JPS6255706A - Method for correcting rectangularity of table positioning action - Google Patents

Method for correcting rectangularity of table positioning action

Info

Publication number
JPS6255706A
JPS6255706A JP19489885A JP19489885A JPS6255706A JP S6255706 A JPS6255706 A JP S6255706A JP 19489885 A JP19489885 A JP 19489885A JP 19489885 A JP19489885 A JP 19489885A JP S6255706 A JPS6255706 A JP S6255706A
Authority
JP
Japan
Prior art keywords
point
positioning
error
shift
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19489885A
Other languages
Japanese (ja)
Inventor
Katsuhiro Matsumoto
松本 勝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19489885A priority Critical patent/JPS6255706A/en
Publication of JPS6255706A publication Critical patent/JPS6255706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To always secure the correct arrival a target positioning point by correcting sequentially the error of rectangularity between a primary action shift in the direction of a reference axis and a secondary action shaft in the direction of an orthogonal axis over an entire working area in a positioning mode as a position displacement amount. CONSTITUTION:The position errors DELTAy and obtained DELTAx between a target intermediate point (b) and a specific shift point (a) in a positioning mode of a table 1 are registered previously to an NC device as parameters respectively. Then a correcting operation is repeated up to an optional target point. That is, a sequential error correcting means is used to shift manually a reference point (o), i.e., a shift start point toward an orthogonal axis B. Thus the table 1 is moved to the first specific shift point (a) from the point (o) and corrected at the first intermediate point (b). Then the table 1 is moved to the next specific shift point (c) from the intermediate point (b) and corrected at the next intermediate point (d). Hereafter the correction control is repeated in the same way and at the same time the table 1 is moved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、数値制御(以下NOと呼ぶ)装置によって
位置決め作動制御される工作機械などのテーブルにおい
て、テーブル位置決め作動のための直角度補正方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a squareness correction method for table positioning operation in a table of a machine tool or the like whose positioning operation is controlled by a numerical control (hereinafter referred to as NO) device. It is related to.

〔従来の技術〕[Conventional technology]

一般にこの種のNG型工作機械などにおいては。 Generally, in this type of NG type machine tools.

第1図に示すように、基準軸方向Aに配置された一方の
主作動軸2と、基準軸方向Aに直交する方向(以下直交
軸方向と呼ぶ)Bに配置された他方の副作動軸3とをテ
ーブルlに連繋させ、これらの各軸2,3をNC装M4
からのプログラムされた駆動指令に基ずく制御により、
駆動装置2a、3aを用いて作動させ、テーブル1を基
準軸方向Aと直交軸方向Bとの二次元方向に移動させて
、テーブル1面での位置決めを行なうようにしている。
As shown in Fig. 1, one main operating shaft 2 is arranged in the reference axis direction A, and the other sub-operating shaft is arranged in a direction B orthogonal to the reference axis direction A (hereinafter referred to as the orthogonal axis direction). 3 is connected to table l, and each of these axes 2 and 3 is connected to NC equipment M4.
Control based on programmed drive commands from
The drive devices 2a and 3a are operated to move the table 1 in a two-dimensional direction of a reference axis direction A and an orthogonal axis direction B, thereby performing positioning on the table 1 surface.

そしてこのような従来例装置においては、通常の場合、
同テーブルlの二次元方向位置決めのための直角度補正
制御は特になされておらず、単にテーブル1.およびそ
の位置決め作動機構の製作に際して、この位置決め作動
機構を構成している前記主作動軸2とこれに直交する副
作動軸3との直角度に対す条誤差が、極力小さくなるよ
うにのみ多くの労力が費やされている現況にある。
In such a conventional device, normally,
No particular squareness correction control is performed for the two-dimensional positioning of the table 1, and only table 1. In manufacturing the positioning operation mechanism, the alignment error with respect to the perpendicularity between the main operation shaft 2 and the sub-operation shaft 3 perpendicular to the main operation shaft 2, which constitute the positioning operation mechanism, is made as small as possible. The current situation is that a lot of effort is being expended.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記のような従来におけるテーブル面で
の二次元方向位置決め作動にあっては、例えば後述する
ところの、第2図にも見られるように、基準軸方向Aと
これに直交する理想軸方向B′とが設定されていて、こ
の設定された基準軸方向Aと実際の直交軸方白日との直
角度に誤差θがある場合、この有角度誤差θによって、
理想軸方向B′に対する直交軸方向B上での送り作動に
伴なうテーブルの位置決め誤差Δyは、基準点0からの
距離!の点aでΔygtsinθとなるもので、しかも
この位置決め誤差Δyは、当然、これらの有角度誤差θ
が大きな値をとる程大きくなり、この誤差が距離Xに対
応して累積され、目標とする移動点への到達が正確に行
なわれず、また同様に有角度誤差θが大きいと、基準軸
方向A上での送り作動に対する位置決め誤差ΔXについ
ても、これがΔxm x(1−cogo)となって無視
できなくなるなどの問題点があった。
However, in the conventional two-dimensional positioning operation on the table surface as described above, for example, as will be described later and as can be seen in FIG. B' is set, and if there is an error θ in the perpendicularity between the set reference axis direction A and the actual orthogonal axis direction, then by this angular error θ,
The positioning error Δy of the table accompanying the feeding operation on the axis direction B orthogonal to the ideal axis direction B' is the distance from the reference point 0! Δygtsinθ at point a, and this positioning error Δy is naturally equal to these angular errors θ
The larger the value, the larger the error is, and this error is accumulated corresponding to the distance The positioning error ΔX with respect to the above-mentioned feeding operation also has the problem that it becomes Δxm x (1-cogo) and cannot be ignored.

〔問題点を解決するための手段〕[Means for solving problems]

従ってこの発明の目的とするところは、基準軸方向に配
置された一方の主作動軸と、この基準軸方向に対する直
交軸方向に配置された他方の副作動軸との有角度誤差を
補止して、テーブル位置決め作動時に、常時2位置決め
目標点へ正しく到達し得るようにした作動工作機械など
におけるテーブル位置決め作動の直角度補正方法を提供
することである。
Therefore, it is an object of the present invention to correct the angular error between one main operating shaft arranged in the direction of the reference axis and the other sub-operating shaft arranged in the direction perpendicular to this reference axis. It is an object of the present invention to provide a squareness correction method for a table positioning operation in a working machine tool or the like, which allows the table to always reach two positioning target points correctly during the table positioning operation.

この目的を達成するために、この発明は、位置決め作動
に際し、位置変位量として、基準軸方向の主作動軸と直
交軸方向の副作動軸との直角度誤差値を、テーブルの作
動開始基準点から位置決め目標点までの全作動範囲に亘
って逐9次に補正させるようにしたものである。
In order to achieve this object, the present invention uses the perpendicularity error value between the main operating axis in the reference axis direction and the auxiliary operating axis in the orthogonal axis direction as the positional displacement amount at the operation start reference point of the table during positioning operation. The correction is made nine times over the entire operating range from to the positioning target point.

〔作    用、〕[Created by,]

すなわち、この発明方法の場合には、基準軸方向と直交
軸方向との直角度誤差値を位置変位量として、位置決め
作動中、逐次に補正させるようにすることで、有角度誤
差に伴なう位置決め誤差を累積させずにテーブルの位置
決め作動制御をなし得るのである。
That is, in the case of the method of the present invention, the perpendicularity error value between the reference axis direction and the orthogonal axis direction is used as the positional displacement amount, and is sequentially corrected during the positioning operation. The table positioning operation can be controlled without accumulating positioning errors.

〔実 施 例〕〔Example〕

以下、この発明に係るテーブル位置決め作動の直角度補
正方法の実施例につき、第2図および第3図を参照して
詳細に説明する。
Hereinafter, an embodiment of the squareness correction method for table positioning operation according to the present invention will be described in detail with reference to FIGS. 2 and 3.

第2図および第3図はこの発明方法の各別の実施例を示
す説明図である。
FIGS. 2 and 3 are explanatory diagrams showing different embodiments of the method of this invention.

まず第2図実施例方法は、前記主作動軸2および副作動
軸3をNG装置による作動制御のちとに手動操作させて
、前記テーブル1の位置決めをなす場合の位置決め作動
とその補正との関係を示している。
First, the method of the embodiment shown in FIG. 2 shows the relationship between the positioning operation and its correction when the table 1 is positioned by manually operating the main operation shaft 2 and the sub-operation shaft 3 after operation control by the NG device. It shows.

すなわち、第2図実施例方法において、符号A。That is, in the method of the embodiment shown in FIG.

B′は前記従来例方法と同様に、それぞれ予め設定され
た基準軸方向とこれに正しく直交す、る理想軸方向、B
は実際の直交軸方向、θはこれらの基準軸方白日と実際
の直交軸方白日との有角度誤差である。
As in the conventional method, B' is the ideal axis direction that is correctly orthogonal to the reference axis direction set in advance, and
is the actual orthogonal axis direction, and θ is the angular error between these reference axis directions and the actual orthogonal axis directions.

このように基準軸方白日と実際の直交軸方白日との間に
有角度誤差θがある場合にあっては、副作動軸3.つま
り実際の直交軸方白日への手動作動指令によって、テー
ブルlを移動開始点としての基準点0位置から距離!の
特定移動点aまで作動させると、前記したように目標中
間点すにおいては、ΔysxsinO、Δ!! x(1
−cogo)の誤差分だけのずれを生じ、作動を続ける
ことで、この誤差分が次第に累積されて、結果的にテー
ブル1を任意の目標点に到達させ得ないことになる。
In this way, if there is an angular error θ between the reference axis direction and the actual orthogonal axis direction, the sub-operating axis 3. In other words, by issuing a manual operation command to the actual orthogonal axis direction, the table l is moved from the reference point 0 position as the starting point to the distance! When the operation is performed to a specific moving point a, as described above, at the target intermediate point, ΔysxsinO, Δ! ! x(1
-cogo), and by continuing the operation, this error will gradually accumulate, and as a result, the table 1 will not be able to reach any target point.

そこでこの第2図実施例方法では、テーブルlの位置決
め作動におけるところの、目標中間点すに対する特定移
動点dでの位置誤差分、すなわちこへではΔysxsi
nθ、Δ!鱈x(1−cosO)をパラメータとして、
NG装置に予め登録しておき、一つの基準点0位置にあ
るテーブルlが、距離xの特定移動点aまで移動される
と、こ−までの位置誤差分を補正して、このときの移動
点aを目標中間点すに位置決めさせ、以下、この補正操
作を任意の目標点まで逐次に繰換すようにしておく。
Therefore, in the method of the embodiment shown in FIG.
nθ, Δ! With cod x (1-cosO) as a parameter,
If table l, which is registered in advance in the NG device and is located at one reference point 0 position, is moved to a specific moving point a at a distance x, the position error up to this point is corrected and the movement at this time is The point a is positioned at the target intermediate point, and thereafter, this correction operation is successively repeated up to an arbitrary target point.

すなわち、この逐次誤差補正手段を有することにより、
移動開始点としての基準点0位置から直交軸方向B側へ
手動移動指令をなすと、第1図で明らかなように、テー
ブル1は、まず移動開始点である基準点0から最初の特
定移動点aに至って最初の目標中間点すに補正制御され
、ついでこの最初の目標中間点すから次の特定移動点C
に至って次の目標中間点dに補正制御され、以下、同様
にこの補正制御を逐次に繰換えしながらテーブルlを移
動させることにより、直角度誤差θによる位置決め誤差
を累積させることなしに、テーブル1をして、最大Δf
f−xsinθ、Δx−x(1−cosθ)に作動制御
させて、基準点0から任意の目標点に正確に位置決め制
御させ得るのである。
That is, by having this sequential error correction means,
When a manual movement command is issued from the reference point 0 position as the movement start point to the orthogonal axis direction B side, as is clear from FIG. When point a is reached, correction control is performed to the first target intermediate point, and then from this first target intermediate point to the next specific moving point C.
Then, the correction control is performed to the next target intermediate point d, and by moving the table l while repeating this correction control one after another, the table l can be moved without accumulating the positioning error due to the squareness error θ. 1 and the maximum Δf
By controlling the operation of f-x sin θ and Δx-x (1-cos θ), it is possible to control the positioning accurately from the reference point 0 to an arbitrary target point.

次に第3図実施例方法は、前記主作動軸2および副作動
軸3をNC装置でのプログラム指令のみにより作動制御
させて、前記テーブル1の位置決めをなす場合の位置決
め作動とその補正との関係を示している。
Next, the method of the embodiment shown in FIG. 3 describes the positioning operation and its correction when positioning the table 1 by controlling the operation of the main operating axis 2 and the auxiliary operating axis 3 only by program commands from an NC device. It shows a relationship.

この場合には、一つの基準点0位置にあるテーブルlに
対して、プログラム制御により日!!の位置決め作動指
令が与えられた場合、このテーブル1は、前記したよう
に、こ−でも基準点0から距aXの特定移動点aまで移
動したとき、目標中間点すにおいては、Δy*xsin
θ、Δ!! z(1−cosθ)の誤差分だけのずれを
生ずることになる。
In this case, the date! ! When a positioning operation command of
θ, Δ! ! This results in a deviation by an error of z(1-cos θ).

そこでこの第3図実施例方法では、プログラム指令ベク
トル省に対し、誤差補正ベクトル^を合成して位置決め
ベクトルB′を演算し、このベクトルB′を位置決め指
令とすることにより、前記直角度誤差θによる位置誤差
をなくして、こ−でも基準点0から任意の目標点に正確
に位置決め制御させ得るのである。
Therefore, in the method of the embodiment shown in FIG. 3, the error correction vector ^ is combined with the program command vector to calculate the positioning vector B', and this vector B' is used as the positioning command to correct the squareness error θ. By eliminating the positional error due to this, it is possible to precisely control the positioning from the reference point 0 to any target point.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明方法−にょれば5基準作動
方向の主作動軸と、この基準作動方向に対して直交する
0作動方向の副作動軸とを作動制御させて、両件動方向
にテーブルを位置決め作動させるようにしたNC型の工
作機械などにおいて、基準作動方向に対する直交軸方向
の直角度誤差をパラメータとして、NC装置に予め登録
しておき、位置決め作動に際しては、直角度誤差に伴な
う位置決め誤差を累積させずに補正制御させるようにし
たから、直角度誤差に伴なう位置決め誤差を解消して、
常時、テーブルを任意の目標点に正確に位置決め作動制
御できるものである。
As described in detail above, the method of the present invention is to control the operation of the main operating axis in the 5 reference operating direction and the sub operating axis in the 0 operating direction orthogonal to this reference operating direction. In NC-type machine tools, etc., which position the table during positioning, the perpendicularity error in the orthogonal axis direction with respect to the reference operating direction is registered in advance as a parameter in the NC device, and the perpendicularity error is used during positioning. Since the correction control is performed without accumulating the accompanying positioning error, the positioning error caused by the squareness error can be eliminated.
It is possible to accurately position and control the table to any target point at any time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な被移動制御テーブルに対する主作動軸
と副作動軸との配置構成を示す平面説明図、第2図およ
び第3図はこの発明に係るテーブル位置決め作動の直角
度補正方法の各別の実施例による位置決め作動と補正と
の関係を示すそれぞれ説明図である。 1・・・・テーブル、2・・・・主作動軸、2a・・・
・主作動軸の駆動装置、3・・・・副作動軸、3a・・
・・副作動軸の駆動装置、4・・・・NC(数値制御)
装置。 A・・・・基準軸方向、B′・・・・基準軸方向に正し
く直交する理想軸方向、B・・・・実際の直交軸方向。 θ・・・・基準軸方向と実際の直交軸方向の直角度誤差
、a、c・・・・特定移動点、 b、d・・・・目標中
間点、0・・・・移動開始点としての基準点、I・・・
・、基準点から特定移動点および目標中間点までの距離
。 ΔX・・・・基準軸方向上での送り作動に対する位置決
め誤差、Δy・・・・直交軸方向上での送り作動に対す
る位置決め誤差。
FIG. 1 is an explanatory plan view showing the arrangement of a main operating shaft and a sub-operating shaft for a general controlled table to be moved, and FIGS. 2 and 3 show a squareness correction method for table positioning operation according to the present invention. FIG. 7 is an explanatory diagram showing the relationship between positioning operation and correction according to different embodiments. 1...Table, 2...Main operating axis, 2a...
・Main operating shaft drive device, 3...Sub-operating shaft, 3a...
・・Drive device for sub-operating shaft, 4・・・・NC (numerical control)
Device. A: Reference axis direction, B': Ideal axis direction that is correctly orthogonal to the reference axis direction, B: Actual orthogonal axis direction. θ...Perpendicularity error between the reference axis direction and the actual orthogonal axis direction, a, c...Specific moving point, b, d...Target intermediate point, 0...As the movement start point The reference point of I...
・Distance from the reference point to the specific moving point and target intermediate point. ΔX: Positioning error with respect to feed operation on the reference axis direction, Δy: Positioning error with respect to feed operation on the orthogonal axis direction.

Claims (1)

【特許請求の範囲】[Claims] 基準作動方向に配置された主作動軸と、この基準作動方
向に対して直交する作動方向に配置された副作動軸とを
有し、これらの主、副両作動軸の作動制御により、両作
動方向に位置決め作動させる工作機械などのテーブルに
おいて、位置決め作動に際しては、位置変位量として、
前記主作動軸と副作動軸との直角度に対する誤差値を、
テーブルの作動開始基準点から位置決め目標点までの全
作動範囲に亘つて逐次に補正させ、直角度誤差に伴なう
位置決め誤差を累積させずに作動制御し得るようにした
ことを特徴とするテーブル位置決め作動の直角度補正方
法。
It has a main operating axis arranged in the standard operating direction and a sub-actuating axis arranged in the operating direction perpendicular to the reference operating direction, and by controlling the operation of both the main and sub-actuating axes, both operations can be performed. In the table of a machine tool, etc. that performs positioning operation in the direction, during positioning operation, the amount of positional displacement is
The error value for the perpendicularity between the main operating axis and the auxiliary operating axis is
A table characterized in that the operation can be controlled without accumulating positioning errors due to squareness errors by sequentially correcting the entire operation range from the table's operation start reference point to the positioning target point. Squareness correction method for positioning operation.
JP19489885A 1985-09-05 1985-09-05 Method for correcting rectangularity of table positioning action Pending JPS6255706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19489885A JPS6255706A (en) 1985-09-05 1985-09-05 Method for correcting rectangularity of table positioning action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19489885A JPS6255706A (en) 1985-09-05 1985-09-05 Method for correcting rectangularity of table positioning action

Publications (1)

Publication Number Publication Date
JPS6255706A true JPS6255706A (en) 1987-03-11

Family

ID=16332160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19489885A Pending JPS6255706A (en) 1985-09-05 1985-09-05 Method for correcting rectangularity of table positioning action

Country Status (1)

Country Link
JP (1) JPS6255706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457309A (en) * 1987-08-27 1989-03-03 Kiriu Machine Mfg Method for correcting traveling of numerical controller
KR20230029941A (en) 2020-07-28 2023-03-03 시바우라 기카이 가부시키가이샤 Manufacturing method of processing machine, processing system and work piece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457309A (en) * 1987-08-27 1989-03-03 Kiriu Machine Mfg Method for correcting traveling of numerical controller
KR20230029941A (en) 2020-07-28 2023-03-03 시바우라 기카이 가부시키가이샤 Manufacturing method of processing machine, processing system and work piece
DE112021004058T5 (en) 2020-07-28 2023-08-03 Shibaura Machine Co., Ltd. Machining device, machining system and method for producing machined workpieces

Similar Documents

Publication Publication Date Title
US20160257002A1 (en) Robot system having robot operated in synchronization with bending machine
EP0081590B1 (en) Tool diameter correcting method for numerical control device
JPS6149205A (en) Robot control system
EP2821869A1 (en) CNC machine for cutting with plasma, oxy-fuel, and water jet, capable of direct or additional bevel cutting, using autocalibration for self-adjustment, and the method of its adjustment by autocalibration
US20060037951A1 (en) Laser processing apparatus
JPS61109109A (en) Positioning method for planar multi-joint type robot
JPH02160487A (en) Correction of manual feeding of robot
US5911892A (en) Jog operation method for robot
JPS6255706A (en) Method for correcting rectangularity of table positioning action
JP2000084877A (en) Off-line teaching method of robot with traverse axis
JPH06190755A (en) Method of fixing and controlling robot position
JPS63308613A (en) Control system for servo motor
JP2007316862A (en) Servo driver and servo system with multiple axes
JPH07205014A (en) Grinding robot
JP2684782B2 (en) Data correction device
JPH07265958A (en) Method for controlling robot for bending machine
JPH0671715B2 (en) Control method for automatic machine tools
CN111847856A (en) Scribing device and control method
JPS63191204A (en) Environment adapting method for off-line programming robot data
JP2020183039A (en) Scribe apparatus and control method
JPH0592378A (en) Industrial robot
JPS6362570A (en) Device for correcting deviation of sealant coating
JPS60203368A (en) Weld line following method in welding robot
JP2010082729A (en) Working program correction method and working program correction device in robot
JPH0695295B2 (en) Control method for industrial robot