JPS6255418A - Engine with pressure wave supercharger - Google Patents

Engine with pressure wave supercharger

Info

Publication number
JPS6255418A
JPS6255418A JP19411785A JP19411785A JPS6255418A JP S6255418 A JPS6255418 A JP S6255418A JP 19411785 A JP19411785 A JP 19411785A JP 19411785 A JP19411785 A JP 19411785A JP S6255418 A JPS6255418 A JP S6255418A
Authority
JP
Japan
Prior art keywords
pressure wave
wave supercharger
fresh air
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19411785A
Other languages
Japanese (ja)
Other versions
JPH0563613B2 (en
Inventor
Akira Iwamoto
朗 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19411785A priority Critical patent/JPS6255418A/en
Publication of JPS6255418A publication Critical patent/JPS6255418A/en
Publication of JPH0563613B2 publication Critical patent/JPH0563613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To constantly keep high the blowby ratio of a fresh air, which blows through from a fresh air passage to an exhaust passage via a pressure wave supercharger, and to keep the pressure wave supercharger's adiabatic efficiency high by controlling a revolving speed ratio variable means in accordance with the fresh air blowby ratio. CONSTITUTION:The fresh air blowby ratio etasp of the fresh air, which blows through from an intake air passage 2 to an exhaust passage 3 via a pressure wave supercharger 4, is calculated by a computer 22, according the following formula: etasp={21-[O2]3/21-[O2]4}-1 where [O2]3, [O2]4, and 21 represent the oxygen concentration at O2-sensors 20and 21 and of the atmosphere, respectively. In case etasp<100%, a pulley 5 is moved so that the adiabatic efficiency is heightened. A difference E in the fresh air blowby ratio etasp between the previous time an this time is computed. In case E>5 or E<-5, the pulley ratio is varied by a predetermined amout so that the E-value becomes -5<=E<=5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧力波過給機を備えたエンジンの改良に関し
、特に圧力波過給機の過給能力の向上対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvement of an engine equipped with a pressure wave supercharger, and particularly to measures for improving the supercharging capacity of a pressure wave supercharger.

(従来の技術) 従来より、エンジンに対して吸気を過給する過給機の一
つとして圧力波過給機が知られている(特公昭38−1
153号公報参照)。この圧力波過給機は、エンジンに
より回転駆動されると共に上記エンジンの排気通路およ
び吸気通路に跨って配置され、その内部には、ケース内
に回転可能に支持され多数の小室を形成する多数の隔壁
が放射状に配設されたロータと、該ロータの一端側のケ
ースに形成された吸気導入口および吸気吐出口並びに上
記〇−夕の他端側のケースに形成された排気導入口およ
び排気吐出口とが備えられていて、上記ロータのエンジ
ン回転数に応じた回転に伴い、吸気導入口からロータの
小室に吸入した吸気に対して排気導入口から該小室に排
気を流入させ、両者の圧力差により吸気を圧縮、加速し
て吸気吐出口から吐出する。つまり排気の圧力波コ、ネ
ルギーを吸気に伝達することにより、吸気の過給を行う
一方、上記小室内に残る排気を排気吐出口が、ら排出さ
せるとともに、吸気導入口から該小室内に吸気を導入す
ることにより掃気を行うことを繰返すようにしたもので
ある。
(Prior Art) A pressure wave supercharger has been known as one of the superchargers for supercharging intake air into an engine (Japanese Patent Publication No. 38-1
(See Publication No. 153). This pressure wave supercharger is rotatably driven by an engine and is disposed across the exhaust passage and intake passage of the engine, and has a large number of chambers rotatably supported within a case. A rotor with partition walls arranged radially, an intake inlet and an intake outlet formed in a case on one end of the rotor, and an exhaust inlet and an exhaust outlet formed in a case on the other end of the rotor. As the rotor rotates in accordance with the engine speed, the intake air drawn into the small chamber of the rotor from the intake inlet is caused to flow into the small chamber from the exhaust inlet, and the pressure between the two is reduced. The difference compresses and accelerates the intake air, which is then discharged from the intake and discharge ports. In other words, by transmitting the pressure waves and energy of the exhaust gas to the intake air, the intake air is supercharged, while the exhaust gas remaining in the small chamber is discharged through the exhaust discharge port, and the air is drawn into the small chamber from the intake inlet. By introducing air, the scavenging process is repeated.

(発明が解決しようとする問題点) ところで、上記の如き圧力波過給機を備えたエンジンに
おいて、圧力波過給機の過給能力はその断熱効率に強く
依存し、断熱効率が高い場合には過給能力が増大して、
エンジン出力のより一層の向上を図ることができるとと
もに、圧力波過給機の温度上昇が抑えられてその信頼性
の向上を図ることができ、好ましい。しかるに、圧力波
過給機の断熱効率は種々の要因で変化し、例えばエンジ
ン回転数や負荷、その他エンジン回転数に対する圧力波
過給機の回転数の比、吸排気系の流通抵抗、吸気通路に
インタークーラを配設した場合の過給吸気の冷却効率、
排気エネルギーなどの実走行条件の変化に応じて経時的
に変化する特性を示す。
(Problems to be Solved by the Invention) By the way, in an engine equipped with a pressure wave supercharger as described above, the supercharging capacity of the pressure wave supercharger strongly depends on its adiabatic efficiency, and when the adiabatic efficiency is high, has increased supercharging capacity,
This is preferable because it is possible to further improve the engine output, and also to suppress the temperature rise of the pressure wave supercharger, thereby improving its reliability. However, the adiabatic efficiency of a pressure wave supercharger changes depending on various factors, such as the engine speed and load, the ratio of the pressure wave supercharger's speed to other engine speeds, the flow resistance of the intake and exhaust system, and the intake passage. Cooling efficiency of supercharged intake air when an intercooler is installed in
It shows characteristics that change over time in response to changes in actual driving conditions such as exhaust energy.

そのため、過給能力の向上を図るべく圧力波過給機の断
熱効率を高く保持制御する場合には、その構成がかなり
複雑になるという欠点が生じる。
Therefore, when maintaining and controlling the adiabatic efficiency of the pressure wave supercharger at a high level in order to improve the supercharging capacity, a disadvantage arises in that the configuration becomes quite complicated.

さりとて、断熱効率の制御因子を主要なものに限定して
、エンジン回転数と負荷とに応じて見込み制御する場合
には、制御精度の低下を招き、過給能力の向上および温
度上昇の抑制をさほど期待できない。
However, if the control factors of adiabatic efficiency are limited to the main ones and prospective control is performed according to the engine speed and load, the control accuracy will decrease, and it will be difficult to improve the supercharging capacity and suppress the temperature rise. I can't expect much.

本発明は斯かる点に鑑みてなされたものであり、圧力波
過給機での掃気過程では圧力波過給機上流側の吸気通路
から導入された新気が排気と共に圧力波過給機下流側の
排気通路に吹抜けている。いわゆる新気吹抜けを生じる
ことに着目したものである。すなわち、圧力波過給機の
断熱効率は上記新気吹抜は時の新気吹抜は量、つまり圧
力波過給機での新気吹抜は率と密接な関係があり、この
新気吹抜は率の変化特性はエンジン回転数や負荷の要因
に加えて、上記エンジン回転数に対する圧力波過給機の
回転数比や吸排気系の流通抵抗などの実走行条件の変化
に応じて断熱効率と共に大小変化し、この新気吹1友は
率が高ければ圧力波過給機の断熱効率も高くなる特性を
示すことに着目し、その目的は、圧力波過給機を備えた
エンジンにJ5いて、圧力波過給機での新気吹抜は率に
応じてエンジン回転数に対する圧力波過給機の回転数の
比を変化させることにより、エンジン回転数や負荷の変
化は勿論のこと実走行条件の変化にも応じた検出制御を
行って圧力波過給機の断熱効率を常に高く保持して、過
給能力のより一層の向上を図るとともに、圧力波過給機
のWm上昇をより有効に抑制することにある。
The present invention has been made in view of this point, and in the scavenging process in a pressure wave supercharger, fresh air introduced from the intake passage upstream of the pressure wave supercharger is discharged together with the exhaust gas downstream of the pressure wave supercharger. It blows through into the side exhaust passage. It focuses on the phenomenon of so-called fresh air blowing through. In other words, the adiabatic efficiency of a pressure wave supercharger is closely related to the amount of fresh air vented, or the rate of fresh air vented in a pressure wave supercharger. In addition to the engine speed and load factors, the change characteristics of the adiabatic efficiency change depending on actual driving conditions such as the rotation speed ratio of the pressure wave supercharger to the engine speed and the circulation resistance of the intake and exhaust system. We focused on the fact that the higher the ratio, the higher the adiabatic efficiency of the pressure wave supercharger. Fresh air blowing in a pressure wave supercharger changes the ratio of the pressure wave supercharger's rotation speed to the engine speed according to the rate, so it can be adjusted not only to changes in engine speed and load but also to actual driving conditions. Detection control is performed in response to changes to maintain the adiabatic efficiency of the pressure wave supercharger at a high level at all times, further improving supercharging capacity and more effectively suppressing the rise in Wm of the pressure wave supercharger. It's about doing.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、上記の
如き圧力波過給機を備えたエンジンにおいて、エンジン
の回転数に対する圧力波過給機の回転数の比を変化させ
る回転数比可変手段と、上記圧力波過給機上流側および
下流側の排気通路の排気濃度をそれぞれ検出する第1お
よび第2排気濃度検出手段と、該両排気S度検出手段の
出力に訪づいて上記圧力波過給機を介して吸気通路から
排気通路へ吹1友ける新気の新気吹抜は率を篩用する吹
抜は串篩用手段と、該吹抜は率算出手段で算出された新
気吹抜は率に応じて上記回転数比可変手段を制御する制
御手段とを設ける構成としたちのである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention provides an engine equipped with a pressure wave supercharger as described above. a rotation speed ratio variable means for changing the ratio of rotation speeds; first and second exhaust gas concentration detection means for detecting exhaust gas concentrations in the upstream and downstream exhaust passages of the pressure wave supercharger, respectively; The atrium of fresh air that reaches the output of the detection means and is blown from the intake passage to the exhaust passage through the pressure wave supercharger is sieved by means for sieving the rate; The fresh air vent calculated by the rate calculation means is provided with a control means for controlling the rotation speed ratio variable means in accordance with the rate.

(作用) 以上の構成により、本発明では、圧力波過給機を介して
吸気通路から排気通路へ吹抜ける新気の新気吹抜は率は
、エンジン回転数や負荷の変化に加えて吸排気系の流通
抵抗や排気エネルギーなどの実走行条件の変化に応じて
大小変化しようとするものの、この新気吹抜は率が高く
なると圧力波過給機の断熱効率も^くなる特性を示ずこ
とがら、この新気吹抜は率が第1および第2排気81度
検出手段の出力に基づき吹抜は率算出手段で算出される
と、この新気吹抜は亭が高くなるよう圧力波過給機の回
転数の比が制御手段により大小制御されるので、圧力波
過給機の断熱効率が常に高く保持され、その結果、過給
能力が増大してエンジン出力がより一層向上するととも
に、圧力波過給機の温度上昇が有効に抑制されてその信
頼性が向上することになる。
(Function) With the above configuration, in the present invention, the rate of fresh air blowing from the intake passage to the exhaust passage via the pressure wave supercharger is determined by the change in the engine speed and load. Although it tends to change in size according to changes in actual running conditions such as system flow resistance and exhaust energy, this fresh air vent does not exhibit the characteristic that as the rate increases, the adiabatic efficiency of the pressure wave supercharger also decreases. However, when the rate of this fresh air vent is calculated by the rate calculation means based on the output of the first and second exhaust 81 degree detection means, the rate of this fresh air vent is calculated by the pressure wave supercharger so that the bow is higher. Since the rotation speed ratio is controlled by the control means, the adiabatic efficiency of the pressure wave supercharger is always maintained high, and as a result, the supercharging capacity is increased and the engine output is further improved, and the pressure wave supercharger is The temperature rise of the feeder is effectively suppressed and its reliability is improved.

(実施例) 以下、本発明の実施例を図面に塞づいて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は圧力波過給機付エンジンの全体概略構成を示し
、1は第1〜第4気筒1a〜1dを有する4気筒エンジ
ン、2は上流端が大気に開口し下流端が4つの分岐通路
2a〜2dを介してエンジン1の各気筒1a〜1dに開
口して該エンジン1の各気筒1a〜1dに吸気を供給す
る吸気通路、3は上流端が分岐通路38〜3dを介して
エンジン1の各気筒1a〜1dに開口し下流端が大気に
開口してエンジン1の各気筒1a〜1dからの排気を排
出する排気通路である。
Figure 1 shows the overall schematic configuration of an engine with a pressure wave supercharger. 1 is a 4-cylinder engine having the first to fourth cylinders 1a to 1d, and 2 is a four-cylinder engine with an upstream end opening to the atmosphere and a downstream end having four branches. An intake passage 3 opens to each cylinder 1a to 1d of the engine 1 through passages 2a to 2d and supplies intake air to each cylinder 1a to 1d of the engine 1, and 3 has an upstream end connected to the engine through branch passages 38 to 3d. This is an exhaust passage that opens into each of the cylinders 1a to 1d of the engine 1 and whose downstream end opens to the atmosphere to discharge exhaust gas from each of the cylinders 1a to 1d of the engine 1.

まIζ、4は上記吸気通路2および排気通路3に跨って
配設された圧力波過給機であって、該圧力波過給IR4
は、その回転軸4aと上記エンジン1の出力軸1eとの
間にプーリ5,5を介して■ベルト6を巻)1)けたベ
ルト伝動機構7により回転駆動され、その内部構成は、
公知の如くケース内に回転可能に支持されたロータを有
していて、該ロータの外周には多数の隔壁が放射状に配
設され、該隔壁によってロータ外周に円周方向に多数の
小室が形成されている。上記ロータの一端側のケースに
は吸気導入口4bおよび吸気吐出口4cが形成されてお
り、該吸気導入口4bは吸気通路2の圧力波過給機4上
流に、吸気吐出口4cは吸気通路2の圧力波過給機4下
流側にそれぞれ連通している。また、上記ロータの他端
側のケースには排気導入口4dおよび排気吐出口4eが
形成されており、それぞれ排気通路3の圧力波過給機4
上流側および下流側に連通している。しかして、ロータ
の回転に伴い、低圧の吸気が閉じ込められた小室内に該
圧力波過給14上流側の排気通路3がら高圧の排気が排
気導入口4dを介して流入すると、その圧力差により圧
力波(圧縮衝撃波)が発生して小室内を伝播し、吸気に
排気の圧力波エネルギーが伝達されることにより、吸気
を圧縮、加速して吸気吐出口4cから圧力波過給機4下
流側の吸気通路2に吐出し、吸気の過給を行い、次いで
上記小室内に流入した排気を排気吐出口4eから圧力波
過給機4下流側の排気通路3に排出するとともに、圧力
波過給機4上流側の吸気通路2から吸気を吸気導入口4
bを介して該小室内に導入して排気の掃気を行うことを
繰返すように構成されている。ここに、上記排気の掃気
を行うために圧力波過給機4上流側の吸気通路2から導
入されて該圧力波過給機4下流側の排気通路3に吹抜け
る新気の新気吹抜(プ率は、圧力波過給機4の断熱効率
が高くなるほど高くなる特性を示す。
Iζ,4 is a pressure wave supercharger disposed across the intake passage 2 and exhaust passage 3, and the pressure wave supercharger IR4
is rotationally driven by a girder belt transmission mechanism 7 (1) wrapped around a belt 6 via pulleys 5, 5 between its rotating shaft 4a and the output shaft 1e of the engine 1, and its internal configuration is as follows:
As is well known, it has a rotor rotatably supported within a case, and a number of partition walls are arranged radially around the outer periphery of the rotor, and a number of small chambers are formed in the circumferential direction on the outer periphery of the rotor by the partition walls. has been done. An intake inlet 4b and an intake outlet 4c are formed in the case at one end of the rotor, the intake inlet 4b is upstream of the pressure wave supercharger 4 in the intake passage 2, and the intake outlet 4c is in the intake passage The two pressure wave superchargers 4 are connected downstream. Further, an exhaust inlet 4d and an exhaust outlet 4e are formed in the case on the other end side of the rotor, and the pressure wave supercharger 4 of the exhaust passage 3 is connected to the exhaust passage 3, respectively.
It communicates with the upstream and downstream sides. As the rotor rotates, when high-pressure exhaust gas flows into the small chamber in which low-pressure intake air is confined through the exhaust passage 3 on the upstream side of the pressure wave supercharging 14, the pressure difference causes A pressure wave (compression shock wave) is generated and propagated inside the small chamber, and the pressure wave energy of the exhaust gas is transmitted to the intake air, thereby compressing and accelerating the intake air and moving it from the intake discharge port 4c to the downstream side of the pressure wave supercharger 4. The exhaust gas flowing into the small chamber is then discharged from the exhaust outlet 4e to the exhaust passage 3 on the downstream side of the pressure wave supercharger 4, and pressure wave supercharging is performed. Intake air from the intake passage 2 on the upstream side of the machine 4 is transferred to the intake inlet 4
It is configured to repeatedly introduce the air into the small chamber via b and scavenge the exhaust air. Here, in order to scavenge the exhaust air, fresh air is introduced from the intake passage 2 on the upstream side of the pressure wave supercharger 4 and blows through to the exhaust passage 3 on the downstream side of the pressure wave supercharger 4. The coefficient exhibits a characteristic that the higher the adiabatic efficiency of the pressure wave supercharger 4, the higher the coefficient becomes.

そして、上記ベルト伝動機構7の圧力波過給機4側のプ
ーリ5は、第2図に詳ホするように、圧力波過給機4の
回転軸4a端部に固定した固定フランジ5aと、該固定
フランジ5aに対峙する可動フランジ5bと、該両フラ
ンジ5a、5bの間に縮装されて可動フランジ5bを第
2図右方に付勢する二重スプリング5cとからなる。ま
た、上記プーリ5近傍には、その可動フランジ5bを軸
線方向に移動させるブーり比制御装置10#l!ii!
置されている。該プーリ比制御装置10は、上記プーリ
5の可動フランジ5bを回転自在に支持する軸受12が
、その背面中央部に固定したネジ部材13を介して、圧
力波過給機4に固定した固定板14に第2図左右方向に
移動可能に取付けられていて、上記ネジ部材13は歯車
よりなる減速機構15を介してステッピングモータ16
に回転可能に連結されている。よって、ステッピングモ
ータ16によるネジ部材13の回転駆動により軸受12
を第2図左右方向に移動させてプーリ5の可動7ランジ
5bを軸線方向に移動させることにより、ベルト伝動機
構7の各プーリ5,5間のプーリ比を可変として、上記
エンジン1の回転数に対する圧力波過給機4の回転数の
比を変化させるようにした回転数比可変手段17を構成
している。
The pulley 5 on the pressure wave supercharger 4 side of the belt transmission mechanism 7 has a fixed flange 5a fixed to the end of the rotating shaft 4a of the pressure wave supercharger 4, as shown in detail in FIG. It consists of a movable flange 5b facing the fixed flange 5a, and a double spring 5c compressed between the flanges 5a and 5b to urge the movable flange 5b to the right in FIG. Also, in the vicinity of the pulley 5, there is a pulley ratio control device 10#l that moves the movable flange 5b in the axial direction! ii!
It is placed. The pulley ratio control device 10 has a bearing 12 that rotatably supports the movable flange 5b of the pulley 5, and a fixed plate fixed to the pressure wave supercharger 4 via a screw member 13 fixed to the central part of the back surface of the bearing 12. The screw member 13 is attached to the stepping motor 16 via a speed reduction mechanism 15 made of gears.
is rotatably connected to. Therefore, the rotation of the screw member 13 by the stepping motor 16 causes the bearing 12 to be rotated.
By moving the movable 7 flange 5b of the pulley 5 in the axial direction by moving it in the left-right direction in FIG. A rotation speed ratio variable means 17 is configured to change the ratio of the rotation speed of the pressure wave supercharger 4 to the rotation speed of the pressure wave supercharger 4.

さらに、第1図の排気通路3の圧力波過給機4上流側お
よび下流側には、それぞれ排気ガス中の酸素S度により
排気mr1Kをリニアに検出する第1および第2の排気
* ta検出手段としての第1および第2の02センサ
20.21が介設されていて、該第1および第2の02
センサ20,21の検出信号は演算機22に入力されて
おり、該演惇機22により上記プーリ比制御装置10の
ステッピングモータ16が駆動ti11′mされる。尚
、第1図中、23は吸気通路2の圧力波過給機4下流側
に配設された空冷式のインタークーうであって、圧力波
過給機4で過給された高温の吸気を外気(走行風)との
熱交換により冷却するものである。
Furthermore, on the upstream and downstream sides of the pressure wave supercharger 4 of the exhaust passage 3 in FIG. First and second 02 sensors 20.21 as means are interposed, and the first and second 02
Detection signals from the sensors 20 and 21 are input to a computing machine 22, and the stepping motor 16 of the pulley ratio control device 10 is driven by the computing machine 22. In FIG. 1, reference numeral 23 denotes an air-cooled intercouple disposed downstream of the pressure wave supercharger 4 in the intake passage 2, which is used to collect high-temperature intake air supercharged by the pressure wave supercharger 4. The system cools the vehicle by exchanging heat with outside air (driving wind).

次に、上記演算機22によるステッピングモータ16の
駆動制御を第3図のフローチャートに基づいて説明する
。先ず所定時間(例えば10秒)の走行後にスタートし
て、ステップS1で第1および第2の02センサ20,
21からの出力に塁づき各々排気通路3の圧力波過給機
4上流側および下流側の排気ガス中の酸素濃度[0□]
3および[02]4(%表示)を算出したのち、ステッ
プS2で上記各酸素濃度[0213、[0214および
大気中の酸素111[(21%)とに基づき、圧力波過
給機4を介して吸気通路2から゛排気通路3へ吹抜ける
新気の新気吹j友は串ηspを下記式に基づいて算出す
る。
Next, drive control of the stepping motor 16 by the computer 22 will be explained based on the flowchart of FIG. First, it starts after running for a predetermined time (for example, 10 seconds), and in step S1, the first and second 02 sensors 20,
Based on the output from 21, the oxygen concentration in the exhaust gas on the upstream and downstream sides of the pressure wave supercharger 4 in the exhaust passage 3, respectively [0□]
3 and [02]4 (expressed as %), in step S2, based on the above-mentioned oxygen concentrations [0213, [0214] and atmospheric oxygen 111 [(21%), The amount of fresh air blown from the intake passage 2 to the exhaust passage 3 is calculated based on the following formula.

η5l)−((21−[0213)/ (21[02]4))  1 しかる後、ステップS3で上記新気吹抜は率ηspを大
きな値の所定値K(例えば100%)と大小比較し、η
sp≧にのYESの場合には圧力波過給機4の断熱効率
は高いと判断して直ちに終了する。一方、ηSt)<K
のNoの場合には断熱効率を高めるべく、ステップS4
でプーリ5の可動フランジ5bを軸線方向に移動させて
ブーり比を設定IIfI(例えば0.1)だけ大きく又
は小さく変更したのち、ステップSs 、Ssでそれぞ
れ上記ステップS+、Szと同様に排気通路3の圧力波
過給機4上流側および下流側の排気ガス中の酸素S度[
02]3および[02]4を算出するとともに、新気吹
抜は串ηspを演算する。そして、ステップS7で新気
吹抜は率ηspの今回と前回との差η5p(n)−η5
I)(n−+>を演算し、その差分EがE>5又はEく
−5である場合、つまり圧力波過給機4の断熱効率の向
上をより期待できる場合には上記ステップS4に戻って
プーリ比をざらに所定値だけ変更することを繰返す。そ
して、上記ステップS7で差分Eが一5≦E≦5の範囲
内に入った場合には、圧力波過給1114の断熱効率は
高くなったと判断してそのまま終了する。
η5l)-((21-[0213)/(21[02]4)) 1 After that, in step S3, the fresh air vent compares the rate ηsp with a large predetermined value K (for example, 100%), η
If sp≧ is YES, it is determined that the adiabatic efficiency of the pressure wave supercharger 4 is high, and the process immediately ends. On the other hand, ηSt)<K
If the answer is No, step S4 is performed to increase the insulation efficiency.
After moving the movable flange 5b of the pulley 5 in the axial direction to increase or decrease the boolean ratio by the setting IIfI (for example, 0.1), step Ss and Ss move the movable flange 5b of the pulley 5 in the axial direction. 3 Pressure wave supercharger 4 Oxygen S degree in the exhaust gas on the upstream and downstream sides [
02]3 and [02]4, and at the same time, the fresh air atrium calculates the skewer ηsp. Then, in step S7, the fresh air vent is set to the difference η5p(n)−η5 between the current and previous rate ηsp.
I) Calculate (n-+>), and if the difference E is E>5 or E-5, that is, if the adiabatic efficiency of the pressure wave supercharger 4 can be expected to improve further, proceed to step S4 above. Go back and repeat roughly changing the pulley ratio by a predetermined value. Then, if the difference E falls within the range of -5≦E≦5 in step S7, the adiabatic efficiency of the pressure wave supercharging 1114 is It decides that the price has become high and ends the transaction.

よって、上記第3図の作動フローにおいて、ステップS
+ 、Sz 、Ss 、86により、第1および第2の
02センサ20.21の出力に基づいて圧力波過給機4
を介して吸気通路2から排気通路3へ吹抜ける新気の新
気吹抜は串ηspを算出するようにした吹抜は串騨出手
段24を構成している。
Therefore, in the operation flow shown in FIG. 3 above, step S
+ , Sz , Ss , 86, the pressure wave supercharger 4 is activated based on the outputs of the first and second 02 sensors 20.21.
The fresh air blowing out from the intake passage 2 to the exhaust passage 3 via the air vent constitutes a spitting means 24 for calculating the skew ηsp.

また、ステップSy 、84により、上記吹抜は串算出
手段23で算出された新気吹抜は率ηspに応じてその
差分Eが一5≦E≦5の範囲内に入るよう回転数比可変
手段17を1.II mするようにした制御手段25を
構成している。
Further, in step Sy, 84, the fresh air vent calculated by the skewer calculation means 23 is adjusted so that the difference E falls within the range of 15≦E≦5 according to the rate ηsp. 1. The control means 25 is configured to perform the following functions.

したがって、上記実施例においては、吸気通路2の吸気
は圧力波過給機4に流入し、該圧力波過給機4内で排気
通路3からの排気の圧力波エネルギーを受けて圧縮、加
速されて該圧力波過給機4下流側の吸気通路2に吐出さ
れたのち、インタークーラ23で適温に冷却されてエン
ジン1に吸入される。
Therefore, in the above embodiment, the intake air in the intake passage 2 flows into the pressure wave supercharger 4, and is compressed and accelerated within the pressure wave supercharger 4 by receiving the pressure wave energy of the exhaust gas from the exhaust passage 3. After being discharged into the intake passage 2 on the downstream side of the pressure wave supercharger 4, the air is cooled to an appropriate temperature by the intercooler 23, and then sucked into the engine 1.

その際、吸気に圧力波エネルギーを伝達した排気は圧力
波過給機4上流側の吸気通路2からの新気により圧力波
過給機4下流側の排気通路3に掃気される新気吹1友は
現象が生じていて、この新気吹抜は率ηspは種々の要
因、例えば ■ エンジン回転数が変化する場合 ■ エンジン負荷が変化する場合 ■ エンジン回転数に対する圧力波過給機4の回転数の
比が変化する場合 ■ インタークーラ23の過給吸気の冷11効率が車速
や外気温麿の変化に応じて変化する場合 ■ インタークーラ23内へのスモークの付着に起因す
る圧力損失の増大等により圧力波過給機4下流側の吸気
通路2の流通抵抗が変化する場合 ■ 圧力波過給機4上流側の排気通路3の圧力や温r斐
が変化して排気エネルギーが変化する場合 ■ 圧力波過給機4内部にスモークが堆積する場合、等
によりこの新気吹1友は串ηspが経時的に変化しよう
とするものの、この新気吹抜は串η5ptfi高くなれ
ば圧力波過給機4の断熱効率も^くなることから、この
新気吹抜は串ηspが吹1友は算出手段24で締出され
ると、ベルト伝動機構7のブーり比が制御手段25で大
小制御されてエンジン回転故に対する圧力波過給機4の
回転数の比が経時的に変更されて、新気吹抜は率ηsp
が常に高く制御されるので、圧力波過給機4の断熱効率
が高く保持されて過給能力が向上し、エンジン出力の向
上が図られるとともに、圧力波過給機の温度上昇が小さ
く抑制されることになる。
At this time, the exhaust gas that has transferred pressure wave energy to the intake air is scavenged by fresh air from the intake passage 2 on the upstream side of the pressure wave supercharger 4 to the exhaust passage 3 on the downstream side of the pressure wave supercharger 4. This new air venting rate ηsp is determined by various factors, such as ■ When the engine speed changes ■ When the engine load changes ■ The rotation speed of the pressure wave supercharger 4 relative to the engine speed ■ When the cooling efficiency of the supercharged intake air of the intercooler 23 changes depending on changes in vehicle speed or outside temperature ■ When the pressure loss increases due to smoke adhering to the inside of the intercooler 23, etc. When the flow resistance of the intake passage 2 on the downstream side of the pressure wave supercharger 4 changes due to ■ When the exhaust energy changes due to a change in the pressure and temperature r in the exhaust passage 3 on the upstream side of the pressure wave supercharger 4■ If smoke accumulates inside the pressure wave supercharger 4, etc., the fresh air blower will tend to change over time, but if the fresh air vent becomes higher by η5ptfi, the pressure wave supercharger Since the adiabatic efficiency of 4 also becomes ^, this fresh air vent has a skewer ηsp.When the calculation means 24 shuts out the air, the boost ratio of the belt transmission mechanism 7 is controlled in magnitude by the control means 25, and the engine The ratio of the rotational speed of the pressure wave supercharger 4 to the rotational speed is changed over time, and the fresh air blowing is performed at a rate ηsp.
is always controlled to be high, the adiabatic efficiency of the pressure wave supercharger 4 is maintained high, the supercharging capacity is improved, the engine output is improved, and the temperature rise of the pressure wave supercharger is suppressed to a small level. That will happen.

ここに、圧力波過給114下流側の排気通路3への新気
吹1友は率ηspは、上記■、■のエンジン回転数や負
荷の変化に加えて■〜■の実走行条件の変化にも拘らず
、制御手段25による上記■の圧力波過給機4の回転数
比制御によって常に^く保持されるので、圧力波過給機
4の断熱効率の高値保持制御を高精度でもって行うこと
ができ、よってエンジン出力のより一層の向上を図るこ
とができるとともに、圧力波過給機の1度上昇の抑制を
確実に行い得てその信頼性の向上を図ることができる。
Here, the fresh air blowing rate ηsp to the exhaust passage 3 on the downstream side of the pressure wave supercharging 114 is determined by the changes in the actual running conditions from ■ to ■ in addition to the changes in engine speed and load in ■ and ■ above. Nevertheless, the rotational speed ratio of the pressure wave supercharger 4 is always maintained by the control means 25 as described in (1) above, so that the adiabatic efficiency of the pressure wave supercharger 4 can be controlled to maintain a high value with high precision. Therefore, it is possible to further improve the engine output, and it is also possible to reliably suppress the 1 degree rise in the pressure wave supercharger, thereby improving its reliability.

しかも、圧力波過給機4での新気吹抜は率ηspを高く
保持制御することのみで実走行条件の変化を加味した断
熱効率の高値保持制御を精麿良く行い得るので、構成を
簡易にすることができる。
Moreover, the fresh air blowing in the pressure wave supercharger 4 can be controlled to keep the adiabatic efficiency at a high value, taking into account changes in actual driving conditions, by simply controlling the rate ηsp to maintain a high value, so the configuration can be simplified. can do.

また、新気吹抜は率ηspはその変化幅が通常0〜10
0%以上と大きいものであるので、圧力波過給I14の
断熱効率の制御精度を高くすることができる。しかも、
第1および第2の02センサ20.21は一般に200
℃以上の高温状態で初めて正常に作動する特性を有する
ものの、^瀉となる排気通路3に配置されているので、
加熱する必要が少なく、排気111mの検出精成は高い
。以上のことから、圧力波過給機4の断熱効率の高値保
持制御の制御精度は著しく高く、上記エンジン出力の向
上および圧力波過給機4の信頼性の向上をより一層図る
ことができる。
In addition, the rate ηsp of the new air atrium usually has a variation range of 0 to 10.
Since it is as large as 0% or more, the control accuracy of the adiabatic efficiency of the pressure wave supercharging I14 can be increased. Moreover,
The first and second 02 sensors 20.21 are typically 200
Although it has the characteristic of operating normally only under high temperature conditions of ℃ or higher, since it is placed in the exhaust passage 3 which is a
There is little need for heating, and the detection refinement of the exhaust gas 111m is high. From the above, the control accuracy of the control to maintain a high value of the adiabatic efficiency of the pressure wave supercharger 4 is extremely high, and it is possible to further improve the engine output and the reliability of the pressure wave supercharger 4.

尚、上記実施例では、第1および第2の排気濃度検出手
段を各々02センサで構成したが、その他CO2センサ
で構成してもよいのは勿論である。
In the above embodiment, each of the first and second exhaust gas concentration detection means is composed of a 02 sensor, but it goes without saying that they may also be composed of other CO2 sensors.

(発明の効果) 以上説明したように、本発明の圧力波過給機付エンジン
によれば、エンジン回転故に対する圧力波過給機の回転
数の比の可変制御により、圧力波過給機を介して吸気通
路から排気通路に吹床ける新気の新気吹抜は率を常に高
く保持して圧力波過給機の断熱効率を高く保持したので
、エンジン回転数や負荷の変化は勿論のこと、吸排気系
の流通抵抗などの実走行条件の変化にも応じた検出制御
として、圧力波過給機の過給能力を安定して高めること
ができるとともに、圧力波過給機の温I立上昇を有効に
抑制することができ、よってエンジン出力のより一層の
向上および圧力波過給機の信頼性の向上に寄与できるも
のである。
(Effects of the Invention) As explained above, according to the pressure wave supercharged engine of the present invention, the pressure wave supercharger is controlled by variable control of the ratio of the rotation speed of the pressure wave supercharger to the engine rotation fault. The rate of fresh air blowing from the intake passage to the exhaust passage is maintained at a high rate and the adiabatic efficiency of the pressure wave supercharger is maintained at a high level. As a detection control that responds to changes in actual running conditions such as flow resistance in the intake and exhaust system, it is possible to stably increase the supercharging capacity of the pressure wave supercharger, and also to increase the temperature of the pressure wave supercharger. It is possible to effectively suppress the increase in pressure, thereby contributing to further improvement in engine output and reliability of the pressure wave supercharger.

しかも、新気吹抜は率の変化幅が広いこと、および排気
1112検出手段を加熱することなく正常に作動させ得
ることから、圧力波過給機の断熱効率の制御精度をより
^めることができ、上記エンジン出力の向上および圧力
波過給機の信頼性の向上に対してより顕著に寄与するこ
とができる。
Moreover, the rate of fresh air venting has a wide variation range, and the exhaust gas 1112 detection means can be operated normally without heating, so it is possible to improve the control accuracy of the adiabatic efficiency of the pressure wave supercharger. This can contribute more significantly to the improvement of the engine output and the reliability of the pressure wave supercharger.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体概略構成図
、第2図はプーリ比制御装置周りの構成を示す要部拡大
図、第3図はvin*によるプーリ比制御装置の作動制
御を示すフローチャート図である。 1・・・エンジン、2・・・吸気通路、3・・・排気通
路、4・・・圧力波過給機、5・・・プーリ、5b・・
・可動フランジ、6・・・Vベルト、7・・・ベルト伝
vJ機構、10・・・プーリ比制御装置、16・・・ス
テッピングモータ、17・・・回転数比可変手段、20
・・・第1の02センサ、21・・・第2の02センサ
、22・・・演算機、23・・・インタークーラ、24
・・・吹抜は率算出手段、25・・・制御手段。
The drawings show an embodiment of the present invention; FIG. 1 is an overall schematic diagram, FIG. 2 is an enlarged view of main parts showing the configuration around the pulley ratio control device, and FIG. 3 is an operation of the pulley ratio control device using vin*. FIG. 3 is a flowchart diagram showing control. 1... Engine, 2... Intake passage, 3... Exhaust passage, 4... Pressure wave supercharger, 5... Pulley, 5b...
- Movable flange, 6... V belt, 7... Belt transmission VJ mechanism, 10... Pulley ratio control device, 16... Stepping motor, 17... Rotation speed ratio variable means, 20
...first 02 sensor, 21...second 02 sensor, 22...computer, 23...intercooler, 24
...The atrium is the rate calculation means, 25...the control means.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンにより回転駆動されると共に上記エンジ
ンの排気通路および吸気通路に跨つて配置され、上記排
気通路の排気の圧力波エネルギーを吸気通路の吸気に伝
達して吸気の過給を行う圧力波過給機を備えたエンジン
において、上記エンジンの回転数に対する圧力波過給機
の回転数の比を変化させる回転数比可変手段と、上記圧
力波過給機上流側および下流側の排気通路の排気濃度を
それぞれ検出する第1および第2排気濃度検出手段と、
該両排気濃度検出手段の出力に基づいて上記圧力波過給
機を介して吸気通路から排気通路へ吹抜ける新気の新気
吹抜け率を算出する吹抜け率算出手段と、該吹抜け率算
出手段で算出された新気吹抜け率に応じて上記回転数比
可変手段を制御する制御手段とを備えたことを特徴とす
る圧力波過給機付エンジン。
(1) A pressure wave that is rotationally driven by the engine and is disposed astride the exhaust passage and intake passage of the engine, and supercharges the intake air by transmitting the pressure wave energy of the exhaust gas in the exhaust passage to the intake air in the intake passage. In an engine equipped with a supercharger, a rotation speed ratio variable means for changing the ratio of the rotation speed of the pressure wave supercharger to the rotation speed of the engine; and exhaust passages on the upstream side and downstream side of the pressure wave supercharger. first and second exhaust concentration detection means for respectively detecting exhaust concentration;
blow-through rate calculation means for calculating a fresh air blow-through rate of fresh air blowing through from the intake passage to the exhaust passage via the pressure wave supercharger based on the outputs of the both exhaust gas concentration detection means; An engine with a pressure wave supercharger, comprising: a control means for controlling the rotation speed ratio variable means according to the calculated fresh air blow-through rate.
JP19411785A 1985-09-02 1985-09-02 Engine with pressure wave supercharger Granted JPS6255418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19411785A JPS6255418A (en) 1985-09-02 1985-09-02 Engine with pressure wave supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19411785A JPS6255418A (en) 1985-09-02 1985-09-02 Engine with pressure wave supercharger

Publications (2)

Publication Number Publication Date
JPS6255418A true JPS6255418A (en) 1987-03-11
JPH0563613B2 JPH0563613B2 (en) 1993-09-10

Family

ID=16319200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19411785A Granted JPS6255418A (en) 1985-09-02 1985-09-02 Engine with pressure wave supercharger

Country Status (1)

Country Link
JP (1) JPS6255418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020134A1 (en) * 1995-11-30 1997-06-05 Otto Blank Supercharging arrangement for the charge air of an internal combustion engine
WO2009074195A1 (en) * 2007-12-11 2009-06-18 Grundfos Management A/S Pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream
US7669587B2 (en) * 2006-05-03 2010-03-02 Robert Bosch Gmbh Method of operating an engine with a pressure-wave supercharger
US8469000B2 (en) 2010-02-24 2013-06-25 Eaton Corporation Supercharger with continuously variable drive system
US20130206116A1 (en) * 2010-02-17 2013-08-15 Benteler Automobiltechnik Gmbh Method for adjusting a charge pressure in an internal combustion engine having a pressure-wave supercharger
US8910614B2 (en) 2010-02-24 2014-12-16 Eaton Corporation Supercharger with continuously variable drive system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020134A1 (en) * 1995-11-30 1997-06-05 Otto Blank Supercharging arrangement for the charge air of an internal combustion engine
US7669587B2 (en) * 2006-05-03 2010-03-02 Robert Bosch Gmbh Method of operating an engine with a pressure-wave supercharger
US8136512B2 (en) 2006-05-03 2012-03-20 Robert Bosch Gmbh Method for operating an engine with a pressure-wave supercharger
WO2009074195A1 (en) * 2007-12-11 2009-06-18 Grundfos Management A/S Pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream
EP2078867A1 (en) * 2007-12-11 2009-07-15 Grundfos Management A/S Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow
US8226376B2 (en) 2007-12-11 2012-07-24 Grundfos Management A/S Pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream
US20130206116A1 (en) * 2010-02-17 2013-08-15 Benteler Automobiltechnik Gmbh Method for adjusting a charge pressure in an internal combustion engine having a pressure-wave supercharger
US8469000B2 (en) 2010-02-24 2013-06-25 Eaton Corporation Supercharger with continuously variable drive system
US8763586B2 (en) 2010-02-24 2014-07-01 Eaton Corporation Supercharger with continuously variable drive system
US8910614B2 (en) 2010-02-24 2014-12-16 Eaton Corporation Supercharger with continuously variable drive system

Also Published As

Publication number Publication date
JPH0563613B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US4702218A (en) Engine intake system having a pressure wave supercharger
JP2004068816A (en) Supercharging type internal combustion engine
US5400597A (en) Turbocharger system with electric blower
JPS6255418A (en) Engine with pressure wave supercharger
JP2000087782A (en) Control system of intake air amount in internal combustion engine
JPS5930905B2 (en) EGR control method for supercharged diesel engine
JPH0768914B2 (en) Suction turbocharger
JPH0563612B2 (en)
JPS60116821A (en) Exhaust gas turbo-supercharger
JPH01244154A (en) Exhauster for engine with pressure wave supercharger
JPS591332B2 (en) Turbine compartment for turbocharger
WO2020246106A1 (en) Supercharging system
JPS59141709A (en) Exhaust gas purifying device for engine equipped with turbosupercharger
JPH1047071A (en) Variable nozzle type turbo charger abnormality detector
JP2521272B2 (en) Engine supercharger
JPS6131652A (en) Egr control device in engine provided with supercharger
JPH066896B2 (en) Engine with pressure wave supercharger
JPH06323147A (en) Supercharger
JPS61250344A (en) Turbosupercharged engine
WO2020246105A1 (en) Supercharging system
JPH0315781Y2 (en)
JPS6128717A (en) Engine with supercharger
JPS6255419A (en) Engine with pressure wave supercharger
JPH09126062A (en) Egr device of internal combustion engine having turbocharger
JP2023043289A (en) Supercharging device for internal combustion engine