JPS6256266B2 - - Google Patents

Info

Publication number
JPS6256266B2
JPS6256266B2 JP56055206A JP5520681A JPS6256266B2 JP S6256266 B2 JPS6256266 B2 JP S6256266B2 JP 56055206 A JP56055206 A JP 56055206A JP 5520681 A JP5520681 A JP 5520681A JP S6256266 B2 JPS6256266 B2 JP S6256266B2
Authority
JP
Japan
Prior art keywords
epoxy resin
bis
sizing
carbon fibers
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56055206A
Other languages
Japanese (ja)
Other versions
JPS57171767A (en
Inventor
Hajime Asai
Takashi Kaneko
Yukio Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5520681A priority Critical patent/JPS57171767A/en
Publication of JPS57171767A publication Critical patent/JPS57171767A/en
Publication of JPS6256266B2 publication Critical patent/JPS6256266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維のサイジング処理に関するも
のであり、更に詳しくは炭素繊維の集束性を向上
させるための処理方法に関する。 炭素繊維はきわめて高い比強度と比弾性、更に
は優れた耐熱性を示し複合材料の補強用繊維とし
て多く用いられつつあるが、高弾性であるがゆえ
に、伸度が低く耐屈曲摩耗性に劣るため後加工に
おいて単糸切れによる糸の損傷、切断および毛羽
立ちを誘発し製品の品質低下を招くことが多く、
更には静電気が帯電し易く取扱いが困難で毛羽立
ちによるフライが発生し作業環境を悪化させる原
因にもなつている。 このような問題を改良するために従来から炭素
繊維にサイジング処理を施し繊維表面を適当な樹
脂の単分子膜で保護すると同時に柔軟性と集束性
を与えることによつて単糸切れによる毛羽立ちを
押え加工性,取扱い性の改良をはかつてきた。 炭素繊維に使用するサイジング剤としてはマト
リツクス樹脂がエポキシ樹脂である場合、ビスフ
エノールAジグリシジル・エーテル型のエポキシ
樹脂が一般的に用いられるがその溶剤に対する溶
解性からして溶剤としてはアセトン、MEK等の
有機溶剤を用いるのが簡便である。しかし有機溶
剤系サイジング剤はサイジング剤付着の均一性の
点では優れているものの、工業的にみて安全対策
上、公害防止対策上で非常に不利であるため、分
散剤或いは界面活性剤等を用いた、樹脂―水分散
系で処理する方法が広く行なわれている。 しかし、一般にエポキシ樹脂は粘度、比重ある
いは疎水性等の特性からして水に安定に均一分散
させるのは困難であり、樹脂成分が分離沈降しや
すいため水分散系での処理はサンジング剤の付着
斑が大きくなる原因の一つにもなつている。又一
般にコンポジツトの機械的特性を決める大きな要
因は繊維とマトリツクスの界面における接着性に
あるが、サイジング処理の別の重要な目的はサイ
ジング処理によつて適当な樹脂の単分子膜をCF
表面に形成させ、その分子膜を介しての繊維とマ
トリツクスの相互接着作用の向上をはかることに
ある。 炭素繊維の取扱い性を向上させると同時に成型
後のコンポジツト特性を低下させずにしかも水系
で安定な処理が可能である様なサイジング処理方
法を開発せんと鋭意検討した結果本発明に到達し
た。 すなわち本発明は室温において固形状のジグリ
シジルエーテル・ビスフエノールA型エポキシ樹
脂を含有し、かつ50℃における粘度が10〜103
イズであるエポキシ樹脂組成物の水エマルジヨン
で炭素繊維を処理することを特徴とした炭素繊維
のサイジング処理法にある。 本発明はエポキシ樹脂の水エマルジヨン系にお
いて固形エポキシ樹脂を配合することによりエポ
キシ樹脂の沈降分離が少なくなり、樹脂の粘度が
増大するにもかかわらず、かえつて系の安定性が
増大する。これは恐らくエポキシ樹脂中の水酸基
が系の安定性に寄与しているものと考えられる。 本発明において用いるエポキシ樹脂はジグリシ
ジルエーテル・ビスフエノールA型エポキシ樹脂
を主成分とするものであり、室温において固形状
のエポキシ樹脂としてはエポキシ当量が約500以
上の、デユラン水銀法による融点が50℃以上を示
すようなジグリシジルエーテル・ビスフエノール
A型エポキシ樹脂をいう。 この固形エポキシ樹脂の配合量としては配合樹
脂の粘度が50℃で10〜1000ポイズになる様に配合
されるのが望ましく多くの場合他のエポキシ樹脂
に対し10〜40%の範囲にある。 サイジングに用いるエポキシ樹脂組成物の粘度
が50℃で10ポイズ以下では集束性の効果が小さ
く、1000ポイズを越えると柔軟性の点で問題が生
じる。なお本発明でいう粘度とは実質的に50℃の
試料をB型粘度計で測定した値である。このエポ
キシ樹脂組成物のエマルジヨン化に用いる界面活
性剤としてはノニオン系界面活性剤が望ましく、
特にポリオキシエチレンエーテル類が好ましく、
その添加量は通常エポキシ樹脂組成物に対して10
〜100重量部の範囲が望ましい。 本発明で用いるポリオキシエチレンエーテル類
の具体例としてはポリオキシエチレンラウリルエ
ーテル,ポリオキシエチレンセチルエーテル,ポ
リオキシエチレンステアリルエーテル,ポリオキ
シエチレンオレイルエーテル,ポリオキシエチレ
ンオクチルフエノールエーテル,ポリオキシエチ
レンノニルフエノールエーテル,ポリオキシエチ
レン高級アルコールエーテル,ポリオキシエチレ
ンラウリルエーテル等が代表例としてあげられる
が他の界面活性剤と混合して用いてもさしつかえ
なく、本発明の樹脂組成物を作るに際し併用して
用いるエポキシ樹脂としては多数の不飽和分を有
する炭化水素(ビニルシクロヘキセン,ジシクロ
ペンタジエン,シクロヘキサジエン,シクロドデ
カトリエン,ブタジエン,ポリブタジエン,ジビ
ニルベンゾール)のエポキシド;多価アルコール
(エチレン―,プロピレン―及びブチレングリコ
ール,ポリグリコール,チオジグリコール,グリ
セリン,トリメチロールプロパン,ペンタエリス
リツト,ソルビツト,ポリビニルアルコール,ポ
リアリルアルコールその他類似物)のエポキシエ
ーテル;多価フエノール(レゾルシン,ヒドロキ
ノン,ビス―(4―ヒドロキシフエニル)―メタ
ン,ビス―(4―ヒドロキシ―3―メチルフエニ
ル)―メタン,ビス―(4―ヒドロキシ―3・5
―ジクロルフエニル)―メタン,ビス―(4―ヒ
ドロキシ―3・5―ジブロムフエニル)―メタ
ン,ビス―(4―ヒドロキシ―3・5―ジフルオ
ルフエニル)―メタン,1・1―ビス―(4―ヒ
ドロキシフエニル)―エタン,1・1―ビス―
(ジヒドロキシフエニル)―エタン,2・2―ビ
ス―(4―ヒドロキシフエニル)―プロパン,
2・2―ビス―(4―ヒドロキシ―3―メチル―
フエニル)―プロパン,2・2―ビス―(4―ヒ
ドロキシ―3―クロルフエニル)―プロパン,
3・2―ビス―(4―ヒドロキシ―3・5―ジク
ロルフエニル)―プロパン,ビス―(4―ヒドロ
キシフエニル)―フエニルメタン,ビス―(4―
ヒドロキシフエニル)―ジフエニルメタン,ビス
―(4―ヒドロキシフエニル)―4―メチルフエ
ニルメタン,1・1―ビス―(4―ヒドロキシフ
エニル)―2・2・2―トリクロルエタン―ビス
―(4―ヒドロキシフエニル)―(4―クロルフ
エニル)―メタン,1・1―ビス―(4―ヒドロ
キシフエニル)―シクロヘキサン,ビス―(4―
ヒドロキシフエニル)―シクロヘキシルメタン,
4・4―ジヒドロキシジフエニル,2・2―ジヒ
ドロキシジフエニル,4・4―ジヒドロキシフエ
ニルスルホン並びにそのヒドロキシエチルエーテ
ル,フエノール―もしくはクレゾール―ホルムア
ルデヒド―縮合生成物)のエポキシドエーテル;
スルホンアミド及び芳香族アミン(N・N―ジグ
リシジルアニリン,N・N′―ジメチルジグリシ
ジル―4・4―ジアミノジフエニルメタン,N・
N・N′・N′―テトラグリシジル―4・4―ジア
ミノジフエニルメタン,N・N―ジグリシジルベ
ンゾールスルホンアミド)のN―含有エポキシ
ド;並びに、常法で多数の不飽和分を有するカル
ボン酸又は不飽和アルコールの1個の不飽和分を
有するカルボン酸エステルから製造したエポキシ
ド;グリシジルエステル,不飽和酸のグリシジル
エステルの重合又は共重合により得ることができ
るか又は他の酸性化合物(シアヌル酸,環状トリ
メチレントリスルホンもしくはその誘導体その他
類似物)から得られるポリグリシジルエステル。
もちろん前記エポキシド化合物の混合物も使用で
きる。 又所望に応じて柔軟仕上剤,帯電防止剤等の補
助成分を含有せしめることもできる。 上記サイジング剤の有効成分濃度は水溶液中
0.1〜10wt%の範囲が好ましく0.5〜5wt%なる範
囲が特に好ましい。またこれらの処理水溶液の濃
度は炭素繊維に付着するサイジング剤の量が0.1
〜10wt%の範囲になる様に決めるのが好まし
く、炭素繊維にかける張力あるいは含浸後の絞り
条件等によつて適宜変更するのがよい。 サイジング処理後、絞りローラーを通過した炭
素繊維は熱風あるいは赤外線ヒーター等によつて
所定時間乾燥され水分の除去が行なわれる。サイ
ジング剤として液状のエポキシ樹脂を単独で用い
た系では柔軟性付与の点では若干の効果を有する
ものの、室温での粘度が低いために炭素繊維束の
集束性の点で問題を有している。 本発明による処理系では室温で液状のエポキシ
樹脂を単独で用いた系に比べ良好な柔軟性と集束
性を示し、取扱い性において大巾な改善がなされ
ており、しかも重要な特徴の一つとしてコンポジ
ツト特性にすぐれ、特に高温におけるILSSの低
下率が減少する点にあるが、これは恐らく配合し
た固形エポキシ樹脂により水酸基濃度が大きくな
り炭素繊維の表面に存在すると考えられる官能基
との相互作用が増大し、その結果として炭素繊維
とマトリツクス樹脂の濡れ性が大巾に向上したた
めと考えられる。 なお本発明でいう炭素繊維は有機繊維を酸化性
雰囲気中で熱処理し耐炎化した後、更に高温の非
酸化性雰囲気中で熱処理して得られるもの或いは
ピツチを原料とし熱処理したものであり通常3〜
15μ程度の単繊維が約500〜20万本程度集合した
繊維束から成り立つている。 以下実施例により詳しく説明する。 実施例 1 固形エポキシ樹脂(油化シエル社製エピコート
1001)5gと液状のエポキシ樹脂(同社製エピコ
ート828)10gを約90℃で加熱混合し50℃で約200
ポイズの樹脂組成物を得た。ノニオン系活界面活
性剤(花王アトラス社製エマルゲン903)5gを
加え水2に分散させてエマルジヨンを調整し
た。このエマルジヨンは室温で約5hr放置してお
いても樹脂の沈降は認められず安定なものであつ
た。炭素繊維1g当りに上記エマルジヨン溶液が
約1g付着するように絞り条件を調整し、サイジ
ング処理を施した後約110℃の熱風を吹きつけて
水分を除去乾燥した。処理系のサイジング処理効
果を以下の方法により評価した。 炭素繊維を内角が90゜の角度となるように直径
5mmのクロムメツキのバーに掛け該トウに50mg/
dの荷重をかけつつ擦過長が100mm程度となるよ
うに50回/分の割合で往復運動させ、集束性を評
価した。得られた処理系は良好な集束性を示し
た。 上記の如くしてサイジング処理した炭素繊維に
エピコート828(シエル化学社製商標)を100g、
無水メチルナジツク酸90gおよびベンジルジメチ
ルアミン2gからなる樹脂組成物をドラム ワイ
ンダー型含浸装置を用いて均一に含浸し一方向に
引き揃えられたプリプレグを作成した。得られた
プリプレグを長さ250mm、巾250mmに裁断し積層し
て5Kg/cm2加圧下に90℃で2hr更に150℃で4hr硬
化成型し厚み2mmのコンポジツトを得た。得られ
たコンポジツトのILSSをASTM D―2344に準じ
て測定した。室温におけるILSSは8.3Kg/mm2であ
り、100℃における値は4.7Kg/mm2を示した。結果
を表―1中実験No.2に示した。 上記したサイジング法において固形エポキシ樹
脂としてエピコート1001に代えてエピコート
1004,1007(以上シエル化学社製商標)を用いた
例を表―1にあわせて示した。又固形エポキシ樹
脂の配合量を変えて評価を行なつた。本発明によ
るサイジング処理によりコンポジツト特性が大き
く向上した。
The present invention relates to a sizing treatment for carbon fibers, and more particularly to a treatment method for improving the cohesiveness of carbon fibers. Carbon fiber has extremely high specific strength and specific elasticity, as well as excellent heat resistance, and is increasingly being used as a reinforcing fiber for composite materials. However, because of its high elasticity, it has low elongation and poor bending abrasion resistance. Therefore, during post-processing, single yarn breakage often causes yarn damage, breakage, and fuzzing, leading to a decline in product quality.
Furthermore, it is difficult to handle because it is easily charged with static electricity, and fries occur due to fluffing, which causes a deterioration of the working environment. In order to improve this problem, carbon fibers have traditionally been subjected to sizing treatment, which protects the fiber surface with a monomolecular film of a suitable resin and at the same time gives flexibility and cohesiveness, thereby suppressing fuzz caused by single fiber breakage. Improvements in processability and handling have been made. When the matrix resin is an epoxy resin, bisphenol A diglycidyl ether type epoxy resin is generally used as a sizing agent for carbon fibers, but due to its solubility in solvents, acetone, MEK, etc. It is convenient to use an organic solvent of However, although organic solvent-based sizing agents are superior in terms of uniformity of sizing agent adhesion, they are very disadvantageous from an industrial perspective in terms of safety measures and pollution prevention measures, so dispersants or surfactants are not used. However, a treatment method using a resin-water dispersion system is widely used. However, in general, it is difficult to stably and uniformly disperse epoxy resins in water due to their characteristics such as viscosity, specific gravity, and hydrophobicity, and the resin components tend to separate and settle. It is also one of the reasons why spots become larger. Generally speaking, a major factor that determines the mechanical properties of composites is the adhesion at the interface between the fibers and the matrix, but another important purpose of the sizing process is to form a monomolecular film of a suitable resin into a CF.
The purpose is to improve the mutual adhesion between the fiber and the matrix through the molecular film formed on the surface. We have arrived at the present invention as a result of intensive research into developing a sizing treatment method that improves the handling of carbon fibers, does not reduce the properties of the composite after molding, and can be treated stably in an aqueous system. That is, the present invention involves treating carbon fibers with a water emulsion of an epoxy resin composition containing a diglycidyl ether bisphenol A type epoxy resin that is solid at room temperature and having a viscosity of 10 to 10 3 poise at 50°C. The sizing method for carbon fiber is characterized by: In the present invention, by blending a solid epoxy resin in an epoxy resin water emulsion system, sedimentation and separation of the epoxy resin is reduced, and even though the viscosity of the resin increases, the stability of the system is increased. This is probably because the hydroxyl groups in the epoxy resin contribute to the stability of the system. The epoxy resin used in the present invention is mainly composed of diglycidyl ether bisphenol A type epoxy resin, and as an epoxy resin that is solid at room temperature, it has an epoxy equivalent of about 500 or more and a melting point of 50 by the Duran mercury method. Diglycidyl ether bisphenol A-type epoxy resin that exhibits a temperature of ℃ or above. The amount of this solid epoxy resin blended is preferably such that the viscosity of the blended resin is 10 to 1000 poise at 50°C, and in most cases it is in the range of 10 to 40% of the other epoxy resins. If the viscosity of the epoxy resin composition used for sizing is less than 10 poise at 50°C, the focusing effect will be small, and if it exceeds 1000 poise, problems will arise in terms of flexibility. Note that the viscosity as used in the present invention is a value measured using a B-type viscometer on a sample at substantially 50°C. The surfactant used for emulsion of this epoxy resin composition is preferably a nonionic surfactant.
Particularly preferred are polyoxyethylene ethers,
The amount added is usually 10% to the epoxy resin composition.
A range of ~100 parts by weight is desirable. Specific examples of polyoxyethylene ethers used in the present invention include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, and polyoxyethylene nonyl phenol. Typical examples include ether, polyoxyethylene higher alcohol ether, polyoxyethylene lauryl ether, etc., but they may be used in combination with other surfactants, and are used in combination when making the resin composition of the present invention. Epoxy resins include epoxides of hydrocarbons with a large number of unsaturations (vinylcyclohexene, dicyclopentadiene, cyclohexadiene, cyclododecatriene, butadiene, polybutadiene, divinylbenzole); polyhydric alcohols (ethylene, propylene, and butylene glycol). , polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, polyvinyl alcohol, polyallyl alcohol and similar substances); polyhydric phenols (resorcinol, hydroquinone, bis-(4-hydroxyphenyl) )-methane, bis-(4-hydroxy-3-methylphenyl)-methane, bis-(4-hydroxy-3.5
-dichlorophenyl)-methane, bis-(4-hydroxy-3,5-dibromphenyl)-methane, bis-(4-hydroxy-3,5-difluorophenyl)-methane, 1,1-bis-(4-hydroxy phenyl)-ethane, 1,1-bis-
(dihydroxyphenyl)-ethane, 2,2-bis-(4-hydroxyphenyl)-propane,
2,2-bis-(4-hydroxy-3-methyl-
phenyl)-propane, 2,2-bis-(4-hydroxy-3-chlorophenyl)-propane,
3,2-bis-(4-hydroxy-3,5-dichlorophenyl)-propane, bis-(4-hydroxyphenyl)-phenylmethane, bis-(4-
hydroxyphenyl)-diphenylmethane, bis-(4-hydroxyphenyl)-4-methylphenylmethane, 1,1-bis-(4-hydroxyphenyl)-2,2,2-trichloroethane-bis-( 4-hydroxyphenyl)-(4-chlorophenyl)-methane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, bis-(4-
hydroxyphenyl)-cyclohexylmethane,
Epoxide ethers of 4,4-dihydroxydiphenyl, 2,2-dihydroxydiphenyl, 4,4-dihydroxyphenyl sulfone and their hydroxyethyl ether, phenol- or cresol-formaldehyde condensation products);
Sulfonamides and aromatic amines (N・N-diglycidylaniline, N・N′-dimethyldiglycidyl-4,4-diaminodiphenylmethane, N・
N-containing epoxides of (N・N′・N′-tetraglycidyl-4,4-diaminodiphenylmethane, N・N-diglycidylbenzenesulfonamide); and carboxylic acids having a large number of unsaturations by conventional methods or epoxides prepared from carboxylic acid esters with one unsaturation of unsaturated alcohols; glycidyl esters, obtainable by polymerization or copolymerization of glycidyl esters of unsaturated acids or other acidic compounds (cyanuric acid, Polyglycidyl ester obtained from cyclic trimethylene trisulfone (or its derivatives and other analogues).
Of course, mixtures of the aforementioned epoxide compounds can also be used. Further, if desired, auxiliary ingredients such as a softening agent and an antistatic agent may be included. The active ingredient concentration of the above sizing agent is in aqueous solution.
The range of 0.1 to 10 wt% is preferred, and the range of 0.5 to 5 wt% is particularly preferred. In addition, the concentration of these treated aqueous solutions is such that the amount of sizing agent attached to the carbon fiber is 0.1
It is preferable to set it within a range of ~10 wt%, and it is preferable to change it as appropriate depending on the tension applied to the carbon fiber, the squeezing conditions after impregnation, etc. After the sizing treatment, the carbon fibers that have passed through the squeezing rollers are dried for a predetermined time using hot air or an infrared heater to remove moisture. Although systems using liquid epoxy resin alone as a sizing agent have some effect in imparting flexibility, they have problems with the cohesiveness of carbon fiber bundles due to their low viscosity at room temperature. . The treatment system according to the present invention exhibits better flexibility and convergence than a system using a liquid epoxy resin alone at room temperature, and has vastly improved handling properties. It has excellent composite properties, particularly in that the ILSS decreases at high temperatures, but this is probably due to the increased hydroxyl group concentration caused by the blended solid epoxy resin, which inhibits interaction with the functional groups that are thought to exist on the surface of the carbon fiber. It is thought that this is because the wettability between the carbon fiber and the matrix resin has greatly improved as a result. The carbon fibers referred to in the present invention are obtained by heat-treating organic fibers in an oxidizing atmosphere to make them flame resistant and then heat-treating them in a non-oxidizing atmosphere at high temperatures, or by heat-treating pith as a raw material. ~
It consists of a fiber bundle made up of about 500,000 to 200,000 single fibers with a diameter of about 15μ. This will be explained in detail below using examples. Example 1 Solid epoxy resin (Epicoat manufactured by Yuka Ciel Co., Ltd.
1001) and 10 g of liquid epoxy resin (Epicoat 828 manufactured by the same company) were heated and mixed at about 90℃, and heated to about 200℃ at 50℃.
A poise resin composition was obtained. An emulsion was prepared by adding 5 g of a nonionic active surfactant (Emulgen 903, manufactured by Kao Atlas Co., Ltd.) and dispersing it in 2 parts of water. This emulsion remained stable with no resin precipitation observed even after being left at room temperature for about 5 hours. Squeezing conditions were adjusted so that about 1 g of the above emulsion solution adhered to each 1 g of carbon fibers, and after sizing treatment, hot air at about 110° C. was blown to remove water and dry. The sizing treatment effect of the treatment system was evaluated by the following method. Hang the carbon fibers on a chrome-plated bar with a diameter of 5 mm so that the inner angle is 90°, and add 50 mg/kg to the tow.
The convergence was evaluated by reciprocating at a rate of 50 times/minute while applying a load of d so that the rubbing length was approximately 100 mm. The resulting treatment system showed good focusing properties. 100g of Epicoat 828 (trademark manufactured by Ciel Chemical Co., Ltd.) was applied to the carbon fibers sized as described above.
A resin composition consisting of 90 g of methylnadic anhydride and 2 g of benzyldimethylamine was uniformly impregnated using a drum winder type impregnation device to prepare a prepreg that was aligned in one direction. The obtained prepreg was cut to a length of 250 mm and a width of 250 mm, laminated, and cured and molded under a pressure of 5 kg/cm 2 at 90° C. for 2 hours and then at 150° C. for 4 hours to obtain a composite with a thickness of 2 mm. The ILSS of the resulting composite was measured according to ASTM D-2344. The ILSS at room temperature was 8.3Kg/mm 2 and the value at 100°C was 4.7Kg/mm 2 . The results are shown in Experiment No. 2 in Table 1. In the above sizing method, Epicoat is used instead of Epicoat 1001 as a solid epoxy resin.
Table 1 shows examples using 1004 and 1007 (trademarks manufactured by Ciel Chemical Co., Ltd.). Evaluations were also carried out by varying the amount of solid epoxy resin blended. The sizing treatment according to the present invention greatly improved composite properties.

【表】 比較例 1 比較例として実施例1において固形エポキシを
添加しないでエピコート828(シエル化学社製商
標)単独でサイジング処理した場合について集束
性とコンポジツト特性を評価した。結果を表―1
にあわせて示した。 固形エポキシ樹脂を添加した効果が明らかに現
われている。又この場合のエマルジヨン系の室温
での安定性は約2hr程度であつた。
[Table] Comparative Example 1 As a comparative example, the convergence and composite properties of Example 1 were evaluated for the case where the sizing treatment was performed using Epicote 828 (trademark manufactured by Ciel Chemical Co., Ltd.) alone without adding solid epoxy. Table of results-1
Shown in conjunction with The effect of adding solid epoxy resin is clearly visible. Furthermore, the stability of the emulsion system at room temperature in this case was about 2 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 室温において固形状のジグリシジルエーテ
ル・ビスフエノールA型エポキシ樹脂を加え、50
℃における粘度が10〜103ポイズであるエポキシ
樹脂組成物の水エマルジヨンで炭素繊維を処理す
ることを特徴とする炭素繊維のサイジング処理
法。
1 Add solid diglycidyl ether bisphenol A type epoxy resin at room temperature,
A method for sizing carbon fibers, comprising treating carbon fibers with a water emulsion of an epoxy resin composition having a viscosity of 10 to 10 3 poise at °C.
JP5520681A 1981-04-13 1981-04-13 Sizining treatment Granted JPS57171767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5520681A JPS57171767A (en) 1981-04-13 1981-04-13 Sizining treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5520681A JPS57171767A (en) 1981-04-13 1981-04-13 Sizining treatment

Publications (2)

Publication Number Publication Date
JPS57171767A JPS57171767A (en) 1982-10-22
JPS6256266B2 true JPS6256266B2 (en) 1987-11-25

Family

ID=12992178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5520681A Granted JPS57171767A (en) 1981-04-13 1981-04-13 Sizining treatment

Country Status (1)

Country Link
JP (1) JPS57171767A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080044A (en) * 1983-10-07 1985-05-07 Matsushita Electric Ind Co Ltd Ventilating device
JPS61225373A (en) * 1985-03-27 1986-10-07 東邦レーヨン株式会社 Carbon fiber bundle
JP4437420B2 (en) * 2004-03-31 2010-03-24 東邦テナックス株式会社 Carbon fiber strands
CN101886336B (en) * 2010-06-23 2011-12-21 北京航空航天大学 Polyalcohol modified epoxy resin carbon fiber emulsion sizing agent component and preparation method thereof
BR112012030308A2 (en) 2010-06-30 2016-08-09 Toray Industries method for producing sizing agent coated carbon fibers, method for producing sizing agent coated carbon atoms and sizing agent coated carbon fibers
IN2014CN03279A (en) 2011-10-04 2015-07-03 Toray Industries
US10184034B2 (en) 2011-12-05 2019-01-22 Toray Industries, Inc. Carbon fiber forming raw material, formed material, and carbon fiber-reinforced composite material
US10138593B2 (en) 2011-12-27 2018-11-27 Toray Industries, Inc. Sizing agent-coated carbon fibers, process for producing sizing agent-coated carbon fibers, prepreg, and carbon fiber reinforced composite material
EP2851381B1 (en) 2012-05-16 2020-02-19 Daicel Corporation Epoxy-amine adduct, resin composition, sizing agent, carbon fiber coated with sizing agent, and fiber-reinforced composite material
EP2910676B1 (en) 2012-10-18 2017-10-04 Toray Industries, Inc. Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
EP3118370B1 (en) 2014-03-12 2019-08-07 Toray Industries, Inc. Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material
JP2016160540A (en) * 2015-02-27 2016-09-05 日華化学株式会社 Sizing agent for synthetic fiber, reinforced fiber bundle and fiber reinforced composite material
CN105547050A (en) * 2016-01-28 2016-05-04 上海卫士新材料科技有限公司 Fabric strengthening solution and application thereof
TWI750558B (en) 2018-12-25 2021-12-21 日商三菱化學股份有限公司 Sizing agent, sizing agent-attached carbon fiber and manufacturing method thereof, water dispersion of sizing agent, prepreg and manufacturing method thereof, and manufacturing method of carbon fiber reinforced composite material
WO2021149656A1 (en) 2020-01-22 2021-07-29 東レ株式会社 Sizing-agent-coated carbon fiber bundle and method for manufacturing same
KR20240031222A (en) 2021-07-19 2024-03-07 도레이 카부시키가이샤 Carbon fiber bundle containing sizing agent and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666695A (en) * 1970-10-06 1972-05-30 Gen Mills Chem Inc An epoxy resin adhesive containing a polymeric fatty-amido amine and monomeric fatty-amido amine mixture as the curing agent
JPS5059589A (en) * 1973-10-01 1975-05-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666695A (en) * 1970-10-06 1972-05-30 Gen Mills Chem Inc An epoxy resin adhesive containing a polymeric fatty-amido amine and monomeric fatty-amido amine mixture as the curing agent
JPS5059589A (en) * 1973-10-01 1975-05-22

Also Published As

Publication number Publication date
JPS57171767A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
JPS6256266B2 (en)
EP1403420B1 (en) Sizing agent for carbon fiber, aqeous dispersion thereof; carbon fiber treated by sizing; sheet;form object comprising the carbon fiber; and carbon fiber;reinforced composite material
US5230956A (en) Polyamide-imide sized fibers
EP0102705B1 (en) Carbon fiber and process for preparing same
FR2512474A1 (en) EMULSION TYPE SIZING AGENT FOR CARBON FIBERS, PROCESS FOR PREPARING THE SAME, AND METHOD OF USE THEREOF
JP2957406B2 (en) Sizing agent for carbon fiber strand, sized carbon fiber strand, and prepreg using carbon fiber strand as reinforcing fiber
JPS60139875A (en) Sizing composition for inorganic fiber
WO2007060833A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
JPS6335584B2 (en)
JPWO2003010383A1 (en) Sizing agent for carbon fiber, aqueous dispersion thereof, sizing-treated carbon fiber, sheet using the carbon fiber, and carbon fiber reinforced composite material
CA1218569A (en) Sized carbon fibers suitable for use in composite of improved impact resistance
JP6051987B2 (en) Method for producing carbon fiber coated with sizing agent
EP0435103A1 (en) Aqueous reaction resin dispersions containing reactive emulsifying agents as sizing agents for carbon fibers and glass fibers
CN105908511B (en) A kind of preparation method of self-emulsification aqueous epoxy resin carbon fiber sizing agent
CZ211397A3 (en) Glass thread coated with a preparation composition, the preparation composition for the glass threads, method of using such composition and products resulting therefrom
JP2014139360A (en) Sizing agent applied carbon fiber, its manufacturing method, and carbon fiber reinforced thermoplastic resin composition
KR20050071371A (en) Carbon fiber strand
KR900003097B1 (en) Non-ionic epoxy resin emulsion finishes for carbon fiber
JPS634000B2 (en)
JPS6314114B2 (en)
US4409288A (en) Epoxy resin emulsion finishes for carbon fibers
JP4311246B2 (en) Synthetic fiber treatment oil
JPH06173170A (en) Sizing agent composition for reinforcing fiber
JP2024501071A (en) Prepreg and carbon fiber reinforced composites
JP4437420B2 (en) Carbon fiber strands