kept open for a sufficient period of time (solid line C). On the other hand, when the intake valve is closed early (dotted-dash line d), the volumetric efficiency tends to decrease dramatically in the high-speed rotation range, but this tendency is similar to the intake system in this type of supercharged engine. This is inherited directly from the air intake characteristics of the engine, and the problem arises that the supercharging effect is diminished due to this phenomenon of reduction in volumetric efficiency. However, this problem can be temporarily solved by increasing the amount of air supplied from the supercharging port, but in order to do so, the supercharging pressure is increased and a large amount of air is required during the short period when the supercharging valve is open. It is necessary to send air into the cylinder,
Since it is essential to increase the capacity of the supercharger, this goes against the original purpose of this type of supercharging system, which is to downsize the supercharger.

そのため、近時、吸気ポートと過給ポートとを
独立に設けた構成のものにおいて、吸気バルブの
開成期間と過給バルブの開成期間とのオーバーラ
ツプを、低速回転域では小さくし、高速回転域で
は大きくすることができるようにしたものが開発
されている(特開昭55−137314号参照)。しかし
ながら、このものは、高速回転域では吸気慣性が
大きくなるという点に着目してその回転域で前記
オーバラツプを増大させるようにしたものである
から、その増大量にも自ずと限度があり前述した
諸問題を解消するには至つていない。また前記オ
ーバラツプを増減させるためにはバルブタイミン
グを変更するための構成が不可欠となるため動弁
機構が複雑になるという不都合もある。
Therefore, in recent years, in configurations in which the intake port and the supercharging port are provided independently, the overlap between the opening period of the intake valve and the opening period of the supercharging valve is reduced in the low speed range, and in the high speed range. A device that can be made larger has been developed (see JP-A-55-137314). However, since this system focuses on the fact that the intake inertia increases in the high-speed rotation range and increases the overlap in that rotation range, there is naturally a limit to the amount of increase, and the above-mentioned problems naturally occur. The problem has not yet been resolved. In addition, in order to increase or decrease the overlap, a configuration for changing the valve timing is essential, resulting in the disadvantage that the valve operating mechanism becomes complicated.

本発明は、このような事情に着目してなされた
もので、吸気ポートを含む吸気系路の途中にシリ
ンダ方向への混合気の流れのみを通過させる逆止
弁を介挿することによつて前述した不都合を一掃
し、小容量の過給機を用いても高速回転域に至る
まで十分な過給効果を発揮させることができるよ
うにした過給機付エンジンを提供しようとするも
のである。又、部分負荷域での空燃比の均一化を
はかることにより、機関全体の混合気の希薄化を
可能とし、燃料消費率の向上をもはかつたもので
ある。
The present invention has been made in view of these circumstances, and is achieved by inserting a check valve in the middle of the intake system path including the intake port, which allows only the flow of the air-fuel mixture toward the cylinder to pass through. The present invention aims to eliminate the above-mentioned disadvantages and provide a supercharged engine that can exert sufficient supercharging effect up to high speed rotation range even when using a small-capacity supercharger. . Furthermore, by making the air-fuel ratio uniform in the partial load range, it is possible to dilute the air-fuel mixture throughout the engine, thereby improving the fuel consumption rate.

以下、本発明の一実施例を第3図、第4図、第
5図を参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3, 4, and 5.

シリンダ1に対して吸気系路2と過給系路3と
を独立に設けている。吸気系路2は、ピストン4
の降下に伴つて生じるシリンダ1内の負圧を利用
して混合気を該シリンダ1内に供給するもので一
端が前記シリンダ1内に連通する吸気ポート5
と、この吸気ポート5の他端をエアクリーナ6に
連通させる吸気通路7とを有してなる。そして、
前記吸気ポート5の一端部には該吸気ポート5を
開閉する吸気バルブ8が設けてあるとともに、前
記吸気通路7の途中には気化器9が介挿されてい
る。一方、過給系路3は、過給機11によつて加
圧した空気を前記シリンダ1内に強制的に供給す
るもので、一端が前記シリンダ1内に開口する過
給ポート12と、この過給ポート12の他端を前
記エアクリーナ6に連通させる過給通路13とを
有してなる。そして、前記過給ポート12の一端
部には、該過給ポート12を開閉する過給バルブ
14が設けてあるとともに、前記過給通路13の
途中には、前記過給機11が介挿されている。な
お、過給機11は、排気圧によつて駆動するいわ
ゆる排気ターボチヤージヤであつてもよいし、あ
るいは、クランクシヤフトの回転力によつて駆動
するエアーポンプであつてもよい。また、前記過
給通路13の過給機11よりも下流部すなわち、
過給系路の集合部19よりも上流にスロツトルバ
ルブ15を介挿するとともに、該過給通路13の
過給機11介挿部にリリーフ弁16を有した帰環
通路17を並列に設けている。スロツトルバルブ
15は、前記気化器9のスロツトルバルブ10に
リンク機構等を介して連結されており、前記スロ
ツトルバルブ10が所定角度開いた時点から開き
始める(アイドリング運転時から部分負荷域では
全閉となる)ように設定されている。また、帰還
通路17は、前記スロツトルバルブ15が閉じて
いる際に前記過給機11の吐出口11aから吐出
される加圧空気を該過給機11の吸気口11b側
へ戻すためのもので、前記リリーフ弁16は、矢
印×方向の高圧空気の流れのみを通過させるよう
になつている。
An intake system passage 2 and a supercharging system passage 3 are provided independently for the cylinder 1. The intake system passage 2 is connected to the piston 4
An intake port 5 whose one end communicates with the inside of the cylinder 1 is used to supply the air-fuel mixture into the cylinder 1 by using the negative pressure inside the cylinder 1 that occurs as the air falls.
and an intake passage 7 that communicates the other end of the intake port 5 with an air cleaner 6. and,
An intake valve 8 for opening and closing the intake port 5 is provided at one end of the intake port 5, and a carburetor 9 is inserted in the middle of the intake passage 7. On the other hand, the supercharging line 3 forcibly supplies air pressurized by the supercharger 11 into the cylinder 1, and includes a supercharging port 12 whose one end opens into the cylinder 1, and a supercharging port 12 that opens into the cylinder 1 at one end. The supercharging passage 13 communicates the other end of the supercharging port 12 with the air cleaner 6. A supercharging valve 14 for opening and closing the supercharging port 12 is provided at one end of the supercharging port 12, and the supercharger 11 is inserted in the middle of the supercharging passage 13. ing. Note that the supercharger 11 may be a so-called exhaust turbocharger driven by exhaust pressure, or may be an air pump driven by the rotational force of a crankshaft. Further, the downstream part of the supercharging passage 13 from the supercharger 11, that is,
A throttle valve 15 is inserted upstream of the gathering part 19 of the supercharging system path, and a return passage 17 having a relief valve 16 is provided in parallel at the part of the supercharging passage 13 where the supercharger 11 is inserted. ing. The throttle valve 15 is connected to the throttle valve 10 of the carburetor 9 via a link mechanism or the like, and starts opening when the throttle valve 10 opens a predetermined angle (from idling to partial load range). (fully closed). Further, the return passage 17 is for returning pressurized air discharged from the discharge port 11a of the supercharger 11 to the intake port 11b side of the supercharger 11 when the throttle valve 15 is closed. The relief valve 16 is designed to allow only the flow of high-pressure air in the direction of the arrow x to pass therethrough.

このようなエンジンにおいて、前記吸気系路2
の各気筒への分岐通路部分、例えば、前記吸気ポ
ート5と吸気通路7との接合部に逆止弁18を介
挿している。逆止弁18は、いわゆるリード弁と
称される構成のもので、シリンダ方向、つまり矢
印Y方向への混合気の流れのみを通過させるよう
になつている。そして、バルブタイミングを第5
図に示すように設定している。すなわち、前記吸
気バルブ8の開閉時期およびリフト量は過給機を
有さない通常のエンジンのものと略同じ値に設定
されている。一方、過給バルブ14は、下死点
(BDC)前60゜〜90゜の範囲で開き始め、最大リ
フトは下死点付近となり、下死点後60゜〜90゜の
範囲で閉じるように駆動される。
In such an engine, the intake system path 2
A check valve 18 is inserted at a branch passage portion to each cylinder, for example, at a junction between the intake port 5 and the intake passage 7. The check valve 18 has a structure called a so-called reed valve, and is configured to allow the air-fuel mixture to flow only in the direction of the cylinder, that is, in the direction of arrow Y. Then, set the valve timing to 5th.
The settings are as shown in the figure. That is, the opening/closing timing and lift amount of the intake valve 8 are set to substantially the same values as those of a normal engine without a supercharger. On the other hand, the supercharging valve 14 begins to open in the range of 60° to 90° before bottom dead center (BDC), its maximum lift is near the bottom dead center, and it closes in the range of 60° to 90° after bottom dead center. Driven.

このような構成のものであれば、吸気系路2の
途中にシリンダ1方向への混合気の流れのみを通
過させる逆止弁18を介挿しているので、吸気バ
ルブ8の開成期間と過給バルブ14の開成期間と
のオーバラツプを大きく設定して吸気バルブ8が
十分に開いている際に過給を行なつてもシリンダ
1内の混合気が吸気系路2へ無制限に逆流するこ
とがない。そのため、前記各バルブ8,14の開
成期間を長くすることが可能となり、これら各バ
ルブ8,14のリフト量を十分大きく設定しても
弁の加速度が大きくなつて高速回転域において弁
のおどり等の不都合を招くということがない。し
かも、このようなものであれば吸気バルブ8を早
目に閉じる必要がなく、過給を行なわない通常の
エンジンと同様なタイミングで開閉させることが
できるので、高速回転域においても燃焼のベース
となる吸気系路2からの吸入空気量を十分に確保
することができる。すなわち、この実施例の場
合、実質的に有効な過給が始まる下死点前30゜〜
20゜までは、吸気バルブ8のリフトも大きく十分
な吸入効果を有しているため、第2図の実線Cと
同様な特性を示すことになり、高速回転域におい
て吸気系路からの吸入空気の体積効率が急激に低
下するということがない。したがつて、過給系路
3からシリンダ1内に送り込む空気量が比較的少
なくても十分な過給効果を得ることができる。具
体的に説明すれば、この実施例の場合、第6図に
示すように、吸気系路2からの吸入空気量(破線
e)は、下死点前30゜〜20゜以後で過給圧の影響
を受けて過給を行なわない場合の吸入空気量(一
点鎖線f)を若干下まわることになるものの、前
述のように吸気バルブを早期に閉じるように設定
した場合のような高速回転域における吸入空気量
の大幅な低下現象がないので、どのような回転域
においても比較的小量の加圧空気を過給系路3か
ら供給することによつてシリンダ1内への全吸入
空気量(実線g)が過給を行なわない場合の吸入
空気量(一点鎖線f)を上まわることになる。そ
のため、小形の過給機を用いても高速回転域に至
るまで十分な過給効果を発揮させることができる
という利点がある。また、このエンジンは逆止弁
18を吸気系路2の各気筒への分岐通路部分に介
挿するというきわめて簡単な構成により前述した
効果を得ることができるものであり、バルブタイ
ミングを可変にする場合のように動弁機構が複雑
になるというような不都合もないので実施が容易
である。
With such a configuration, the check valve 18 is inserted in the middle of the intake system passage 2 to allow only the flow of air-fuel mixture toward the cylinder 1 to pass, so that the opening period of the intake valve 8 and the supercharging time can be controlled. Even if supercharging is performed when the intake valve 8 is sufficiently open by setting a large overlap with the opening period of the valve 14, the air-fuel mixture in the cylinder 1 will not flow back into the intake system path 2 without limit. . Therefore, it is possible to lengthen the opening period of each of the valves 8 and 14, and even if the lift amount of each of these valves 8 and 14 is set sufficiently large, the acceleration of the valve increases and the valve dances in the high speed rotation range. It does not cause any inconvenience. Moreover, with this type of engine, there is no need to close the intake valve 8 early, and it can be opened and closed at the same timing as a normal engine that does not perform supercharging, so it can be used as the base of combustion even in the high-speed rotation range. A sufficient amount of intake air from the intake system path 2 can be ensured. In other words, in the case of this embodiment, 30 degrees before bottom dead center where effective supercharging begins
Up to 20 degrees, the lift of the intake valve 8 is large and has a sufficient suction effect, so it shows the same characteristics as the solid line C in Fig. 2, and the intake air from the intake system path in the high speed range. There is no sudden drop in volumetric efficiency. Therefore, even if the amount of air sent into the cylinder 1 from the supercharging line 3 is relatively small, a sufficient supercharging effect can be obtained. To be more specific, in the case of this embodiment, as shown in FIG. Although the amount of intake air will be slightly lower than that without supercharging (dotted chain line f) due to the influence of Since there is no significant decrease in the amount of intake air in the cylinder 1, the total amount of intake air into the cylinder 1 can be reduced by supplying a relatively small amount of pressurized air from the supercharging system 3 in any rotation range. (solid line g) exceeds the amount of intake air (dotted chain line f) when supercharging is not performed. Therefore, even if a small-sized supercharger is used, there is an advantage that a sufficient supercharging effect can be exhibited up to the high speed rotation range. Furthermore, this engine can obtain the above-mentioned effects with an extremely simple configuration in which the check valve 18 is inserted in the branch passage portion of the intake system path 2 to each cylinder, and the valve timing can be made variable. It is easy to implement since there is no problem such as a complicated valve mechanism as in the case.

なお、逆止弁の構成は前記のものに限られない
のは勿論であり、要するに抵抗が少なく、しか
も、迅速かつ確実に逆流を阻止することができる
ものであればどのような構成のものであつてもよ
い。
The structure of the check valve is, of course, not limited to the one described above; in short, any structure can be used as long as it has low resistance and can quickly and reliably prevent backflow. It's okay to be hot.

また、過給系路には集合部19の上流にスロツ
トル弁15を介挿し、該スロツトル弁15はアイ
ドリング運転時から部分負荷運転時の間は全閉と
なるように構成されている。したがつて、この部
分負荷域より低負荷で機関を運転している場合に
は、副吸気弁14が開くと集合部19内の圧力と
シリンダ内の圧力がバランスするため、前回の圧
縮工程で圧縮されていた混合気が吸気工程にある
気筒に噴出することにより気筒間の空燃比のバラ
ツキを改善するとともに気筒内の混合気に乱れを
生じさせ燃焼改善に役立つ。そして、この状態か
ら圧縮工程がさらにすすむと混合気の一部が過給
系路の集合部19に加圧貯留されるというサイク
ルを繰返す。
Further, a throttle valve 15 is inserted in the supercharging system upstream of the gathering portion 19, and the throttle valve 15 is configured to be fully closed from idling operation to partial load operation. Therefore, when the engine is operated at a load lower than this partial load range, when the auxiliary intake valve 14 opens, the pressure in the collecting part 19 and the pressure in the cylinder are balanced, so that the pressure in the previous compression stroke is reduced. By injecting the compressed air-fuel mixture into the cylinder that is in the intake stroke, it improves variations in the air-fuel ratio between cylinders, and also creates turbulence in the air-fuel mixture within the cylinder, which helps improve combustion. Then, as the compression process further progresses from this state, a part of the air-fuel mixture is pressurized and stored in the collecting section 19 of the supercharging system, and the cycle is repeated.

そして、部分負荷域で、このようなサイクルを
繰返すことにより、空燃比の均一化がはかれると
ともに、混合気に乱れを生じさせうることによる
着火燃焼性の改善から、空燃比をよりリーンに設
定することができ、燃料消費率の向上をもはかれ
るのである。
By repeating this cycle in the partial load range, the air-fuel ratio is equalized, and the air-fuel ratio is set leaner because it improves ignition combustibility by causing turbulence in the air-fuel mixture. Therefore, it is possible to improve the fuel consumption rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示すバルブタイミングを表わ
す図、第2図は過給を行なわないエンジンで吸気
バルブタイミングを変更した場合におけるエンジ
ン回転数と体積効率との関係を示す特性図であ
る。第3図〜第6図は本発明の一実施例を示し、
第3図は要部を示す概略断面図、第4図は第3図
のA−A断面図、第5図はバルブタイミングを表
わす図、第6図は吸気工程におけるクランク軸回
転角と吸入空気量との関係を示す特性図である。 1……シリンダ、2……吸気系路、3……過圧
系路、4……ピストン、15……スロツトル弁、
18……逆止弁、19……集合部。
FIG. 1 is a diagram showing the valve timing of a conventional example, and FIG. 2 is a characteristic diagram showing the relationship between engine speed and volumetric efficiency when the intake valve timing is changed in an engine that does not perform supercharging. 3 to 6 show an embodiment of the present invention,
Fig. 3 is a schematic sectional view showing the main parts, Fig. 4 is a sectional view taken along line A-A in Fig. 3, Fig. 5 is a diagram showing valve timing, and Fig. 6 is a diagram showing the crankshaft rotation angle and intake air during the intake process. FIG. 3 is a characteristic diagram showing the relationship with quantity. 1... Cylinder, 2... Intake system path, 3... Overpressure system path, 4... Piston, 15... Throttle valve,
18...Check valve, 19...Collection part.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストンの降下に伴つて生じるシリンダ内の
負圧を利用して混合気を該シリンダ内に供給する
吸気系路と、過給機によつて加圧した空気または
混合気を前記シリンダ内に強制的に供給する過給
系路とをそれぞれ独立に設けたものにおいて、前
記吸気系路の各気筒への分岐通路部に前記シリン
ダ方向への混合気の流れのみを通過させる逆止弁
を介挿するとともに、過給系路には集合部上流に
スロツトル弁を設けたことを特徴とする過給機付
エンジン。
1. An intake system that supplies the air-fuel mixture into the cylinder by using the negative pressure inside the cylinder as the piston descends, and an air-fuel mixture that is forced into the cylinder by pressurized air or air-fuel mixture by the supercharger. and a supercharging system that supplies air to each cylinder independently, wherein a check valve is inserted in a branch passage of the intake system to each cylinder to allow only the flow of the air-fuel mixture in the direction of the cylinder. In addition, the supercharged engine is characterized in that the supercharging system path is provided with a throttle valve upstream of the collecting section.
JP56089097A 1981-06-09 1981-06-09 Engine with supercharger Granted JPS57203819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089097A JPS57203819A (en) 1981-06-09 1981-06-09 Engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089097A JPS57203819A (en) 1981-06-09 1981-06-09 Engine with supercharger

Publications (2)

Publication Number Publication Date
JPS57203819A JPS57203819A (en) 1982-12-14
JPS6256326B2 true JPS6256326B2 (en) 1987-11-25

Family

ID=13961373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089097A Granted JPS57203819A (en) 1981-06-09 1981-06-09 Engine with supercharger

Country Status (1)

Country Link
JP (1) JPS57203819A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157014A (en) * 1981-03-23 1982-09-28 Mitsubishi Motors Corp Air intake unit of supercharged engine
JPS61247823A (en) * 1985-04-25 1986-11-05 Mazda Motor Corp Intake apparatus for engine equipped with supercharger

Also Published As

Publication number Publication date
JPS57203819A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US4958606A (en) Supercharged engine
JP4807343B2 (en) Engine supercharger
JP3236654B2 (en) Engine with mechanical supercharger
GB1592133A (en) Control of effective compression ratio of internal combustion engines
JPH031489B2 (en)
JPS6256326B2 (en)
JP2966008B2 (en) Engine supercharger
JPH0359242B2 (en)
JPS6135701Y2 (en)
JPS5851221A (en) Supercharging system for engine
JPS5815606B2 (en) Reciprocating engine supercharging device
JPS6014891Y2 (en) supercharged engine
JPS5928087Y2 (en) supercharged engine
JP2673426B2 (en) Engine with mechanical supercharger
JPS5925109B2 (en) Fuel injection engine supercharging device
JPH0144742Y2 (en)
JPS5910344Y2 (en) Engine separation supercharging device
JPS6253690B2 (en)
JPS601222Y2 (en) Separate supercharged engine
JPS5844242A (en) Intake device for engine with supercharger
JPS6185538A (en) Internal-combustion engine with supercharger
JPH0116325B2 (en)
JPH031488B2 (en)
JPS6018594Y2 (en) Rotary piston engine with supercharger
JPS6030422Y2 (en) supercharged engine