JPS6255778B2 - - Google Patents

Info

Publication number
JPS6255778B2
JPS6255778B2 JP13296780A JP13296780A JPS6255778B2 JP S6255778 B2 JPS6255778 B2 JP S6255778B2 JP 13296780 A JP13296780 A JP 13296780A JP 13296780 A JP13296780 A JP 13296780A JP S6255778 B2 JPS6255778 B2 JP S6255778B2
Authority
JP
Japan
Prior art keywords
layer
charge
photoreceptor
group
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13296780A
Other languages
Japanese (ja)
Other versions
JPS5758156A (en
Inventor
Shozo Ishikawa
Kyoshi Sakai
Minoru Mabuchi
Katsunori Watanabe
Makoto Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13296780A priority Critical patent/JPS5758156A/en
Priority to GB8127994A priority patent/GB2088074B/en
Priority to DE19813138252 priority patent/DE3138252A1/en
Publication of JPS5758156A publication Critical patent/JPS5758156A/en
Priority to US06/560,255 priority patent/US4554231A/en
Priority to GB08410872A priority patent/GB2138159A/en
Publication of JPS6255778B2 publication Critical patent/JPS6255778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は電子写真感光䜓に関し、詳しくは、ヒ
ドラゟン系化合物から成る有機光導電性物質を含
有する感光局を有する電子写真感光䜓に関するも
のである。 埓来電子写真感光䜓の感光局には、セレン、硫
化カドミりム、酞化亜鉛などの無機系の光導電性
物質が広く甚いられおいた。 こうした無機光導電䜓を甚いた感光䜓はいく぀
かの長所を有するず同時に様々な短所を包含する
ものであり、欠点ずなる具䜓䟋を瀺せば、セレン
の堎合は真空蒞着に起因する生産性の䜎さず補造
条件のむづかしさ、原材料の損倱などのために補
造コストが高く぀き、たたセレン蒞着膜自䜓が熱
や機械的衝撃に極めお匱く、環境条件により極め
お結晶化しやすいなどの問題点がある。硫化カド
ミりムの堎合は湿床に匱く絶瞁局で被芆した感光
䜓を陀いおは公害䞊の問題を有する。酞化亜鉛の
堎合は、ロヌズベンガルに代衚される堅牢床の匱
い染料で増感しおいるためコロナ垯電による通電
劣化や光退色などの問題がある。たた酞化亜鉛粒
子の暹脂分散系であるための感光局の衚面平滑
性、硬床、耐摩耗性などにも難がある。 䞀方有機系の光導電性物質は無機系のものず比
べお、感光局が柔軟性に富み、補造が容易であり
より安䟡に電子写真特性の安定した感光䜓が埗ら
れるなどの利点があり、近幎数倚くの提案がなさ
れおいる。有機光導電性物質を甚いた感光䜓のタ
むプずしおは、(i)電子䟛䞎性化合物ず電子受容性
化合物ずの組合せにより電荷移動錯䜓を圢成した
もの、䟋USP3484237、(ii)有機光導電䜓に染料
を添加しお増感したもの、䟋、特公昭48−25658
号公報、(iii)正孔あるいは電子掻性マトリツクス
に顔料分散したもの、䟋、特開昭47−30328号公
報、特開昭47−18545号公報、(iv)電荷発生局ず電
荷茞送局に機胜分離したもの、䟋、特開昭49−
105537号公報、(v)染料ず暹脂ずから成る共晶錯
䜓を䞻成分ずするもの、䟋、特開昭47−10785号
公報、(vi)電荷移動錯䜓䞭に有機顔料又は無機の
電荷発生材料を添加したもの、䟋、特開昭49−
91648号公報(vii)その他等がある。 こうした感光䜓の䞭には実甚性を有するものも
あるが、感床、耐久性、環境安定性などで䞀局の
改良が望たれおいるのが珟況である。たたこうし
た感光䜓に甚いられる有機光導電性物質には、ポ
リ−−ビニルカルバゟヌルに代衚される高分子
物質ず特開昭49−105537号公報に蚘茉されおいる
ピラゟリン誘導䜓の劂き䜎分子物質がある。 高分子タむプのものは䞀般に塗膜がもろく、成
膜性、柔軟性などに難があり、この問題を解決す
るために可塑剀の添加をするず感床䜎䞋などの問
題が掟生する。䞀方䜎分子タむプのものは適圓な
バむンダヌを遞択するこずができ高分子タむプの
ものの䞊蚘欠点をおぎなうこずが可胜である。 そこで本発明者らは䞊蚘欠点を陀去した有機䜎
分子光導電性物質に぀いお鋭意研究した結果、特
定のヒドラゟン化合物が極めおすぐれた特性を有
するこずを芋出し本発明に到達したものである。 本発明に甚いるヒドラゟン化合物は䞋蚘䞀般匏
で瀺される。 匏䞭R1およびR2は眮換基を有しおいおもよい
アルキル基、アラルキル基若しくはアリヌル基を
瀺す。 䜆しR1、R2のいずれもがアルキル基である堎
合を陀く。 さらに詳しくは、R1、はメチル基、゚チル
基、プロピル基、ブチル基などのアルキル基、ベ
ンゞル基、プネチル基、ナフチルメチル基など
のアラルキル基、プニル基、ナフチル基、アン
トリル基、ピレニル基などのアリヌル基より遞ば
れた基であり、これらのアルキル基、アラルキル
基、アリヌル基は眮換基を有しおいおもよく、眮
換基ずしおは、メチル基、゚チル基などのアルキ
ル基、メトキシ基、゚トキシ基などのアルコキシ
基、ゞメチルアミノ基、ゞ゚チルアミノ基、ゞプ
ロピルアミノ基、ゞブチルアミノ基などのゞアル
キルアミノ基、塩玠原子、臭玠原子、ペヌ゜原子
などのハロゲン原子などがあげられる。 䞀般匏(1)で瀺されるヒドラゟン化合物は、䞀般
匏
The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor having a photosensitive layer containing an organic photoconductive substance made of a hydrazone compound. Conventionally, inorganic photoconductive substances such as selenium, cadmium sulfide, and zinc oxide have been widely used in the photosensitive layer of electrophotographic photoreceptors. Photoreceptors using such inorganic photoconductors have several advantages and at the same time have various disadvantages. To give a specific example of a disadvantage, in the case of selenium, productivity is reduced due to vacuum evaporation. The manufacturing cost is high due to low quality, difficult manufacturing conditions, and loss of raw materials.Also, the selenium vapor-deposited film itself is extremely susceptible to heat and mechanical shock, and is extremely susceptible to crystallization depending on environmental conditions. . In the case of cadmium sulfide, it is sensitive to humidity and poses a pollution problem except for photoreceptors coated with an insulating layer. In the case of zinc oxide, since it is sensitized with a dye with low fastness, such as rose bengal, there are problems such as deterioration due to electrical conduction due to corona charging and photofading. Furthermore, since the photosensitive layer is a resin dispersion system of zinc oxide particles, it has problems in surface smoothness, hardness, abrasion resistance, etc. On the other hand, organic photoconductive materials have advantages over inorganic ones, such as having a highly flexible photosensitive layer, being easy to manufacture, and being able to obtain photoreceptors with stable electrophotographic properties at a lower cost. Many proposals have been made in recent years. Types of photoreceptors using organic photoconductive materials include (i) those in which a charge transfer complex is formed by a combination of an electron-donating compound and an electron-accepting compound (e.g. USP 3484237); (ii) organic photoconductive materials; Sensitized by adding dye to the body (e.g., Special Publication No. 48-25658)
(3) Pigment dispersed in a hole- or electron-active matrix (e.g., JP-A-47-30328, JP-A-47-18545), (iv) Charge generation layer and charge transport A layer with functions separated into layers (e.g., JP-A-49-
105537), (v) those whose main component is a eutectic complex consisting of a dye and a resin (e.g., JP-A-10785-10785), (vi) those containing an organic pigment or inorganic in the charge transfer complex. Added charge-generating material (e.g., JP-A-49-
Publication No. 91648) (vii) Others, etc. Although some of these photoreceptors are practical, the current situation is that further improvements in sensitivity, durability, environmental stability, etc. are desired. Organic photoconductive substances used in such photoreceptors include polymeric substances such as poly-N-vinylcarbazole and low-molecular substances such as pyrazoline derivatives described in JP-A-49-105537. be. Polymer type coatings generally have brittle coatings and have problems with film formability, flexibility, etc. If plasticizers are added to solve this problem, problems such as decreased sensitivity arise. On the other hand, low-molecular type materials can be used by selecting an appropriate binder and can overcome the above-mentioned drawbacks of high-molecular type materials. As a result of intensive research into organic low-molecular photoconductive materials that eliminate the above-mentioned drawbacks, the present inventors discovered that a specific hydrazone compound has extremely excellent properties and arrived at the present invention. The hydrazone compound used in the present invention is represented by the following general formula. In the formula, R 1 and R 2 represent an alkyl group, an aralkyl group, or an aryl group that may have a substituent. However, this excludes the case where both R 1 and R 2 are alkyl groups. More specifically, R 1 and R are alkyl groups such as methyl group, ethyl group, propyl group, butyl group, aralkyl group such as benzyl group, phenethyl group, naphthylmethyl group, phenyl group, naphthyl group, anthryl group, pyrenyl group. These alkyl groups, aralkyl groups, and aryl groups may have a substituent. Substituents include alkyl groups such as methyl and ethyl groups, and methoxy groups. , an alkoxy group such as an ethoxy group, a dialkylamino group such as a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, and a halogen atom such as a chlorine atom, a bromine atom, an iotho atom, and the like. The hydrazone compound represented by the general formula (1) has the general formula

【匏】 匏䞭のR1、R2は前ず同じ意味を有する で瀺されるヒドラゞン又はその鉱酞塩ず−ピロ
リゞノベンズアルデヒドから垞法により補造する
こずができる。即ち必芁に応じお瞮合剀ずしお少
量の酞氷酢酞又は無機酞を添加しアルコヌ
ル、DMF、DMSOなどの溶媒䞭で䞊蚘ヒドラゞ
ンずアルデヒドを瞮合するこずによ぀お埗られ
る。 䞀般匏(1)で瀺されるヒドラゟン化合物を含有す
る電子写真感光䜓ずしおは、前述の有機光導電性
物質を甚いた感光䜓のタむプ(i)〜(vii)のいずれにも
適甚できる。䜆し本発明に甚いるヒドラゟン化合
物は、(iii)タむプの感光䜓では正孔掻性マトリツク
スずしおのみ機胜する。 本発明においおは、(iv)タむプの感光䜓即ち電荷
発生局ず電荷茞送局の二局に機胜分離した感光䜓
の電荷茞送局に甚いる電荷茞送材料ずしお䞀般匏
(1)で瀺されるヒドラゟン化合物を䜿甚した堎合、
特に感光䜓の感床が高くなり、残留電䜍も䜎い。 又この堎合繰返し䜿甚時における衚面電䜍、感
床の䜎䞋が小さく、残留電䜍の䞊昇も無芖しうる
皋床のものであり極めお耐久性のすぐれた感光䜓
ずなる。 そこで(iv)タむプの感光䜓に぀いお詳しく説明す
る。局構成ずしおは導電局、電荷発生局、電荷茞
送局が必須であり、電荷発生局は電荷茞送局の䞊
郚あるいは䞋郚のいずれであ぀おも良いが繰返し
䜿甚するタむプの電子写真感光䜓においおは䞻ず
しお物理匷床の面から、堎合によ぀おは垯電性の
面から導電局、電荷発生局、電荷茞送局の順に積
局するこずが奜たしい。導電局ず電荷発生局ずの
接着性を向䞊する目的で必芁に応じお接着局を蚭
けるこずができる。導電局ずしおはアルミニりム
などの金属板たたは金属箔、アルミニりムなどの
金属を蒞着したプラスチツクフむルムあるいはア
ルミニりム箔を玙ずはり合せたもの、導電凊理を
斜した玙などが䜿甚される。接着局の材質ずしお
はカれむン、ポリビニルアルコヌル、氎溶性ポリ
゚チレン、ニトロセルロヌズなどの暹脂が効果的
である。接着局の厚さは0.1〜Ό奜たしくは0.5
〜Όが適圓である。電荷発生局ずしおは光を吞
収し極めお高い効率で電荷担䜓を発生する、セレ
ン、セレン−テルル、セレン−ヒ玠、硫化カドミ
りム、アモ−フアスシリコンなどの無機物質、曎
にピリリりム系染料、チオピリリりム系染料、ト
リアリヌルメタン系染料、チアゞン染料、シアニ
ン染料、顔料、フタロシアニン系顔料、ペリレン
系顔料、むンゞゎ系顔料、チオむンゞゎ系顔料、
キナクリドン系顔料、アゟ系顔料、倚環キノン系
顔料などの有機物質から成る皮々の電荷発生材料
から遞ばれた別個の蒞着局、電荷発生材料ずバむ
ンダヌ暹脂から成る局あるいは暹脂を含たない染
料、顔料から成る局などを甚いるこずができ、特
定の電荷発生材料ずの組合せに限定されるこずは
ない。電荷発生局の膜厚はΌ以䞋奜たしくは
0.01〜Όが望たしい。電荷発生局が電荷発生材
料の暹脂分散液ないしは溶液を塗垃しお圢成され
る堎合は、甚いるバむンダヌ量が倚いず感床に圱
響するため、電荷発生局䞭に占めるバむンダヌの
割合は80以䞋奜たしくは40以䞋が望たしい。
䜿甚されるバむンダヌずしおはポリビニルブチラ
ヌル、ポリ酢酞ビニル、ポリ゚ステル、ポリカヌ
ボネヌト、プノキシ暹脂、アクリル系暹脂、ポ
リアクリルアミド、ポリアミド、ポリビニルピリ
ゞン暹脂、セルロヌズ系暹脂、りレタン暹脂、゚
ポキシ暹脂、カれむン、ポリビニルアルコヌルな
どの各皮暹脂類が甚いられる。 この様にしお圢成した電荷発生局䞊に電荷茞送
局を蚭ける。電荷茞送局の膜厚は〜30Ό奜たし
くは〜20Όである。 本発明に甚いるヒドラゟン化合物は、それ自身
被膜圢成胜をもたないので、各皮バむンダヌ暹脂
ず共に適圓な有機溶剀に溶かした液を通垞の方法
で塗垃也燥し電荷茞送局を圢成する。バむンダヌ
ずしおはアクリル系暹脂、ポリスチレン暹脂、ポ
リ゚ステル暹脂、プノキシ暹脂、ポリカヌボネ
ヌト暹脂、シリコン暹脂、゚ポキシ暹脂、ポリり
レタン暹脂などを甚いるこずができる。又ポリ−
−ビニルカルバゟヌルなどの正孔茞送性ポリマ
ヌをバむンダヌに甚いるこずもできる。 本発明に甚いるヒドラゟン化合物は正孔茞送性
であり、導電局、電荷発生局、電荷茞送局の順に
積局した感光䜓を䜿甚する堎合電荷茞送局衚面を
負に垯電する必芁があり、垯電埌露光するず露光
郚では電荷発生局においお生成した正孔が電荷茞
送局に泚入され、そのあず衚面に達しお負電荷を
䞭和し衚面電䜍の枛衰が生じ未露光郚ずの間に静
電コントラストが生じる。この様にしおできた静
電朜像を正荷電性のトナヌで珟像すれば可芖像が
埗られる。これを盎接定着するかあるいはトナヌ
像を玙やプラスチツクフむルムなどに転写埌珟像
し定着するこずもできる。たた感光䜓䞊の静電朜
像を転写玙の絶瞁局䞊に転写埌珟像し定着する方
法もずれる。珟像剀の皮類や珟像方法、定着方法
は公知のものや公知の方法のいずれを採甚しおも
よく特定のものに限定されるものではない。 (iv)タむプ以倖の感光䜓に぀いおは䟋瀺した文献
に詳しいが、簡単に説明する。 (i)タむプの感光䜓は本発明に甚いるヒドラゟン
化合物ず電子吞匕性物質を組合せるず電荷移動錯
䜓を圢成するのでこの電荷移動錯䜓ずバむンダヌ
暹脂を適圓な溶剀に溶かした液を導電局ないしは
接着局を蚭けた導電局に垞法により塗垃也燥する
こずによ぀お埗られる。電子吞匕性物質ずしお
は、クロルアニル、ブロモアニル、テトラシアノ
゚チレン、テトラシアノキノゞメタン、・・
−トリニトロ−−フルオレノン、・・
・−テトラニトロフルオレノン、・・
−トリニトロ−−ゞシアノメチレンフルオレノ
ン、・・・−テトラニトロキサントン、
・・−トリニトロチオキサントンなど䜎分
子物質や、USP4122113にある様な電子吞匕性モ
ノマヌの重合䜓がある。バむンダヌずしおは(iv)タ
むプの感光䜓に関しお述べた各皮バむンダヌが䜿
甚可胜である。(ii)タむプの感光䜓は本発明に甚い
るヒドラゟン化合物ず(iv)タむプの感光䜓に関しお
述べた電荷茞送局甚のバむンダヌを適圓な溶剀に
溶かし、曎に(iv)タむプの感光䜓に関しお述べた様
な各皮染料を添加し、この液を導電局ないしは接
着局を蚭けた導電局に垞法により塗垃也燥するこ
ずによ぀お埗られる。 (iii)タむプの感光䜓は本発明に甚いるヒドラゟン
化合物を正孔マトリツクスずしお(iv)タむプの感光
䜓に関しお述べた各皮顔料を添加しお埗られる。
(v)タむプの感光䜓は、・−ゞプニル−−
・−ゞメチルアミノプニルチアピリリ
りムパヌクロレヌトの様なピリリりム系染料なら
びにこの様な染料ず共晶錯䜓を圢成する暹脂䟋え
ばポリカヌボネヌト暹脂ず本発明に甚いるヒドラ
ゟン化合物より補造するこずができる。(vi)タむプ
の感光䜓における電荷移動錯䜓は(i)タむプの電荷
移動錯䜓に類䌌するものであり、添加する電荷発
生材料は(iv)タむプの感光䜓に関しお述べた各皮材
料の䜿甚が可胜である。 本発明の電子写真感光䜓は電子写真耇写機に利
甚するのみならず、レヌザヌプリンタヌ、CRT
プリンタヌ、電子写真匏補版システムなどの電子
写真応甚分野にも広く甚いるこずができる。 次に本発明の実斜䟋を瀺す。 実斜䟋  アルミ板䞊にカれむンのアンモニア氎溶液カ
れむン11.2、28アンモニア氎、氎222
mlをマむダヌバヌで塗垃也燥し、塗工量1.0
m2の接着局を圢成した。次に䞋蚘構造匏を有
するゞスアゟ顔料ず ブチラヌル暹脂ブチラヌル化床63モル
を゚タノヌル95mlに溶かした液ず共にボヌルミル
で分散した埌、接着局䞊にマむダヌバヌで塗工
し、也燥埌の塗工量が0.2m2の電荷発生局を
圢成した。次に−ピロリゞノベンズアルデヒド
−・−ゞプニルヒドラゟン、ポリ−
・4′−ゞオキシゞプニル−・2′−プロパン
カヌボネヌト分子量30000、をテトラヒ
ドロフラン70mlに溶かした液を電荷発生局䞊に塗
垃也燥し塗工量が10m2の電荷茞送局を圢成し
た。 この様にしお䜜成した電子写真感光䜓を20℃65
盞察湿床で調湿埌、川口電機(æ ª)補静電耇写
玙詊隓装眮Model SP−428を甚いおスタチツク方
匏で5KVでコロナ垯電し、暗所で10秒間保持し
た埌照床5luxで露光し垯電特性を調べた。初期電
䜍をVo−、暗所での10秒間の電䜍保持率を
Vk、半枛衰露光量を1/2lux.sec.ずし
本感光䜓の垯電特性を瀺す。 Vo560V、Vk91、1/2 7.5lux.sec. 実斜䟋 〜 厚さ100Όのアルミニりム板䞊にセレン−テル
ルテルル10を厚さ0.8Όに蒞着し電荷発生
局を圢成した。次にポリ゚ステル暹脂バむロン
200東掋玡積(æ ª)ず次衚に瀺すヒドラゟン化
合物をテトラヒドロフラン70mlに溶かした液を電
荷発生局䞊に塗垃也燥し、塗工量が11m2の電
荷茞送局を圢成した。この様にしお䜜成した電子
写真感光䜓を実斜䟋ず同様にしお垯電特性を調
べ、その結果を次衚に瀺した。
It can be produced by a conventional method from hydrazine or its mineral acid salt represented by the formula: (in which R 1 and R 2 have the same meanings as above) and P-pyrrolidinobenzaldehyde. That is, it can be obtained by condensing the hydrazine and aldehyde in a solvent such as alcohol, DMF, or DMSO, with the addition of a small amount of acid (glacial acetic acid or inorganic acid) as a condensing agent, if necessary. As the electrophotographic photoreceptor containing the hydrazone compound represented by the general formula (1), any of the photoreceptor types (i) to (vii) using the above-mentioned organic photoconductive substances can be applied. However, the hydrazone compound used in the present invention functions only as a hole activation matrix in the (iii) type photoreceptor. In the present invention, as a charge transport material for use in the charge transport layer of the (iv) type photoreceptor, that is, a photoreceptor that is functionally separated into two layers: a charge generation layer and a charge transport layer, the general formula
When using the hydrazone compound shown in (1),
In particular, the sensitivity of the photoreceptor becomes high and the residual potential is low. Further, in this case, the decrease in surface potential and sensitivity during repeated use is small, and the increase in residual potential is negligible, resulting in an extremely durable photoreceptor. Therefore, the (iv) type photoreceptor will be explained in detail. The layer structure requires a conductive layer, a charge generation layer, and a charge transport layer, and the charge generation layer may be either above or below the charge transport layer, but in electrophotographic photoreceptors of the type that are used repeatedly, it is mainly From the viewpoint of physical strength and, in some cases, chargeability, it is preferable to laminate a conductive layer, a charge generation layer, and a charge transport layer in this order. An adhesive layer may be provided as necessary for the purpose of improving the adhesiveness between the conductive layer and the charge generation layer. As the conductive layer, a metal plate or foil made of aluminum or the like, a plastic film coated with a metal such as aluminum or aluminum foil glued to paper, or paper treated with conductivity is used. Effective materials for the adhesive layer include resins such as casein, polyvinyl alcohol, water-soluble polyethylene, and nitrocellulose. The thickness of the adhesive layer is 0.1 to 5Ό, preferably 0.5
~3Ό is appropriate. For the charge generation layer, inorganic materials such as selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, and amorphous silicon, which absorb light and generate charge carriers with extremely high efficiency, as well as pyrylium dyes, thiopyrylium dyes, and thoria, can be used. Reelmethane dyes, thiazine dyes, cyanine dyes, pigments, phthalocyanine pigments, perylene pigments, indigo pigments, thioindigo pigments,
Separately deposited layers selected from various charge generating materials consisting of organic substances such as quinacridone pigments, azo pigments, polycyclic quinone pigments, layers consisting of charge generating materials and binder resins, or resin-free dyes and pigments. It is not limited to the combination with a specific charge generating material. The thickness of the charge generation layer is preferably 5Ό or less.
A value of 0.01 to 1Ό is desirable. When the charge generation layer is formed by applying a resin dispersion or solution of the charge generation material, the proportion of the binder in the charge generation layer is preferably 80% or less, since a large amount of binder used will affect the sensitivity. Desirably 40% or less.
Various binders used include polyvinyl butyral, polyvinyl acetate, polyester, polycarbonate, phenoxy resin, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine resin, cellulose resin, urethane resin, epoxy resin, casein, and polyvinyl alcohol. Resins are used. A charge transport layer is provided on the charge generation layer thus formed. The thickness of the charge transport layer is 5 to 30 microns, preferably 8 to 20 microns. Since the hydrazone compound used in the present invention does not have a film-forming ability by itself, a solution dissolved in a suitable organic solvent together with various binder resins is applied and dried by a conventional method to form a charge transport layer. As the binder, acrylic resin, polystyrene resin, polyester resin, phenoxy resin, polycarbonate resin, silicone resin, epoxy resin, polyurethane resin, etc. can be used. Matatapoly
Hole transporting polymers such as N-vinylcarbazole can also be used as binders. The hydrazone compound used in the present invention has hole-transporting properties, and when using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, the surface of the charge transport layer must be negatively charged, and exposure after charging is required. Then, in the exposed area, holes generated in the charge generation layer are injected into the charge transport layer, and then reach the surface, neutralize the negative charge, and attenuate the surface potential, creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by developing the electrostatic latent image thus formed with a positively charged toner. This can be directly fixed, or the toner image can be transferred to paper or plastic film and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known one or any known method and are not limited to a specific one. Photoreceptors other than type (iv) are detailed in the cited literature, but will be briefly explained. In the type (i) type photoreceptor, a charge transfer complex is formed when the hydrazone compound used in the present invention is combined with an electron-withdrawing substance, so a solution prepared by dissolving this charge transfer complex and a binder resin in an appropriate solvent is used as a conductive layer or adhesive. It can be obtained by coating and drying a conductive layer by a conventional method. Examples of electron-withdrawing substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2.4.
7-trinitro-9-fluorenone, 2.4.
5,7-tetranitrofluorenone, 2,4,7
-trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
There are polymers of low molecular weight substances such as 2,4,8-trinitrothioxanthone and electron-withdrawing monomers as described in USP 4122113. As the binder, the various binders mentioned in connection with the type (iv) photoreceptor can be used. The (ii) type photoreceptor is prepared by dissolving the hydrazone compound used in the present invention and the binder for the charge transport layer described for the (iv) type photoreceptor in a suitable solvent, and then dissolving the same as described for the (iv) type photoreceptor. It can be obtained by adding various kinds of dyes, applying this liquid to a conductive layer or a conductive layer provided with an adhesive layer, and drying it by a conventional method. The (iii) type photoreceptor can be obtained by using the hydrazone compound used in the present invention as a hole matrix and adding the various pigments mentioned regarding the (iv) type photoreceptor.
(v) type photoreceptor is 2,6-diphenyl-4-
It can be produced from a pyrylium dye such as (N/N-dimethylaminophenyl)thiapyrylium perchlorate, a resin that forms a eutectic complex with such a dye, such as a polycarbonate resin, and the hydrazone compound used in the present invention. . The charge transfer complex in the (vi) type photoreceptor is similar to the charge transfer complex of the (i) type, and the charge generating material to be added can be any of the materials mentioned for the (iv) type photoreceptor. be. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers, CRTs, etc.
It can also be widely used in electrophotographic applications such as printers and electrophotographic plate making systems. Next, examples of the present invention will be shown. Example 1 An ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 222 g of water) was placed on an aluminum plate.
ml) with a Mayer bar and dry, coating amount 1.0
An adhesive layer of g/m 2 was formed. Next, 5g of a disazo pigment having the following structural formula Butyral resin (degree of butyralization 63 mol%) 2g
was dispersed in a ball mill with a solution dissolved in 95 ml of ethanol, and then coated on the adhesive layer with a Mayer bar to form a charge generation layer with a coating weight of 0.2 g/m 2 after drying. Next, 5 g of P-pyrrolidinobenzaldehyde-N/N-diphenylhydrazone, poly-
A solution prepared by dissolving 5 g of 4,4'-dioxydiphenyl-2,2'-propane carbonate (molecular weight 30,000) in 70 ml of tetrahydrofuran was applied onto the charge generation layer and dried, resulting in charge transport with a coating weight of 10 g/ m2. formed a layer. The electrophotographic photoreceptor prepared in this way was heated at 20℃65
% (relative humidity), corona charged at 5KV statically using an electrostatic copying paper tester Model SP-428 manufactured by Kawaguchi Electric Co., Ltd., held in a dark place for 10 seconds, and then exposed to an illuminance of 5lux. The charging characteristics were investigated. The initial potential is Vo (-V), and the potential retention rate for 10 seconds in the dark is
The charging characteristics of this photoreceptor are shown with Vk (%) and the half-attenuation exposure amount as E1/2 (lux.sec.). Vo560V, Vk91%, E1/2 7.5lux.sec. Examples 2 to 4 Selenium-tellurium (10% tellurium) was vapor-deposited to a thickness of 0.8Ό on a 100Ό thick aluminum plate to form a charge generation layer. Next, polyester resin (Vyron
A solution obtained by dissolving 5 g of 200 Toyobo Co., Ltd. and the hydrazone compound shown in the following table in 70 ml of tetrahydrofuran was applied onto the charge generation layer and dried to form a charge transport layer with a coating weight of 11 g/m 2 . The charging characteristics of the electrophotographic photoreceptor thus prepared were examined in the same manner as in Example 1, and the results are shown in the following table.

【衚】 実斜䟋  −ピロリゞノベンズアルデヒド−・−ゞ
プニルヒドラゟンずポリビニルカルバゟヌ
ル分子量30䞇をテトラヒドロフラン70ml
に溶解した液に䞋蚘構造匏の顔料1.0を添加
し、 ボヌルミルで分散埌実斜䟋で甚いたカれむン局
を蚭けたアルミ板のカれむン局の䞊にマむダヌバ
ヌで塗垃、也燥埌の塗工量を10m2ずした。こ
の様にしお䜜成した感光䜓の垯電枬定を実斜䟋
ず同様にしお行い、その結果を次に瀺す。䜆し垯
電極性をずした。Vo520V、Vk86、1/2
14lux.sec. 実斜䟋  真空装眮内に厚さ0.2mmのアルミ基板をセツト
し、十分真空排気した埌、氎玠ガスずシランガス
氎玠ガスに察し15容積を導入し、次いで
13.5MHzの高呚波電界をかけおグロヌ攟電により
基板䞊に厚さ0.3Όのアモヌフアスシリコンの電
荷発生局を圢成した。真空装眮内を倧気圧にもど
した埌、詊料をずりだし䞊蚘電荷発生局䞊にポリ
゚ステル暹脂バむロン200ず䞋蚘構造匏
を有するヒドラゟン化合物をゞクロルメタン
150mlに溶かした液を塗垃
[Table] Example 5 5 g of P-pyrrolidinobenzaldehyde-N/N-diphenylhydrazone and 5 g of polyvinylcarbazole (molecular weight 300,000) were added to 70 ml of tetrahydrofuran.
Add 1.0g of the pigment with the following structural formula to the solution dissolved in After dispersion using a ball mill, the dispersion was applied using a Mayer bar onto the casein layer of the aluminum plate provided with the casein layer used in Example 1, and the coating amount after drying was 10 g/m 2 . Example 1: Charge measurement of the photoreceptor prepared in this way
The results are shown below. However, the charging polarity was determined. Vo520V, Vk86%, E1/2
14lux.sec. Example 6 An aluminum substrate with a thickness of 0.2 mm was set in a vacuum device, and after sufficient evacuation, hydrogen gas and silane gas (15% by volume relative to hydrogen gas) were introduced, and then
A charge generation layer of amorphous silicon with a thickness of 0.3 ÎŒm was formed on the substrate by glow discharge by applying a high frequency electric field of 13.5 MHz. After returning the inside of the vacuum apparatus to atmospheric pressure, take out the sample and add 5 g of polyester resin (Vylon 200) and 5 g of a hydrazone compound having the following structural formula on the charge generation layer in dichloromethane.
Apply the solution dissolved in 150ml

【匏】也燥し、塗 工量10m2の電荷茞送局を圢成した。こうしお
埗られた感光䜓を垯電・露光実隓装眮に蚭眮し、
5KVでコロナ垯電し盎ちに光像を照射した。光
像はタングステンランプ光源を甚い透過型のテス
トチダヌトを通しお照射された。その埌盎ちに正
荷電性の珟像剀トナヌずキダリダヌを含む感
光䜓衚面にカスケヌドするこずによ぀お感光䜓衚
面に良奜なトナヌ画像を埗た。 実斜䟋  厚さ0.2mmのアルミ板䞊に実斜䟋ず党く同じ
電荷茞送局、電荷発生局を順次積局した。こうし
お埗られた感光䜓を甚い実斜䟋ず同じ操䜜をす
るこずにより良奜なトナヌ画像が埗られた。䜆し
コロナ垯電は5KVずし、珟像剀は負荷電性のも
のを䜿甚した。
[Formula] It was dried to form a charge transport layer with a coating weight of 10 g/m 2 . The photoreceptor obtained in this way was installed in a charging/exposure experimental device,
Corona charging was performed at 5KV and a light image was immediately irradiated. The light image was illuminated through a transmission test chart using a tungsten lamp light source. Immediately thereafter, a positively charged developer (including toner and carrier) was cascaded onto the surface of the photoreceptor to obtain a good toner image on the surface of the photoreceptor. Example 7 The same charge transport layer and charge generation layer as in Example 6 were sequentially laminated on an aluminum plate having a thickness of 0.2 mm. A good toner image was obtained by performing the same operations as in Example 6 using the photoreceptor thus obtained. However, the corona charge was set to 5KV, and a negatively charged developer was used.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭R1およびR2は眮換基を有しおいおもよいア
ルキル基、アラルキル基若しくはアリヌル基を瀺
す。䜆しR1、R2のいずれもがアルキル基である
堎合を陀く。で瀺されるヒドラゟン化合物を含
有する感光局を有するこずを特城ずする電子写真
感光䜓。  導電局ず電荷発生局ならびに䞀般匏(1)で瀺さ
れる電荷茞送材料を含有する電荷茞送局の少くず
も局から成る特蚱請求の範囲第項蚘茉の電子
写真感光䜓。  䞀般匏(1)で瀺される化合物が䞋蚘構造匏の化
合物である特蚱請求の範囲第項蚘茉の電子写真
感光䜓。
[Claims] 1. General formula (In the formula, R 1 and R 2 represent an alkyl group, an aralkyl group, or an aryl group that may have a substituent. However, this excludes the case where both R 1 and R 2 are an alkyl group.) An electrophotographic photoreceptor comprising a photosensitive layer containing a hydrazone compound. 2. The electrophotographic photoreceptor according to claim 1, comprising at least three layers: a conductive layer, a charge generation layer, and a charge transport layer containing a charge transport material represented by general formula (1). 3. The electrophotographic photoreceptor according to claim 2, wherein the compound represented by general formula (1) is a compound represented by the following structural formula.
JP13296780A 1980-09-26 1980-09-26 Electrophotographic receptor Granted JPS5758156A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13296780A JPS5758156A (en) 1980-09-26 1980-09-26 Electrophotographic receptor
GB8127994A GB2088074B (en) 1980-09-26 1981-09-16 Electrophotographic photosensitive member
DE19813138252 DE3138252A1 (en) 1980-09-26 1981-09-25 LIGHT SENSITIVE ELEMENT FOR ELECTROPHOTOGRAPHIC PURPOSES
US06/560,255 US4554231A (en) 1980-09-26 1983-12-09 Electrophotographic photosensitive member
GB08410872A GB2138159A (en) 1980-09-26 1984-04-27 Electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13296780A JPS5758156A (en) 1980-09-26 1980-09-26 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5758156A JPS5758156A (en) 1982-04-07
JPS6255778B2 true JPS6255778B2 (en) 1987-11-20

Family

ID=15093681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13296780A Granted JPS5758156A (en) 1980-09-26 1980-09-26 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5758156A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2114766B (en) * 1982-02-05 1985-05-22 Konishiroku Photo Ind Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS5758156A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
JP2805376B2 (en) Organic electronic materials
JP2763315B2 (en) Electrophotographic photoreceptor
JPS6255781B2 (en)
JP2812620B2 (en) Electrophotographic photoreceptor
JPS6255778B2 (en)
JPH07146574A (en) Electrophotographic photoreceptor
JPS6255777B2 (en)
JPS63292137A (en) Electrophotographic sensitive body
JPS61107248A (en) Laminate type electrophotographic sensitive body
JP2990981B2 (en) Electrophotographic photoreceptor
JPS6261254B2 (en)
JP2816065B2 (en) Electrophotographic photoreceptor
JPS61107250A (en) Electrophotographic sensitive body
JPS63218960A (en) Electrophotographic sensitive body
JP2898170B2 (en) Electrophotographic photoreceptor
JPS5821746A (en) Electrophotographic receptor
JPS6255779B2 (en)
JPS6258503B2 (en)
JPH0651548A (en) Electrophotographic sensitive body
JPH04101153A (en) Electrophotographic sensitive body
JPS6139050A (en) Photoconductive film and electrophotographic sensitive body
JPH0477901B2 (en)
JPH0160819B2 (en)
JPH04353857A (en) Photosensitive material for electrophotography
JPS60186846A (en) Electrophotographic sensitive body