JPS6255209A - Suspension control device - Google Patents

Suspension control device

Info

Publication number
JPS6255209A
JPS6255209A JP19467885A JP19467885A JPS6255209A JP S6255209 A JPS6255209 A JP S6255209A JP 19467885 A JP19467885 A JP 19467885A JP 19467885 A JP19467885 A JP 19467885A JP S6255209 A JPS6255209 A JP S6255209A
Authority
JP
Japan
Prior art keywords
road
road surface
relative displacement
predetermined value
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19467885A
Other languages
Japanese (ja)
Inventor
Yutaka Hirano
豊 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19467885A priority Critical patent/JPS6255209A/en
Publication of JPS6255209A publication Critical patent/JPS6255209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To enhance the drive comfortability of a vehicle on a wavy surface road, by providing such an arrangement that the road surface is judged as a wavy road surface when the relative displacement between the spring load member and the nonspring load member exceeds a predetermined value and the relative speed therebetween is below a predetermined value, and then the suspension characteristic is made rigid. CONSTITUTION:A vehicle level sensor 30 detects the relative displacement X between the spring load member and the nonspring load member and the relative speed V therebetween,and delivers detection signals to a control circuit 32. CPU 36 judges the condition of the road surface in accordance with the relative displacement X and the relative speed V under the control of a program stored in a memory. That is, when the relative displacement X exceeds a predetermined value but the relative speed V is below a predetermined value, the road surface is judged as a wavy road surface, and a drive circuit 46 is energized to drive an actuator 28 to make the suspension characteristic harder. With this arrangement it is possible to enhance the drive comfortability of the vehicle even on a wavy road surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車体と車軸を連結するサスペンションの特性
を制御するサスペンション制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a suspension control device that controls the characteristics of a suspension that connects a vehicle body and an axle.

〔従来の技術〕[Conventional technology]

ばね下顎速度及びばね上とばね下との相対的変位を検出
して悪路を判定し、悪路の場合には減衰力を良路の場合
よりも大きくすると共にばね定数を良路の場合と同様に
小さく設定するサスペンション制御装置が案出されてい
る(特開昭59−23712号)。
A rough road is determined by detecting the speed of the lower jaw of the spring and the relative displacement between the sprung mass and the unsprung mass, and in the case of a rough road, the damping force is made larger than that on a good road, and the spring constant is set to the same as that on a good road. A suspension control device that similarly sets the suspension to a small value has been devised (Japanese Patent Application Laid-Open No. 59-23712).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、−律に悪路の場合の制御を行っているので、悪
路であってもうねり路面の場合には車体上下動の低周波
振幅が大きくなり乗り心地がかえって悪化するという欠
点があった。
However, since control is carried out specifically for rough roads, there is a drawback that even if the road is rough, when the road surface is undulating, the low-frequency amplitude of the vertical movement of the vehicle increases, which actually worsens the ride comfort. .

本発明はこのような欠点に鑑み、うねり路面であっても
乗り心地を向上させることができるサスペンション制御
装置を得ることを目的とする。
In view of these drawbacks, it is an object of the present invention to provide a suspension control device that can improve ride comfort even on a undulating road surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、ばね上とばね下との相対変位及び相対速度
を検出してサスペンションの特性を制御するサスペンシ
ョン制御装置において、当該相対変位が所定値以上であ
りかつ当該相対速度が所定値以下であるときにはうねり
路と判定してサスペンション特性を良路の場合よりも堅
くするようになっている。
In the present invention, in a suspension control device that detects relative displacement and relative speed between a sprung mass and a sprung mass to control suspension characteristics, the relative displacement is greater than or equal to a predetermined value and the relative velocity is less than or equal to a predetermined value. Sometimes, the system determines that the road is undulating and makes the suspension characteristics stiffer than on a good road.

〔作用〕[Effect]

悪路であってもうねり路の場合にはばね上とばね下との
相対変位が所定値以上となり、ばね上とばね下との相対
速度が所定値以下となる。そこで、この相対変位及び相
対速度を検出してうねり路であるかどうかを判定し、う
ねり路であると判定した場合には、サスペンション特性
を良路の場合よりも堅くする。これによりうねり路面で
の車体の振幅が小さくなり、乗り心地が向上する。
Even if the road is rough, in the case of a undulating road, the relative displacement between the sprung mass and the unsprung mass becomes more than a predetermined value, and the relative speed between the sprung mass and the unsprung mass becomes less than the predetermined value. Therefore, this relative displacement and relative speed are detected to determine whether the road is undulating, and if it is determined that the road is undulating, the suspension characteristics are made stiffer than when the road is smooth. This reduces the vibration of the vehicle body on undulating roads, improving ride comfort.

〔実施例〕〔Example〕

図面に従って本発明のサスペンション制御装置の実施例
を説明する。
Embodiments of the suspension control device of the present invention will be described with reference to the drawings.

第1図に示す如く、車軸10を支持するアーム12と車
体14とはショックアブソーバ付エアスプリング16に
より連結されている。このショックアブソーバ付エアス
プリング16は下部のショックアブソーバ18と上部の
エアスプリング20により構成されている。ショックア
ブソーバ18はオリフィス径が可変になっており、減衰
力をソフト(小)、ミディアム(中)、ハード(大)の
三段階に変更可能となっている。また、エアスプリング
20は主空気室22.副空気室24.26を有しており
、空気室の有効体積及び空気室間の連通路の径を可変し
てばね定数をソフト(小)、ミディアム(中)、ハード
(大)の三段階に切り換えることが可能となっている。
As shown in FIG. 1, an arm 12 supporting an axle 10 and a vehicle body 14 are connected by an air spring 16 with a shock absorber. This air spring with shock absorber 16 is composed of a lower shock absorber 18 and an upper air spring 20. The shock absorber 18 has a variable orifice diameter, and the damping force can be changed to three levels: soft (small), medium (medium), and hard (large). The air spring 20 also has a main air chamber 22. It has 24.26 secondary air chambers, and the effective volume of the air chambers and the diameter of the communication path between the air chambers can be varied to adjust the spring constant to three levels: soft (small), medium (medium), and hard (large). It is possible to switch to.

またブツシュは例えば流体封入式でかつ封入される流体
は2つの室に分かれており、各々の室の連通をアクチュ
エータ28で遮断することによりブツシュの動的な堅さ
を2段階(ソフト、ハード)に切り換え可能となってい
る。減衰力及びばね定数の切り換えはアクチュエータ2
Bによって行われる。また、車高センサ30によりアー
ム12と車体14との間の距離、即ちばね上とばね下と
の相対変位Xを検出するようになっている。
In addition, the bushing is, for example, a fluid-filled type, and the sealed fluid is divided into two chambers, and by blocking communication between each chamber with an actuator 28, the dynamic stiffness of the bushing can be adjusted to two levels (soft, hard). It is possible to switch to Actuator 2 switches the damping force and spring constant.
Performed by B. Further, the vehicle height sensor 30 detects the distance between the arm 12 and the vehicle body 14, that is, the relative displacement X between the sprung portion and the unsprung portion.

減衰力及びばね定数は制御回路32により制御されてい
る。即ち車高センサ30の出力信号はA/D変換器34
によりデジタル信号に変換された後CPtJ36へ供給
されている。また、車高センサ30の出力信号は微分回
路38により微分された後A/D変換器34によりデジ
タル値に変換されてCPU36に供給されている。従っ
て、cPtJ36はばね上とばね下との相対変位X及び
その相対速度Vを読み取ることができる。CPU36は
メモリ44に格請されたプログラムに従い、相対変位X
、相対速度Vの値により路面を判定してばね定数及び減
衰力の目標値を決定し、駆動回路46を介しアクチュエ
ータ28へ駆動信号を供給している。
The damping force and spring constant are controlled by a control circuit 32. That is, the output signal of the vehicle height sensor 30 is sent to the A/D converter 34.
After being converted into a digital signal by , it is supplied to CPtJ36. Further, the output signal of the vehicle height sensor 30 is differentiated by a differentiating circuit 38, and then converted into a digital value by an A/D converter 34 and supplied to the CPU 36. Therefore, the cPtJ36 can read the relative displacement X between the sprung mass and the sprung mass and the relative velocity V thereof. The CPU 36 calculates the relative displacement X according to the program loaded into the memory 44.
, the road surface is determined based on the value of the relative velocity V, the spring constant and the target values of the damping force are determined, and a drive signal is supplied to the actuator 28 via the drive circuit 46.

次に、上記相対変位X及び相対速度Vのデータから路面
を判定する方法について第3図に従い説明する。相対変
位X及び相対速度■のデータは一定時間毎にn個サンプ
リングする。そして、相対変位Xの最大値X max及
び相対速度■の平均値V avrを求める。第3図は実
験的に求められたものであり、横軸はXmax 、縦軸
はV avrとなっている。この図を概説すれば、Xm
’axとV avrの値の組が原点から近くにあれば良
路と判定し、原点から中程度の所にあれば中悪路と判定
し、原点から大きく離れておれば大悪路と判定する。但
し、原点から大きく離れていてもVavrO値が一定値
以下であればうねり路と判定する。
Next, a method of determining the road surface from the data of the relative displacement X and relative velocity V will be explained with reference to FIG. Data of relative displacement X and relative velocity (2) are sampled n pieces at regular time intervals. Then, the maximum value X max of the relative displacement X and the average value V avr of the relative velocity ■ are determined. FIG. 3 is obtained experimentally, and the horizontal axis is Xmax and the vertical axis is V avr. To summarize this diagram, Xm
If the set of 'ax and V avr values is close to the origin, it is determined to be a good road, if it is located at a medium distance from the origin, it is determined to be a moderately bad road, and if it is far from the origin, it is determined to be a very bad road. do. However, even if the road is far from the origin, if the VavrO value is below a certain value, it is determined that the road is undulating.

第4図には、前記路面の判定に応じてサスペンションの
特性を制御し乗り心地及び操安性を高度にバランスする
ための制御テーブルが示されている。良路の場合にばば
ね定数、ブツシュ特性及び減衰力をソフト(小)に設定
する。また、中悪路の場合には減衰力をミディアム(中
)に設定し、他はソフト(小)に設定する。大悪路の場
合にばばね定数及び減衰力をミディアム(中)に設定し
、ブツシュ特性をソフト(小)に設定する。また、うね
り路の場合にばばね定数、減衰力及びブツシュ特性のい
ずれもハード(大)に設定する。
FIG. 4 shows a control table for controlling the characteristics of the suspension according to the determination of the road surface to achieve a high balance between ride comfort and handling. When the road is good, the spring constant, bushing characteristics, and damping force are set to soft (small). In addition, the damping force is set to medium in the case of a moderately rough road, and set to soft in other cases. In the case of a very rough road, the spring constant and damping force are set to medium, and the bushing characteristics are set to soft. Furthermore, in the case of a undulating road, the spring constant, damping force, and bushing characteristics are all set to hard (large) values.

次に上記の如く構成された本実施例の作用を第2図に示
すフローチャートに従って説明する。
Next, the operation of this embodiment configured as described above will be explained with reference to the flowchart shown in FIG.

ステップ100において、RAM及び出力をイニシャラ
イズする。次いでステップ102へ進み、車高センサ3
0からアーム12と車体14との相対変位X及びその相
対変位の相対速度■を読み込む。次いでステップ104
へ進み、相対変位Xの値を配列要素X (i)に移し、
相対速度■の値を配列要素V (i)に移す。また、i
の値をインクリメントする。ここでiの値はステップ1
00において1に初期化されている。次いでステップ1
06へ進み、iの値がn以下であればステップ102へ
戻って上記処理を繰り返す。このようにして、相対変位
X及び相対速度Vの値の組を一定時間毎にn個読取り、
ステップ108へ進む。そして、n個の相対変位Xの値
の最大値を求めてこれをXmax とする。また、各相
対速度Vの値の絶対値のn個の平均値を求め、これをV
avr とする。
In step 100, the RAM and output are initialized. Next, the process proceeds to step 102, where the vehicle height sensor 3
The relative displacement X between the arm 12 and the vehicle body 14 and the relative speed ■ of the relative displacement are read from 0. Then step 104
, move the value of relative displacement X to array element X (i),
Move the value of relative velocity ■ to array element V (i). Also, i
Increment the value of . Here the value of i is step 1
It is initialized to 1 in 00. Then step 1
The process advances to step 06, and if the value of i is less than or equal to n, the process returns to step 102 and the above process is repeated. In this way, n sets of values of relative displacement X and relative velocity V are read at regular intervals,
Proceed to step 108. Then, the maximum value of the n values of relative displacements X is determined and set as Xmax. Also, find the average value of n absolute values of the values of each relative velocity V, and calculate this as V
Let it be avr.

次いでステップ110へ進み、第3図のマツプが記憶さ
れたメモリ44内のテーブルを参照して、前記X ma
x及びVavrの値の組から路面を判定する。次いでス
テップ112へ進み、メモリ44に記憶された第4図に
示す制御テーブルを参照してばね定数、ブツシュ特性及
び減衰力の目標値を決定する。次いでステップ114へ
進み前記目標値になるようアクチュエータ28を駆動す
る。次いでステップ100へ進み以上の処理を繰り返す
Next, the process proceeds to step 110, where the table in the memory 44 in which the map shown in FIG. 3 is stored is referred to, and the X ma
The road surface is determined from the set of x and Vavr values. Next, the process proceeds to step 112, in which the target values of the spring constant, bushing characteristics, and damping force are determined with reference to the control table shown in FIG. 4 stored in the memory 44. Next, the process proceeds to step 114, where the actuator 28 is driven to reach the target value. Next, the process advances to step 100 and the above processing is repeated.

このようにして、うねり路の場合には車体上下動の低周
波振幅が小さくなり、従来区別されなかった大悪路とう
ねり路が区別されてサスペンション特性が制御され、乗
り心地と操安性について高度のバランスをとることがで
きる。
In this way, in the case of a undulating road, the low-frequency amplitude of the vertical movement of the vehicle body becomes smaller, and the suspension characteristics are controlled by distinguishing between a very rough road and a undulating road, which were not previously distinguished, and improving ride comfort and handling. Able to maintain altitude balance.

〔発明の効果〕〔Effect of the invention〕

本発明に係るサスペンション制御装置では、ばね上とば
ね下との相対変位及び相対速度を検出し、当該相対変位
が所定値以上であり且つ当該相対速度が所定値以下であ
るときにはうねり路と判定してサスペンション特性を良
路の場合よりも堅くするようになっているので、うねり
路の場合には車体上下動の低周波振幅が小さくなり、従
来区別されなかったうねり路が悪路から区別されて乗り
心地及び操安性について高度にバランスをとることがで
きるという優れた効果を有する。
The suspension control device according to the present invention detects the relative displacement and relative speed between the sprung mass and the sprung mass, and determines that the road is a undulating road when the relative displacement is greater than or equal to a predetermined value and the relative velocity is less than or equal to a predetermined value. Since the suspension characteristics are made stiffer than when driving on a good road, the low-frequency amplitude of the vertical movement of the vehicle body becomes smaller when driving on a undulating road, making it possible to distinguish undulating roads from rough roads, which previously could not be distinguished. It has the excellent effect of being able to achieve a high balance between ride comfort and handling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るサスペンション制御装置の実施例
の構成を示す概略図、第2図は制御フローチャート、第
3図は路面判定マツプ、第4図は制御テーブルである。 18・・・ショックアブソーバ、 20・・・エアスプリング、 30・・・車高センサ、 X ・・・ばね上とばね下との相対変位。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a suspension control device according to the present invention, FIG. 2 is a control flowchart, FIG. 3 is a road surface determination map, and FIG. 4 is a control table. 18...Shock absorber, 20...Air spring, 30...Vehicle height sensor, X...Relative displacement between sprung mass and unsprung mass.

Claims (1)

【特許請求の範囲】[Claims] ばね上とばね下との相対変位及び相対速度を検出してサ
スペンションの特性を制御するサスペンション制御装置
において、当該相対変位が所定値以上でありかつ当該相
対速度が所定値以下であるときにはうねり路と判定して
サスペンション特性を良路の場合よりも堅くすることを
特徴とするサスペンション制御装置。
In a suspension control device that detects relative displacement and relative speed between a sprung mass and a sprung mass to control suspension characteristics, when the relative displacement is greater than a predetermined value and the relative velocity is less than a predetermined value, a undulating road is detected. A suspension control device characterized in that the suspension characteristics are determined to be stiffer than those on a good road.
JP19467885A 1985-09-03 1985-09-03 Suspension control device Pending JPS6255209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19467885A JPS6255209A (en) 1985-09-03 1985-09-03 Suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19467885A JPS6255209A (en) 1985-09-03 1985-09-03 Suspension control device

Publications (1)

Publication Number Publication Date
JPS6255209A true JPS6255209A (en) 1987-03-10

Family

ID=16328471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19467885A Pending JPS6255209A (en) 1985-09-03 1985-09-03 Suspension control device

Country Status (1)

Country Link
JP (1) JPS6255209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269709A (en) * 1987-04-24 1988-11-08 Fuji Heavy Ind Ltd Active suspension for automobile
JPH03104617A (en) * 1989-09-18 1991-05-01 Sanyo Electric Co Ltd Injection molding die
JPH03246112A (en) * 1990-02-23 1991-11-01 Toyota Motor Corp Damping force variable type suspension controller
FR2683776A1 (en) * 1991-10-05 1993-05-21 Bosch Gmbh Robert SYSTEM FOR OBTAINING A SIGNAL REPRESENTING THE SURFACE OF THE PAVEMENT, USED FOR SYSTEMS FOR ADJUSTING, CONTROLLING THE DYNAMIC MARKET OF A MOTOR VEHICLE.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269709A (en) * 1987-04-24 1988-11-08 Fuji Heavy Ind Ltd Active suspension for automobile
JPH03104617A (en) * 1989-09-18 1991-05-01 Sanyo Electric Co Ltd Injection molding die
JPH03246112A (en) * 1990-02-23 1991-11-01 Toyota Motor Corp Damping force variable type suspension controller
FR2683776A1 (en) * 1991-10-05 1993-05-21 Bosch Gmbh Robert SYSTEM FOR OBTAINING A SIGNAL REPRESENTING THE SURFACE OF THE PAVEMENT, USED FOR SYSTEMS FOR ADJUSTING, CONTROLLING THE DYNAMIC MARKET OF A MOTOR VEHICLE.
JPH05201230A (en) * 1991-10-05 1993-08-10 Robert Bosch Gmbh System for obtaining signal indicating surface of roadway

Similar Documents

Publication Publication Date Title
JP3970874B2 (en) Method for controlling damping force of electronically controlled suspension
US6058340A (en) Suspension control apparatus
EP1535767B1 (en) Electronically-controlled suspension apparatus and damping force control method
JP2538791Y2 (en) Damping force control device
JPS6337725B2 (en)
US5979885A (en) Damping coefficient control apparatus for damping mechanism in vehicle suspension system
US5172929A (en) Suspension system for a vehicle
JPS6255209A (en) Suspension control device
JPH02225118A (en) Controller for suspension or stabilizer
JP3347169B2 (en) Control device for vehicle suspension
JPH08207541A (en) Electric controller for vehicle damping force imparting mechanism
KR100341742B1 (en) Electronic control suspension system and method
JP3139579B2 (en) Control device for vehicle suspension
JPH02141320A (en) Controller for shock absorber
JP3122573B2 (en) Suspension control device
JPH08216641A (en) Damping force control device for suspension
JP3186452B2 (en) Suspension control device
JP2956054B2 (en) Shock absorber damping force control device
JP3379742B2 (en) Vehicle suspension system
JP2602991Y2 (en) Suspension damping force control device
JPH11105525A (en) Suspension control device
KR940003519Y1 (en) Suspension control system
JPH0435278Y2 (en)
JP3041925B2 (en) Control system for vehicle suspension
JPS63195078A (en) Suspension controller for car