JPS6255971A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JPS6255971A
JPS6255971A JP60197448A JP19744885A JPS6255971A JP S6255971 A JPS6255971 A JP S6255971A JP 60197448 A JP60197448 A JP 60197448A JP 19744885 A JP19744885 A JP 19744885A JP S6255971 A JPS6255971 A JP S6255971A
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
type
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197448A
Other languages
Japanese (ja)
Inventor
Katsuji Takasu
高須 克二
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60197448A priority Critical patent/JPS6255971A/en
Publication of JPS6255971A publication Critical patent/JPS6255971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the light emitting efficiency of a light emitting element by composing a light emitting layer of the first and second intermediate layers of P-type and N-type amorphous Si which contain fluorine atoms when laminating upper and lower electrodes for holding a light emitting layer therebetween on a substrate as the light emitting element, and specifying the optical band gap and quantum efficiency. CONSTITUTION:A lower layer 102 is coated as required to enhance the bondability with an electrode layer 103 on a substrate 101, and the lower electrode layer 103 of the prescribed layer is formed thereon. Then, when a light emitting layer 104 is formed thereon, the layer 104 is formed of a laminated of P-type and N-type amorphous Si intermediate layers which contain fluorine atoms, optical band gaps are selected to 2.0eV or higher, and the quantum efficiency is set to 10<-4> or more. Here, these intermediate layers may be of I-type, or may be of Si which does not contain an impurity. Thereafter, an upper electrode 105 is coated on the layer 104 as a light emitting element. Thus, the peak value of emitting light is obtained in a visible wavelength range to improve the light emitting efficiency and the lifetime.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、O,A機器等に利用される光源或いは表示に
使用される発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source used in O, A equipment, etc. or a light emitting element used for display.

〔従来の技術〕[Conventional technology]

従来、発光素子の発光層を構成する材料としては、種々
のものが報告されているが、その市でも例えばAppl
、Phys、Lett 。
Conventionally, various materials have been reported as materials constituting the light emitting layer of light emitting devices.
, Phys., Lett.

29 (1976)、PP620−622.J 。29 (1976), PP620-622. J.

1、Pankou、D、E、Carlson。1. Pankou, D.E., Carlson.

やJpn、J、Appl、Phys、21(1982)
PP473−475.に、Takahashi他、に記
載されている水素原子を含む非単結晶シリコン(以後、
rnOn−5i:HJ と記す)は、単結晶シリコンと
同様の半導体工学の適用が可能であること、及び潜春画
特性に優れたものがある可能性があること等の為に注目
されている材料の1つである。
Jpn, J., Appl, Phys, 21 (1982)
PP473-475. Non-single crystal silicon containing hydrogen atoms (hereinafter referred to as
rnOn-5i (denoted as HJ) is a material that is attracting attention because it can be applied with semiconductor engineering similar to single crystal silicon, and it may have excellent latent properties. It is one of the

上記引用文献に記載されたnon−5t:Hを発光材料
に用いた発光素子の構成は、P型不純物を含有するP型
伝導層(P層)と、P型及びN型のいずれの不純物も含
有しない層(ノンドープ層)と、N型不純物を含有する
N型伝導層(N層)とを積層したホモ接合を有する。
The structure of the light-emitting element using non-5t:H as a light-emitting material described in the above cited document includes a P-type conductive layer (P layer) containing P-type impurities, and a P-type conductive layer (P layer) containing both P-type and N-type impurities. It has a homojunction in which a layer containing no impurities (non-doped layer) and an N-type conductive layer (N layer) containing N-type impurities are laminated.

〔解決しようとする問題点〕[Problem to be solved]

しかしながら、この様な構成の従来報告されている発光
素子では、十分な発光量の可視光領域の発光が得られて
おらず、加えて発光強度が弱く、寿命も短い1発光特性
の安定性に欠けると実用的には改良すべき点の多くを残
している。上記改良案の1つとして、non−3i:H
に炭素原子を加えて、光学的バンドギャップを拡大し、
可視波長領域の発光を得る試みもなされているが、実用
的には未だ問題を残しており、O,A機器等に利用され
る光源素子や表示素子としては、未だ工業化されるには
至っていない。
However, conventionally reported light-emitting devices with such configurations do not emit a sufficient amount of light in the visible light region, and in addition, have low emission intensity and short lifetime.1. There are many points that need to be improved in practical terms. As one of the above improvement plans, non-3i:H
Adding carbon atoms to expand the optical bandgap,
Attempts have been made to obtain light emission in the visible wavelength region, but practical problems still remain, and it has not yet been industrialized as a light source element or display element used in O, A equipment, etc. .

〔目 的〕〔the purpose〕

本発明は、上記従来の欠点を改良した発光素子を提供す
ることを主たる目的とする。
The main object of the present invention is to provide a light emitting device that improves the above-mentioned conventional drawbacks.

本発明の別の目的は、可視波長領域に充分な発光量を有
し、発光効率と再現性の向上を計った発光素子を提供す
ることである。
Another object of the present invention is to provide a light emitting element that has a sufficient amount of light emitted in the visible wavelength region and is designed to improve luminous efficiency and reproducibility.

本発明のもう1つの目的は、発光特性の安定性と寿命を
飛躍的に向上させた発光素子を提供することである。
Another object of the present invention is to provide a light emitting element with dramatically improved stability of light emitting characteristics and lifetime.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の発光素子はN型伝導層と半導体性中間層(I)
とP型伝導層と第2の半導体性中間層(II )とが、
この順で積層された層構造を有する発光層と、該発光層
に電気的に接続された少なくとも一対の電極とを有し、
前記発光層は、弗素原子を含む非単結晶シリコンから成
り往っ光学的バンドギャップが2. Oe V以上であ
る事を特徴とする。
The light emitting device of the present invention includes an N-type conductive layer and a semiconductor intermediate layer (I).
, the P-type conductive layer, and the second semiconducting intermediate layer (II),
comprising a light emitting layer having a layered structure stacked in this order and at least one pair of electrodes electrically connected to the light emitting layer;
The light emitting layer is made of non-single crystal silicon containing fluorine atoms and has an optical band gap of 2. It is characterized by being Oe V or higher.

〔作 用〕[For production]

本発明の発光素子は、上記の構成とすることによって、
可視波長領域に発光ピークを有すると共に充分な発光量
を得、発光効率と再現性を高めることが出来、発光特性
の安定性と寿命を飛躍的に向上させることが出来る。
By having the above structure, the light emitting element of the present invention has the following features:
It has a luminescence peak in the visible wavelength region, obtains a sufficient amount of luminescence, improves luminous efficiency and reproducibility, and dramatically improves the stability of luminescent characteristics and lifespan.

以下1本発明を図面に従って具体的に説明する。The present invention will be specifically explained below with reference to the drawings.

第1図は、本発明の発光素子の好適な実施態様例の層構
成を示す模式的層構成図である。
FIG. 1 is a schematic layer structure diagram showing the layer structure of a preferred embodiment of the light emitting device of the present invention.

第1図に示される発光素子は、基体101上に設けられ
た電極103上に、P型伝導層(P層)、第1の半導体
性中間層(I)及びN型伝導層(N層)及び第2の半導
体性中間層(II )とから成る発光層104、該発光
層104上に設けられた電極105とで構成されている
The light emitting device shown in FIG. 1 includes a P-type conductive layer (P layer), a first semiconductor intermediate layer (I), and an N-type conductive layer (N layer) on an electrode 103 provided on a base 101. and a second semiconductor intermediate layer (II), and an electrode 105 provided on the light emitting layer 104.

102は下引層であって、基体101と電極103との
間の密着性を向上させる目的で設けられるもので、必ず
しも要するものではない。
Reference numeral 102 denotes an undercoat layer, which is provided for the purpose of improving the adhesion between the base 101 and the electrode 103, and is not necessarily required.

第1図に示す発光素子を面状発光素子として使用する場
合には、電極103又は/及び電極105は発光色の色
までも利用するのであれば、透明であることが必要であ
り、発光量を利用するのであれば、発光する光に対して
透光性であるのが望ましい。電極103側より発光々を
取り出す場合には、基体101は電極103と同様透明
であるか若しくは発光する光に対してΔ光性であること
が望ましい。
When the light emitting device shown in FIG. 1 is used as a planar light emitting device, the electrode 103 and/or the electrode 105 must be transparent if the color of the emitted light is to be utilized, and the amount of light emitted is If the material is to be used, it is desirable that the material be transparent to the emitted light. When emitted light is extracted from the electrode 103 side, it is preferable that the base 101 be transparent like the electrode 103 or be Δ-optical with respect to the emitted light.

本発明の発光素子は、@記の様に発光層104を構成す
るP型伝導層(P層)、第1の半導体性中間層(I)及
びN型伝導層(N層)及び第2の半導体性中間層(II
 )が、弗素原子(F)を含み、必要に応じて水素原子
(II)をも含む非単結晶シリコン(以後rnon−S
i:F(II)J と略記する)で構成される。
The light-emitting element of the present invention includes a P-type conductive layer (P layer), a first semiconductor intermediate layer (I), an N-type conductive layer (N layer), and a second semiconductor intermediate layer (I), which constitute the light-emitting layer 104, as shown in @. Semiconducting intermediate layer (II
) contains fluorine atoms (F) and optionally hydrogen atoms (II) (hereinafter referred to as rnon-S).
i: F(II)J).

発光層104は、上記のP層、中間層(I)、N層、中
間層(TI )とがこの順で積層された層構造を有する
もので、該層構造は、発光特性より向上させる目的で周
期的に繰返されるのが望ましい。その場合、繰返し周期
数は、−周期内の各層の層厚に応じて、適宜法められる
ものであるが、各層を量子力学的サイズ効果が出る程に
薄層化する場合には、十数周期乃至数十周期とれるのが
望ましい。その場合、発光層104の両端部側は、必ず
しも、その周期層構造の層構成順になってなくても良い
The light-emitting layer 104 has a layer structure in which the above-mentioned P layer, intermediate layer (I), N layer, and intermediate layer (TI) are laminated in this order, and the layer structure has the purpose of improving the luminescent properties. It is desirable that the process be repeated periodically. In that case, the number of repetition periods is determined as appropriate depending on the layer thickness of each layer within the period, but if each layer is made thin enough to produce a quantum mechanical size effect, the number of repetition periods is approximately 10 or more. It is desirable to be able to obtain a cycle to several tens of cycles. In that case, both ends of the light emitting layer 104 do not necessarily have to be in the order of the layer structure of the periodic layer structure.

即ち、例えば52層・中間層(I) ・N層・中間層(
II)]n−N層・半導体性中間層(III)  ・P
層とされる。この際、中間層(1)。
That is, for example, 52 layers, middle layer (I), N layer, middle layer (
II)] n-N layer/semiconductor intermediate layer (III)/P
It is considered to be a layer. At this time, the middle layer (1).

中間層(II)、中間層([+)は、夫々異なる電気伝
導特性であっても良いし、同様の電気伝導特性であって
も良い。
The intermediate layer (II) and the intermediate layer ([+) may have different electrical conductivity properties, or may have similar electrical conductivity properties.

本発明に於いて、P層、中間層(I)、N層及び中間層
(II )の層厚は、超格子構造を導入するか、或いは
、単なる繰返し周期層構造とす(ゴ るか、更には、素子に要求される発光特性等をへ 考ra Lで、適宜所望に従って選択される。
In the present invention, the layer thicknesses of the P layer, the intermediate layer (I), the N layer, and the intermediate layer (II) may be changed by introducing a superlattice structure or by using a simple repeating periodic layer structure. Further, it is selected as desired, taking into consideration the light emitting characteristics required for the device.

本発明の発光素子に於いては、P層及びN層の層厚とて
は、好ましくは、5人〜10000人、より好適には8
人〜aooo人、最適には10人〜7000人されるの
が望ましい。
In the light emitting device of the present invention, the layer thickness of the P layer and the N layer is preferably 5 to 10,000, more preferably 8
It is desirable to have 10 to 7,000 people, most preferably 10 to 7,000 people.

中間層(I)及び中間層(II )の層厚としては、好
ましくは5人〜15000人、より好適には8人〜10
000人、最適には10人〜8000人とされるのが望
ましい。
The layer thickness of the intermediate layer (I) and the intermediate layer (II) is preferably 5 to 15,000 layers, more preferably 8 to 10 layers.
000 people, optimally 10 to 8000 people.

本発明の発光素子に於いては、半導体性中間層CI)及
び半導体性中間層(II )は、真性米導体特性を示す
工型伝導層若しくは、僅かにN型又はP型体導層として
形成される。そして、no n−5i : F (II
)で構成される層は、その一般的傾向より所謂P型及び
N型のいずれの不純物も含有しない場合には、僅かにN
型傾向を示すので、I型体導層とするには、僅かにP型
不純物を含有させる。
In the light emitting device of the present invention, the semiconducting intermediate layer CI) and the semiconducting intermediate layer (II) are formed as a conductive layer exhibiting intrinsic conductive properties or a slightly N-type or P-type conductive layer. be done. And no n-5i : F (II
According to its general tendency, a layer composed of
Since it shows a type tendency, a small amount of P-type impurity is contained in order to form an I-type conductive layer.

本発明に於いて、超格子構造を導入する為にはP層、N
層、中間層CI)及び中間層(II )の夫々の層厚は
、夫々の層斉砿を構成する材料及び要求される素子特性
に応じて、適宜所望に従って決定されるが、量子サイズ
効果がは、好ましくは、5人〜100人、より好適には
8人〜80人、最適には10人〜70人とされるのが望
ましい。殊に、キャリアのド゛ブσイ波長程度、或いは
キャリアの平均自由行程の程度とされるのが望ましい。
In the present invention, in order to introduce a superlattice structure, P layer, N
The layer thicknesses of the intermediate layer (CI) and the intermediate layer (II) are determined as desired depending on the material constituting each layer and the required device characteristics, but the quantum size effect is preferably 5 to 100 people, more preferably 8 to 80 people, and optimally 10 to 70 people. In particular, it is desirable to set the wavelength to about the dove σ wavelength of the carrier or about the mean free path of the carrier.

発光層中に含有される弗素原子(F)は、シリコン原子
の自由ダンプ1ノングポンドを補償し、 その含有量は
形成される層の半導体特性。
The fluorine atoms (F) contained in the light-emitting layer compensate for the free dumping of silicon atoms, and its content depends on the semiconductor properties of the formed layer.

光学的特性、構造的安定性、耐熱性、及び素子の発光特
性とその安定性を左右する重要因子であって、本発明に
おいては、弗素原子(F)の含有−量は好適にはシリコ
ン原子に対して5原子PPM〜25原子%、より好適に
は10原子PPM〜20原子%、最適には50原子PP
M〜15原子%である。
It is an important factor that influences the optical properties, structural stability, heat resistance, and light emitting properties of the device and its stability, and in the present invention, the content of fluorine atoms (F) is preferably silicon atoms. 5 atomic PPM to 25 atomic %, more preferably 10 atomic PPM to 20 atomic %, optimally 50 atomic PP
M is 15 atomic %.

必要に応じて含有される水素原子(II)の含有量は、
弗素原子(F)の含有量との関係及び素子に要求される
素子特性に応じて適宜所望に従って決定されるが、好適
には0.01〜35原子%、より好適には0.1〜30
原子%、最適には1〜30原子%とされる。又、弗素原
子(F)と水素原子(II)の総和量は、最大40原子
%を越えない様に夫々の原子が層中に含有されるのが望
ましい。
The content of hydrogen atoms (II) contained as necessary is:
It is determined as desired depending on the relationship with the fluorine atom (F) content and the device characteristics required for the device, but is preferably 0.01 to 35 at.%, more preferably 0.1 to 30 at.%.
The content is preferably 1 to 30 atomic %. Further, it is desirable that the total amount of fluorine atoms (F) and hydrogen atoms (II) is contained in the layer so that the total amount does not exceed 40 at %.

発光層を構成するP型体導層及びN型伝導層は、層形成
する際にP型伝導特性を与えるP¥I!不純物或いはN
型伝導特性をかえるN型不純物を夫々含有するか或いは
既にnon−5i:F(II)で構成された層中に、P
型又はN型の不純物をイオンインプランテーション法等
の手段で注入してやれば良い。
The P-type conductive layer and the N-type conductive layer constituting the light-emitting layer are P\I! which give P-type conductive characteristics when the layers are formed. Impurity or N
P in a layer that contains N-type impurities that change the type conductivity, or is already composed of non-5i:F(II).
Type or N type impurities may be implanted by means such as ion implantation.

P型不純物としては、所謂周期律表第■族に属する原子
(第■族原子)、即ちB(硼素)。
The P-type impurity is an atom belonging to the so-called group Ⅰ of the periodic table (group Ⅰ atom), that is, B (boron).

Afl(アルミニウム)、Ga(ガリウム)。Afl (aluminum), Ga (gallium).

In(インジウム)、T4(タリウム)等があり、殊に
好適に用いられるのは、B、Gaである。
There are In (indium), T4 (thallium), etc., and B and Ga are particularly preferably used.

N型不純物どしては、周期律表第V族に屈する原子(第
V族原子)、例えばP(燐)  、As(砒素)、Sb
(アンチモン)  、Bi  (ビスマル)等であり、
殊に、好適に用いられるのはP、Asである。
N-type impurities include atoms belonging to Group V of the periodic table (Group V atoms), such as P (phosphorus), As (arsenic), and Sb.
(antimony), Bi (bismal), etc.
In particular, P and As are preferably used.

これ等の不純物は、形成される層の電気伝導特性、ミツ
ドギャップでの局在準位密度等を考慮して、適宜所望に
従ってその含有量が決定される。
The content of these impurities is appropriately determined as desired, taking into account the electrical conductivity properties of the layer to be formed, the local level density in the midgap, and the like.

本発明においては、光CVD法(光エネルギーを反応に
利用した化学的気相法による堆積膜形成法)の採用によ
り前述の構成を与えることが出来るものであり、前記の
不純物を導入する為の原料物質も光CVD法に適合する
ものを選択して使用するのが望ましい。
In the present invention, the above-mentioned structure can be provided by employing a photo-CVD method (deposited film formation method by a chemical vapor phase method using light energy for reaction), and the above-mentioned structure can be provided by adopting the photo-CVD method (deposited film formation method by a chemical vapor phase method using light energy for reaction). It is also desirable to select and use raw materials that are compatible with the photo-CVD method.

未発明の発光素子は、発光層を挾持に設けられる一組の
電極から発光層中に注入されるキャリア(エレクトロン
、ホール)が半導体性中間層の内部電界によって、夫々
、エレクトロンはN層近傍に、ホールは、P層近傍に蓄
積されるので通常のバルクの場合に比較して、エレクト
ロン及びホールの寿命が長い。その為に発光効率が極め
て高い。
In an uninvented light-emitting device, carriers (electrons, holes) injected into the light-emitting layer from a pair of electrodes sandwiching the light-emitting layer are moved near the N layer by the internal electric field of the semiconductor intermediate layer. Since holes are accumulated in the vicinity of the P layer, the lifetimes of electrons and holes are longer than in a normal bulk case. Therefore, the luminous efficiency is extremely high.

又、周期的積層による多層構造を有するので、エレクト
ロンとホールの発光に寄与する有効な再結合領域が複数
存在し、発光効率をより向上させることが出来る。
In addition, since it has a multilayer structure formed by periodic lamination, there are multiple effective recombination regions that contribute to the emission of electrons and holes, making it possible to further improve the luminous efficiency.

本発明の発光素子に於いては、印加されるバイアス電圧
は、各層の接合部に順バイアスが印加される様に選択さ
れ、一旦発光層中に注入されたエレクトロンとホールの
再結合する確率が高くなる様にバイアスの大きさが調整
される。
In the light emitting device of the present invention, the applied bias voltage is selected so that a forward bias is applied to the junction of each layer, and the probability of recombination of electrons and holes once injected into the light emitting layer is reduced. The magnitude of the bias is adjusted so that it becomes higher.

その際のバイアスは、DCバイアスと同時にAC又はパ
ルスバイアスが好ましくは用いられる。
As for the bias at that time, AC or pulse bias is preferably used at the same time as DC bias.

本発明においては、可視域の発光波長を得る為に、発光
層を構成する各層の光学的バンドギャップEgoptは
、2.0eV以上とされるのが望ましい。
In the present invention, in order to obtain an emission wavelength in the visible range, it is desirable that the optical bandgap Egopt of each layer constituting the light emitting layer be 2.0 eV or more.

発光層を構成する各層は、光学的バンドキャップの中心
(ミツドギャップ)での局在型1015 cnr3・e
 V−仄とされるのが望ましい。
Each layer constituting the light emitting layer has localized 1015 cnr3 e at the center of the optical band gap (mid gap).
It is preferable to use V-double.

この様に、各層の物性値を制御することによって、再結
合の効率を飛躍的に向上させることが出来、従って発光
効率の向上を一層計ることが出来る。
In this way, by controlling the physical property values of each layer, the recombination efficiency can be dramatically improved, and therefore the luminous efficiency can be further improved.

又、発光層の外部量子効率を10−4%以上になる様に
再結合の準位の分布を制御することによって、高い強度
の発光を示す発光素子を得ることが出来る。
Further, by controlling the distribution of recombination levels so that the external quantum efficiency of the light emitting layer is 10 -4% or more, a light emitting element that emits light with high intensity can be obtained.

上述した様な特性を有する発光素子は、前記した様に光
CVD法によって後述の条件で作成されるのが望ましい
。本発明の発光素子の作成法は1本発明の目的が達成さ
れるのであれば、光CVD法に限定されるものではなく
、適宜所望の条件に設定して、例えばHOMOCV D
法、プラズマCVD法等によって成されても良い。
It is desirable that the light emitting element having the above-mentioned characteristics be produced by the photo-CVD method under the conditions described below. The method for producing the light-emitting device of the present invention is not limited to the photo-CVD method, as long as the object of the present invention is achieved, and the method may be performed by setting appropriate conditions to, for example, HOMOCVD.
It may be performed by a method such as a method, a plasma CVD method, or the like.

本発明の発光素子を構成する基体及び電極を構成する材
料としては、通常発光素子分野において使用されている
材料の殆んどを挙げることが出来る。
As materials constituting the substrate and electrodes constituting the light emitting device of the present invention, most of the materials commonly used in the field of light emitting devices can be mentioned.

基体としては、導電性でも電気絶縁性であっても良いが
、比較的耐熱性に優れているのが望ましい。
The substrate may be electrically conductive or electrically insulating, but preferably has relatively good heat resistance.

導電性基体の場合には、基体と発光層との間に設けられ
る電極は、必ずしも設ける必要はない。
In the case of a conductive substrate, it is not necessary to provide an electrode between the substrate and the light emitting layer.

導電性基体としては、NiCr、ステンレス、AM、C
r、Mo、Au、Nb、Ta。
As the conductive substrate, NiCr, stainless steel, AM, C
r, Mo, Au, Nb, Ta.

V、Ti等を挙げることが出来る。V, Ti, etc. can be mentioned.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネイト、ポリアミド。
Electrically insulating substrates include polyester, polyethylene, polycarbonate, and polyamide.

等々の合成樹脂のフィルム、又はシート、或いはガラス
、セラミックス、等々を挙げることが出来る。
Examples include films or sheets of synthetic resins, glass, ceramics, and the like.

基体として電気絶縁性のものを採用する場合には、発光
層との間の電極として、その表面が導電処理される。
When an electrically insulating substrate is used as the substrate, its surface is subjected to conductive treatment to serve as an electrode between the substrate and the light emitting layer.

例えば、ガラスであれば、その表面に、NiCr、A文
 、Cr  、Mo、Au、I  r  、Nb  。
For example, in the case of glass, its surface is coated with NiCr, A, Cr, Mo, Au, Ir, and Nb.

Ta、V、Ti、Pt、Pd、In203Sn02 、
ITO(I n203+5n02)等から成る薄膜を設
けることによって導電性が付与され、或いはポリエステ
ルフィルム等の合成樹脂フィルムであれば、NiCr、
AM、Ag。
Ta, V, Ti, Pt, Pd, In203Sn02,
Conductivity can be imparted by providing a thin film made of ITO (In203+5n02), etc., or if it is a synthetic resin film such as polyester film, NiCr,
AM, Ag.

Pb、Zn、Ni、Au、Cr、Mo、Ir。Pb, Zn, Ni, Au, Cr, Mo, Ir.

Nb、Ta、V、Ti、Pt等の金属の薄膜を真空蒸着
、電子ビーム蒸着、スパッタリング等でその表面に設け
、又は前記金属でその表面をラミネート処理して、その
表面に導電性が付与される。
A thin film of a metal such as Nb, Ta, V, Ti, Pt, etc. is provided on the surface by vacuum evaporation, electron beam evaporation, sputtering, etc., or the surface is laminated with the above metal to impart conductivity to the surface. Ru.

本発明の発光素子の作成方法の具体例を第4図に示す光
CVD装置を用いて以下に説明する。以下に説明される
作成手段及び作成条件は、好適な例を示すもので、本発
明を限定するものでないことは云うまでもない。
A specific example of the method for producing a light emitting element of the present invention will be described below using a photo-CVD apparatus shown in FIG. It goes without saying that the production means and production conditions described below are only preferred examples and do not limit the present invention.

第3図中、1は堆積室であり、内部の基体支持台2上に
所望の基体3が載置される。
In FIG. 3, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside.

4は基体加熱用のヒータであり、導線5を介して給電さ
れ1発熱する。基体温度は特に制限されないが、一般に
発光層の光学的バンド・ギャップを大きくして可視の発
光を得るためには、200°C以下であることが望まし
い。
Reference numeral 4 denotes a heater for heating the substrate, which is supplied with electricity via a conductive wire 5 and generates heat. Although the substrate temperature is not particularly limited, it is generally desirable to be 200° C. or less in order to increase the optical band gap of the light emitting layer and obtain visible light emission.

6〜9は、ガス供給源であり、通常状態で液状の原料物
質を使用する場合には、適宜の気化装置を具備させる。
6 to 9 are gas supply sources, which are provided with an appropriate vaporizer when liquid raw materials are used in normal conditions.

気化装置には、加熱沸騰を利用するタイプ、液体原料中
にキャリアガスを通過させるタイプ等があり、いずれで
もよい。
The vaporizer may be of any type, such as a type that uses heating and boiling, or a type that allows a carrier gas to pass through the liquid raw material.

ガス供給源の個数は4個に限定されず、使用する原料物
質の種類の数、希釈ガス等を使用する場合においては、
該希釈ガスと原料ガスとの予備混合の有無等に応じて適
宜選択される。図中、ガス供給源6〜9の符号に、aを
付したのは分岐管、bを付したのは流量計、Cを付した
のは各流量計の高圧側の圧力を計測する圧力計、d又は
eを付したのは各気体流の開閉及び流量の調整をするた
めのバルブである。
The number of gas supply sources is not limited to four, but depending on the number of types of raw materials used, dilution gas, etc.
It is selected as appropriate depending on whether or not the dilution gas and raw material gas are premixed. In the figure, to the symbols of gas supply sources 6 to 9, a is attached to the branch pipe, b is attached to the flowmeter, and C is attached to the pressure meter that measures the pressure on the high pressure side of each flowmeter. , d or e are valves for opening/closing each gas flow and adjusting the flow rate.

各ガス供給源から供給されるガス状の原料物質等は、ガ
ス導入管10の途中で混合され、図示しない換気装置に
付勢されて、室l内に導入される。又は、各ガス供給源
から交互に室1内に導入される。11は、室1内に導入
されるガスの圧力を計測するための圧力計である。また
、12はガス排気管であり、堆積室1内を減圧したり、
導入ガスを強制排気するための図示しない排気装置と接
続されている。
Gaseous raw materials and the like supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10, energized by a ventilation device (not shown), and introduced into the chamber 1. Alternatively, the gases are introduced into the chamber 1 alternately from each gas supply source. 11 is a pressure gauge for measuring the pressure of gas introduced into the chamber 1. Further, 12 is a gas exhaust pipe, which reduces the pressure inside the deposition chamber 1,
It is connected to an exhaust device (not shown) for forcibly exhausting the introduced gas.

13はレギュレータ・バルブである。原料ガス等を導入
する前に、室1内を排気し、減圧状態とする場合、室内
の圧力は、好ましくは5Xto−5Torr以下、より
好ましくはl×1O−GTorr以下とされるのが望ま
しい。また、原料物質ガス等を導入した状態において、
室1内の圧力は、好ましくはI X 10−2〜100
Torr、より好ましくは5X10−2〜10To r
 rであるとされるのが望ましい。
13 is a regulator valve. When the inside of the chamber 1 is evacuated and brought into a reduced pressure state before introducing raw material gas etc., the pressure inside the chamber is preferably 5X to -5 Torr or less, more preferably 1 x 1 O-GTor or less. In addition, in the state where the raw material gas etc. is introduced,
The pressure in chamber 1 is preferably between I x 10-2 and 100
Torr, more preferably 5X10-2 to 10 Torr
It is preferable that it be r.

本発明で使用する励起エネルギー供給源の一例として、
14は光エネルギー発生装置であって、例えば水銀ラン
プ、キセノンランプ、炭酸ガスレーザ、アルゴンイオン
レーザ、エキシマレーザ等が用いられる。なお1本発明
で用いる光エネルギーは紫外線エネルギーに限定されず
、原料ガスに化学反応を起こさせ堆積膜を形成すること
ができるものであれば、波長域を問うものではない。
As an example of the excitation energy supply source used in the present invention,
Reference numeral 14 denotes a light energy generating device, such as a mercury lamp, a xenon lamp, a carbon dioxide laser, an argon ion laser, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and the wavelength range does not matter as long as it can cause a chemical reaction in the raw material gas and form a deposited film.

光エネルギー発生装置14から適宜の光学系を用いて基
体全体或いは基体の所望部分に向けられた光15は、矢
印16の向きに流れている原料物質ガス等に照射される
Light 15 is directed from the optical energy generating device 14 to the entire substrate or a desired portion of the substrate using an appropriate optical system, and is irradiated onto the raw material gas etc. flowing in the direction of the arrow 16.

発光素子の作成例として具体的には、まず、基体として
、ガラス基板(C#7059)を用いて、その上に導電
性層として600久厚の170層をスパッタリングによ
り形成する。膜の抵抗値としては約50Ω/口とする。
Specifically, as an example of producing a light emitting element, first, a glass substrate (C#7059) is used as a base, and 170 layers of 600 mm thick are formed thereon as conductive layers by sputtering. The resistance value of the membrane is approximately 50Ω/hole.

次に上記導電性基体3を、第4図に示す様な光CVD装
置の基体ホルダー2に設置し、まずポンプ12で真空に
排気する。真空度が約lXl0−8以下になったところ
で、基体ホルダー2の温度を上げ、基体温度を所望に従
って設定する。本発明においては、基体温度としては、
好適には−20℃〜200℃、より好適にはO℃〜15
0℃とされるのが望ましい。
Next, the conductive substrate 3 is placed in a substrate holder 2 of a photo-CVD apparatus as shown in FIG. 4, and first evacuated to a vacuum using a pump 12. When the degree of vacuum becomes about 1X10-8 or less, the temperature of the substrate holder 2 is raised and the substrate temperature is set as desired. In the present invention, the substrate temperature is
Preferably -20°C to 200°C, more preferably 0°C to 15°C
It is desirable that the temperature be 0°C.

次に、SiF6.SiH2F2.SiF4ガス等の弗素
化シランガスおよび必要に応じてSiH4,Si2H6
,5i3HB等のシラン系ガス、及び必要に応じて不純
物導入用のガス(B2H6、BF3 、PH3、、P2
H4。
Next, SiF6. SiH2F2. Fluorinated silane gas such as SiF4 gas and SiH4, Si2H6 as necessary
, 5i3HB, etc., and if necessary, impurity introduction gas (B2H6, BF3, PH3, , P2
H4.

PF3等)を6.7,8.9のボンベ、6b〜9bのフ
ローメーターを用いて堆積室lに流入する。この際H2
,Ar、Heなどのガスを同時に流入してもよい。
PF3, etc.) into the deposition chamber 1 using 6.7 and 8.9 cylinders and flow meters 6b to 9b. At this time H2
, Ar, He, or other gases may be introduced at the same time.

次に、堆積室l上部より低圧水銀灯を用いて185nm
の光を基板上で約5〜50 m W 70m2の強度で
照射し、層を堆積する。
Next, a low-pressure mercury lamp was used to emit light at 185 nm from the top of the deposition chamber l.
of light is irradiated onto the substrate with an intensity of approximately 5-50 mW 70 m2 to deposit the layer.

P型、N型の伝導層を形成するためには、前記弗素化シ
ラン系のガスと同時にP型の場合にはB2H6等のガス
をH2,Arなどのガスと混合して濃度を調整して堆積
室lに流入する。
In order to form P-type and N-type conductive layers, at the same time as the fluorinated silane gas, in the case of P-type, a gas such as B2H6 is mixed with a gas such as H2 or Ar to adjust the concentration. It flows into the deposition chamber l.

又、N型の場合にはPH3、AsH3等のガスをH2,
Arのガスと混合して堆積室lに流入する。ガスの流入
の後、圧力を調整し、ガスに光を照射して分解し層を堆
積する。P型体導層、半導体性中間層、N型伝導層の制
御は光強度及び光照射時間を変化させて行う。
In addition, in the case of N type, gases such as PH3, AsH3, etc. are replaced with H2,
It mixes with Ar gas and flows into the deposition chamber l. After the gas flows in, the pressure is adjusted and the gas is irradiated with light to decompose and deposit a layer. The P-type conductive layer, the semiconductor intermediate layer, and the N-type conductive layer are controlled by changing the light intensity and light irradiation time.

超格子構造を形成する為に、実際に極薄層を交互に積層
するには、各薄層を形成する為の原料ガスを、その都度
変える必要がある。即ち、異なる薄層の形成の度毎に原
料ガスの堆積室1への導入を止め、排気装置により適当
な真空度まで排気して、オートドーピングを防ぐ様にす
る。又、各層の層厚を所望通りに制御する為にシャッタ
ー17を開閉動作させることにより励起光の照射を断続
的に行う。
In order to actually stack ultra-thin layers alternately to form a superlattice structure, it is necessary to change the raw material gas for forming each thin layer each time. That is, each time a different thin layer is formed, the introduction of source gas into the deposition chamber 1 is stopped, and the chamber is evacuated to an appropriate degree of vacuum using an exhaust device to prevent autodoping. Furthermore, in order to control the thickness of each layer as desired, the excitation light is irradiated intermittently by opening and closing the shutter 17.

前記の発光素子の発光層を構成する各層の光学的バンド
ギャップは吸収係数αを測定し、fτ下ゴとhνの関係
より、局在準位密度はFE法より、又量子効率はダイオ
ードの発光特性(温度依存性有)より求めることが出来
る。
The optical bandgap of each layer constituting the light-emitting layer of the light-emitting device is determined by measuring the absorption coefficient α, and from the relationship between fτ and hν, the local level density is determined by the FE method, and the quantum efficiency is determined by the light emission of the diode. It can be determined from the characteristics (temperature dependence).

実施例1 基体としてITO基板を用いて、基板温度45℃で層を
作成した。P型体導層はB2H6/ (S i 2 F
6+S i 2H6)= 10−2の流量比で、Si 
2F6/5i2Fs=2の流量比、総流量120SCC
M(水素希釈)、N型伝導層はPH3/S i 2H6
=IO−2の流量比で総流量1203CCM (水素稀
釈)、半導体性中間層(I)及び(II)はS i 2
H6を40SCCM、Si2F6を80SCCMの流量
で夫々を、堆積室1内に夫々導入して、圧力0. IT
orr、光強度40mW/cm2(7)条件で反応させ
て夫々の層を作成した。この際のP型体導層の層厚は2
5人、半導体性中間層CI)及び(II )の層厚は2
5人、N型伝導層は25人とし、このP層・中間層(I
)eNN層中中間層 II )を一単位として20周期
繰返し積層し、その後上記の層厚でN層、中間層(I)
及びP層を積層した。。
Example 1 Using an ITO substrate as a base, a layer was created at a substrate temperature of 45°C. The P-type conductive layer is B2H6/ (S i 2 F
At a flow rate ratio of 6+S i 2H6) = 10-2, Si
Flow rate ratio of 2F6/5i2Fs=2, total flow rate 120SCC
M (hydrogen dilution), N-type conductive layer is PH3/S i 2H6
=Flow rate ratio of IO-2, total flow rate 1203 CCM (hydrogen dilution), semiconducting intermediate layers (I) and (II) are S i 2
H6 and Si2F6 were introduced into the deposition chamber 1 at a flow rate of 40 SCCM and 80 SCCM, respectively, and the pressure was set to 0. IT
Each layer was created by reacting under the following conditions: orr and light intensity of 40 mW/cm2 (7). The layer thickness of the P-type conductive layer at this time is 2
5 people, the layer thickness of the semiconducting intermediate layers CI) and (II) is 2
5 people for the N-type conduction layer, 25 people for the N-type conduction layer, and this P layer/intermediate layer (I
) eNN layer (intermediate layer II) is stacked repeatedly for 20 cycles as one unit, and then N layer and intermediate layer (I) are formed with the above layer thickness.
and P layer were laminated. .

この様にして形成した発光層の上部表面にA文を100
0人厚蒸着し、上部電極とした。
On the upper surface of the light-emitting layer formed in this way, 100 letters A are written.
It was evaporated to a thickness of 0 and used as the upper electrode.

得られた発光素子は白色の発光を示し、その光学的バン
ドギャップが表1に示される。
The obtained light emitting device emits white light, and its optical bandgap is shown in Table 1.

実施例2 実施例1と同様の装置、同様の条件で基体温度を20℃
に設定して層形成を行った。
Example 2 Same device as Example 1, same conditions, substrate temperature 20°C
Layer formation was performed using the following settings.

この時のP型体導層の層厚は30人、半導体性中間層(
I)及び(II )の層厚は30人。
The layer thickness of the P-type conductive layer at this time was 30 layers, and the semiconductor intermediate layer (
The layer thickness for I) and (II) is 30 people.

N型伝導層の層厚は30人であった。P層Φ層(I) 
・N層争層(II)の繰返しは、20周期とした。得ら
れた発光素子は白色の発光を示しその光学的バンドギャ
ップを表1に示す。
The layer thickness of the N-type conductive layer was 30 layers. P layer Φ layer (I)
・The repetition of the N-layer conflict layer (II) was set to 20 cycles. The obtained light emitting device emits white light and its optical band gap is shown in Table 1.

実施例3 実施例2と同様の装置で、対応する層の作成条件は同様
の条件として、P型体導層の層厚を200人、中間層(
I)及び中間層(n )の層厚を1500人、N型伝導
層の層厚を200又とし、これ等の層をP層・層(I)
・N層・層(II )・P層・層(I)・N層の層構造
に積層した。この様な構造の発光素子は発色発光を示し
た。測定された素子の光学的バンドギャップが表1に示
される。
Example 3 Using the same apparatus as Example 2, the corresponding layer was created under the same conditions, the layer thickness of the P-type conductive layer was 200, and the middle layer (
The layer thickness of I) and intermediate layer (n) is 1500 layers, the layer thickness of N-type conductive layer is 200 layers, and these layers are P layer and layer (I).
- Laminated in a layered structure of N layer, layer (II), P layer, layer (I), and N layer. A light emitting device with such a structure exhibited colored light emission. The measured optical bandgaps of the devices are shown in Table 1.

表    1 以上の実施例1〜3より本発明の発光素子は、従来のn
on−5i:Hを用いた発光素子が可視の領域での発光
量が小さく、強度も低いのに比較し、より高い強度の白
色発光が得られることがわかった。
Table 1 From the above Examples 1 to 3, the light emitting device of the present invention has a conventional n
It was found that a light emitting element using on-5i:H has a small amount of light emission in the visible region and a low intensity, but white light emission with higher intensity can be obtained.

又、各実施例における発光素子に就で、寿命を測定した
ところ、従来の発光素子に較べて一桁高い寿命を示し、
再現性の点でも良好で且つ発光特性は寿命測定において
常に安定していた。
Furthermore, when the lifespan of the light-emitting elements in each example was measured, the lifespan was an order of magnitude higher than that of conventional light-emitting elements.
The reproducibility was also good, and the luminescent properties were always stable during lifetime measurements.

〔効 果〕〔effect〕

上述した様に、本発明の発光素子は、可視波長領域に発
光ピークを有すると共に、充分な発光量を得、発光効率
と再現性を高めることが出来1発光特性の安定性と寿命
を飛翔的に高めることが出来る。
As described above, the light-emitting element of the present invention has a luminescence peak in the visible wavelength region, can obtain a sufficient amount of luminescence, and can improve luminous efficiency and reproducibility.1. It can be increased to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の発光素子の好適な実施態様例の層構
成を示す模式図、第2図は本発明の発光素子を作成する
為の装置の一例を示す模式%式%
FIG. 1 is a schematic diagram showing the layer structure of a preferred embodiment of the light emitting device of the present invention, and FIG. 2 is a schematic diagram showing an example of an apparatus for producing the light emitting device of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)N型伝導層と第1の半導体性中間層( I )とP
型伝導層と第2の半導体性中間層(II)とが、この順で
積層された層構造を有する発光層と、該発光層に電気的
に接続された少なくとも一対の電極とを有し、前記発光
層は、弗素原子を含む非単結晶シリコンから成り且つ光
学的バンドギャップが2.0eV以上である事を特徴と
する発光素子。
(1) N-type conductive layer, first semiconductor intermediate layer (I) and P
A light-emitting layer having a layer structure in which a type conductive layer and a second semiconductor intermediate layer (II) are laminated in this order, and at least one pair of electrodes electrically connected to the light-emitting layer, A light emitting device, wherein the light emitting layer is made of non-single crystal silicon containing fluorine atoms and has an optical band gap of 2.0 eV or more.
(2)前記第1の半導体性中間層( I )又は/及び前
記第2の半導体性中間層(II)はI型伝導特性を有する
特許請求の範囲第1項に記載の発光素子。
(2) The light emitting device according to claim 1, wherein the first semiconducting intermediate layer (I) and/or the second semiconducting intermediate layer (II) have I-type conductivity.
(3)前記第1の半導体性中間層( I )又は/及び前
記第2の半導体性中間層(II)は、P型及びN型の不純
物を含有しない特許請求の範囲第1項に記載の発光素子
(3) The first semiconducting intermediate layer (I) and/or the second semiconducting intermediate layer (II) do not contain P-type and N-type impurities. Light emitting element.
(4)前記の層構造が周期的である特許請求の範囲第1
項に記載の発光素子。
(4) Claim 1, wherein the layer structure is periodic.
The light-emitting element described in .
(5)発光層の量子効率が10^−^4%以上である特
許請求の範囲第1項に記載の発光素子。
(5) The light emitting device according to claim 1, wherein the light emitting layer has a quantum efficiency of 10^-^4% or more.
JP60197448A 1985-09-05 1985-09-05 Light emitting element Pending JPS6255971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197448A JPS6255971A (en) 1985-09-05 1985-09-05 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197448A JPS6255971A (en) 1985-09-05 1985-09-05 Light emitting element

Publications (1)

Publication Number Publication Date
JPS6255971A true JPS6255971A (en) 1987-03-11

Family

ID=16374674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197448A Pending JPS6255971A (en) 1985-09-05 1985-09-05 Light emitting element

Country Status (1)

Country Link
JP (1) JPS6255971A (en)

Similar Documents

Publication Publication Date Title
US4683146A (en) Process for producing deposition films
US4683147A (en) Method of forming deposition film
US4683145A (en) Method for forming deposited film
US4683144A (en) Method for forming a deposited film
US4920387A (en) Light emitting device
JPS6254976A (en) Light emitting element
JPS6255971A (en) Light emitting element
JPS6254978A (en) Light emitting element
JPS6258687A (en) Light emitting element
JPS6255972A (en) Light emitting element
US4987460A (en) Light emitting device
JPS6254481A (en) Light emitting element
JPS6267883A (en) Light emitting device
JPS6254977A (en) Light emitting element
JPS6254482A (en) Light emitting element
JPS6254975A (en) Light emitting element
JPS6254480A (en) Light emitting element
JPS6269569A (en) Light emitting element
US4914490A (en) Non-single crystal electroluminescent device
JPS6269570A (en) Light emitting element
JPS6269572A (en) Light emitting element
JPS6247171A (en) Light emitting element
JPS6267885A (en) Light emitting device
JPS6248081A (en) Light emitting element
JPS6269571A (en) Light emitting element