JPS6254990A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS6254990A
JPS6254990A JP19374185A JP19374185A JPS6254990A JP S6254990 A JPS6254990 A JP S6254990A JP 19374185 A JP19374185 A JP 19374185A JP 19374185 A JP19374185 A JP 19374185A JP S6254990 A JPS6254990 A JP S6254990A
Authority
JP
Japan
Prior art keywords
region
stripe
type
center
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19374185A
Other languages
Japanese (ja)
Other versions
JPH0815226B2 (en
Inventor
Naoki Kayane
茅根 直樹
Kazuhisa Uomi
魚見 和久
Tadashi Fukuzawa
董 福沢
Toshihiro Kono
河野 敏弘
Shinichi Nakatsuka
慎一 中塚
Yuichi Ono
小野 佑一
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60193741A priority Critical patent/JPH0815226B2/en
Publication of JPS6254990A publication Critical patent/JPS6254990A/en
Publication of JPH0815226B2 publication Critical patent/JPH0815226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an astigmatism by increasing the exciting intensity of laser light at the periphery from the center of a stripe in a region near one emitting end and the intensity largest at the center of the stripe in the region except the emitting end. CONSTITUTION:An N-type Ga1-xAlxAs clad layer 2, a P-type Ga1-yAlyAs active layer 3, a P-type Ga1-xAlxAs clad layer 4 an P-type GaAs cap layer 6 are sequentially formed on an N-type GaAs substrate 1. Then, a striped region 9 remains, and proton is implanted to a region 10. Thereafter, a Cr-Au electrode 7, an AuGeNi-Au electrode 8 are deposited, and an element is separated. Since a current flows in a stripe shape except a region near the right end of the element, it is of gain waveguide type. However, since the wavy surface becomes curved and no current flows at the center of the stripe in the region near the right end, a gain distribution becomes of reverse waveguide structure. Thus, a noise is small in a longitudinal multimodes, and small astigmatism in a semiconductor laser.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光デイスク用半導体レーザに係り、特に低雑
音で非点収差の小さな素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser for optical disks, and particularly to an element with low noise and small astigmatism.

〔発明の背景〕[Background of the invention]

光デイスク用半導体レーザにおいては、雑音が小さく、
非点収差が小さい素子が望ましい、マルチモード発振す
る利得導波型素子においては、雑音は小さいが、非点収
差が大きいという欠点があった。これを軽減するために
Mamina他、ジエー・アプライド・フィジックス第
56巻第3116頁1984年(T、 Mamina 
et al、 J、 Appl、 Phys、 Vo1
56P3116.1984)には、利得導波型素子にお
いて、ストライプ幅を端面附近で細くする構造が報告さ
れている。しかしながらこれでもなお非点収差は10μ
m以上あり、このままでは、光デイスク用光源として不
適である。
Semiconductor lasers for optical disks have low noise and
A gain waveguide element that performs multi-mode oscillation, in which an element with small astigmatism is desirable, has a drawback of low noise but large astigmatism. To alleviate this, Mamina et al., G.A. Applied Physics, Vol. 56, p. 3116, 1984 (T.
et al, J, Appl, Phys, Vol.
56P3116.1984) reports a structure in which the stripe width is narrowed near the end face in a gain waveguide element. However, even with this, the astigmatism is still 10 μ
m or more, and as it is, it is unsuitable as a light source for optical disks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光ディスクの光源として最適な半導体
レーザを提供することにある。
An object of the present invention is to provide a semiconductor laser that is optimal as a light source for an optical disc.

〔発明の概要〕[Summary of the invention]

本発明の概要を第1図と第2図を用いて説明する、第1
図は、利得導波型素子の断面図で、活性層3の近傍には
、層と平行方向に屈折率差がなく。
The outline of the present invention will be explained using FIGS. 1 and 2.
The figure is a cross-sectional view of a gain waveguide element, in which there is no refractive index difference in the vicinity of the active layer 3 in the direction parallel to the layer.

電極5のみストライプ状に限定されている1本発明者は
、このようなレーザでは、横モードは、利得分布12に
よって閉込められ、屈折率分布は13に示すように反導
波となっており、このため縮マルチモードで発振し易い
が、波面が曲面状となり非点収差が大きくなると考察し
た。また第2図で示す如く、電極を2つ設けて電流を流
すと。
In such a laser, the transverse mode is confined by the gain distribution 12, and the refractive index distribution is anti-waveguide as shown in 13. , Therefore, it is easy to oscillate in a contracted multimode, but the wavefront becomes curved and astigmatism becomes large. Also, as shown in Figure 2, if two electrodes are provided and a current is applied.

利得分布と屈折率分布は、各々第2図12と13で示す
士うになり・もしここで・素子中央部でレーザ発振が生
ずれば、利得に関しては反導波で屈折率導波構造となる
と考察した。このため波面は第1図とは逆方向に曲面状
となり非点収差は、第1図の素子とは逆方向に生ずるこ
とになると推考された。そこで以上の考察にもとづいて
同一の素子内で、光軸方向に両方の領域を設ければ、非
点収差が打消し合って非常に小さくなることが見出され
、縦マルチモードで発振し、非点収差の小さな素子が実
施できることが判明した。
The gain distribution and refractive index distribution are as shown in Fig. 2 12 and 13 respectively.If laser oscillation occurs at the center of the element, the gain will be anti-guided and the refractive index guided structure. I considered it. Therefore, the wavefront is curved in the opposite direction to that shown in FIG. 1, and it is thought that astigmatism occurs in the opposite direction to that of the element shown in FIG. Based on the above considerations, it was discovered that if both regions are provided in the optical axis direction within the same element, the astigmatism cancels out and becomes extremely small, resulting in longitudinal multi-mode oscillation. It has been found that an element with small astigmatism can be implemented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 本実施例を第3〜5図を用いて説明する。n型GaAs
基板1(厚み〜100μm)の上にn型Gaz−J Q
 xAsAsクララ2 (x=0.45.  厚み2p
m)、、P型Gat−yA Q yAs活性層3(y=
0.14.厚み0.08μm)、P型Gaz−xA Q
 xAsAsクララ4 (X=0.46.  厚み2μ
m)、P型GaAsキャップ層6(厚み1μm)を順次
成長し。
Example 1 This example will be explained using FIGS. 3 to 5. n-type GaAs
n-type Gaz-J Q on substrate 1 (thickness ~ 100 μm)
xAsAs Clara 2 (x=0.45. Thickness 2p
m), P-type Gat-yA Q yAs active layer 3 (y=
0.14. thickness 0.08 μm), P type Gaz-xA Q
xAsAs Clara 4 (X=0.46. Thickness 2μ
m), a P-type GaAs cap layer 6 (thickness 1 μm) was sequentially grown.

その後、ストライプ状の領域9を残して領域10にプロ
トンを深さ3μm打込む、この後、Cr−Au電極7 
、AuGaNi −A u電極8を蒸着し、素子に切り
離す、素子の右端面近傍の領域以外は、第4図に示す如
くストライプ状に電流が流れるので。
After that, protons are implanted into the region 10 to a depth of 3 μm, leaving the striped region 9. After this, the Cr-Au electrode 7
, where the AuGaNi-Au electrode 8 is deposited and separated into devices, except for the area near the right end face of the device, where current flows in a striped pattern as shown in FIG.

利得導波型となっている。このため縦マルチモードで発
振し、低雑音化される。ただし波面は曲面状となる。一
方布端面近傍の領域では、第5図に示す如くストライプ
中央部で電流が流れないので、利得分布は反導波構造に
なる。この領域があまり長くなければ、レーザ発振はス
トライプ中央で生ずるので、−波面は、この領域以外の
部分で生ずる曲面状の波面を打消す方向に曲面状となる
。このため結局右端面では波面は平坦に、なり、非点収
差は小さくなる。領域9のストライプ幅は2〜8μm、
右端面近傍の領域でのストライプ間の間隔は2〜5μm
、この領域の光軸方向の長さは、素子全体の長さ250
μmに対して、20〜80μmであった。この時、右端
面の出射レーザビームの非点収差は2〜8μmと小さか
った。
It is a gain waveguide type. Therefore, it oscillates in longitudinal multimode, resulting in low noise. However, the wavefront is curved. On the other hand, in the region near the end surface of the cloth, as shown in FIG. 5, no current flows at the center of the stripe, so the gain distribution becomes an anti-waveguide structure. If this region is not too long, laser oscillation will occur at the center of the stripe, so that the wavefront will be curved in a direction that cancels out the curved wavefront that occurs outside this region. As a result, the wavefront becomes flat at the right end surface, and astigmatism becomes small. The stripe width of region 9 is 2 to 8 μm,
The spacing between stripes in the area near the right end face is 2 to 5 μm.
, the length of this region in the optical axis direction is the length of the entire element 250
μm, it was 20 to 80 μm. At this time, the astigmatism of the laser beam emitted from the right end surface was as small as 2 to 8 μm.

実施例■ 本実施例を第6〜8図を用いて説明する。n型GaAs
基板(厚み〜100μm)上に領域9を残して、領域1
0にZn拡散を行う、この後、素子の右端面近傍のみ、
化学食刻により、溝11を設ける。この後、第3〜5図
と同じく、n型Get−xA n xAaクラッド層2
.P型Gat−yA 11 yAs活性層3.P型Ga
z−xA Q XAl1クラッド層4、P型キャップ層
6を順次成長し、Cu −A u電極7、AuGeNi
 −A u電極8を蒸着し、素子に切り離す。
Example (2) This example will be explained using FIGS. 6 to 8. n-type GaAs
Area 1 is left on the substrate (thickness ~100 μm), leaving area 9.
0. After that, only near the right end face of the element,
Grooves 11 are provided by chemical etching. After this, as in FIGS. 3 to 5, the n-type Get-xA n xAa cladding layer 2
.. P-type Gat-yA 11 yAs active layer 3. P-type Ga
z-xA Q
- Deposit Au electrode 8 and cut into elements.

この素子では、右端面近傍以外では、領域9にのみ電流
が流れ、利得導波型となる。一方布端面近傍領域では、
ストライプ中央部分で電流が流れないので、利得に関し
て反導波構造となるが、基板に設けた溝11のため、活
性層が湾曲し、屈折率導波構造とする。この両者の効果
のため、右端面近傍では、波面は平坦になり、非点収差
は小さくなる。領域9の幅は2〜5μm、右端面近傍の
領域でのストライプ間の間隔は2〜5μm、溝11の幅
は3〜5μmであった。この時の右端面からの出射レー
ザビームの非点収差は0〜5μmであった。
In this element, current flows only in region 9 except near the right end face, and the element becomes a gain waveguide type. On the other hand, in the area near the edge of the cloth,
Since no current flows in the center of the stripe, the structure becomes an anti-waveguide structure in terms of gain, but the active layer is curved due to the groove 11 provided in the substrate, resulting in a refractive index waveguide structure. Due to both of these effects, the wavefront becomes flat near the right end surface, and astigmatism becomes small. The width of region 9 was 2 to 5 μm, the interval between stripes in the region near the right end face was 2 to 5 μm, and the width of groove 11 was 3 to 5 μm. At this time, the astigmatism of the laser beam emitted from the right end surface was 0 to 5 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、縦多モードで雑音が小さく、かつ非点
収差の小さい半導体レーザが実現できた。
According to the present invention, a semiconductor laser with vertical multimode, low noise, and low astigmatism can be realized.

実施例では、GaA nAs系の材料で説明したが他の
材料でも実現できることはいうまでもない、またストラ
イプ構造も、プロトン打込や、Zn拡散のみではなく、
他の方法による構造でも効果があるのは当然である。
In the examples, GaA nAs-based materials were used, but it goes without saying that other materials can be used as well. Striped structures can also be created using not only proton implantation and Zn diffusion.
Naturally, structures using other methods are also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、利得導波型レーザの断面図と、利得および屈
折率分布を示す図、第2図は、電極を2個設けた場合の
断面図と、利得および屈折率分布を示す図、第3図は、
プロトン打込み部分の平面図、第4図は、第3図A−A
で線断面図、第5図は第3図B−B’線断面図、第6図
は基板表面の平面図、第7図は第6図A−A’線断面図
、第8図は第6図B−B’線断面図である。 1・・・基板、2,4・・・クラッド層、3・・・活性
層、6・・・キャップ層、7,8・・・電極、9・・・
ストライプ状領域、10・・・領域、11・・・溝。
FIG. 1 is a cross-sectional view of a gain-guided laser, and a diagram showing the gain and refractive index distribution. FIG. 2 is a cross-sectional diagram when two electrodes are provided, and a diagram showing the gain and refractive index distribution. Figure 3 shows
The plan view of the proton implantation part, Figure 4, is Figure 3 A-A.
5 is a sectional view taken along the line B-B' in FIG. 3, FIG. 6 is a plan view of the substrate surface, FIG. 7 is a sectional view taken along the line A-A' in FIG. FIG. 6 is a sectional view taken along the line B-B'. DESCRIPTION OF SYMBOLS 1... Substrate, 2, 4... Clad layer, 3... Active layer, 6... Cap layer, 7, 8... Electrode, 9...
Striped area, 10...area, 11...groove.

Claims (1)

【特許請求の範囲】 1、ストライプ状に基本モードでレーザ発振が生ずる半
導体レーザにおいて、少なくとも一方の出射端面附近の
領域においては、ストライプ中央部より周辺部において
レーザ光の励起強度が大きく、これ以外の領域において
は、ストライプ中央部分において最も該レーザ光の励起
強度が大きいことを特徴とする半導体レーザ素子。 2、特許請求の範囲1の素子において、上記レーザ光の
出射端面附近においては、上記ストライプ中央部で屈折
率が最も高い屈折率導波構造が形成され、これ以外の領
域では、上記ストライプ中央部と周辺部との屈折率差が
、上記端面附近に比べて小さいか、あるいは0か、ある
いは、中央部の方が屈折率が低くなつていることを特徴
とする半導体レーザ素子。
[Claims] 1. In a semiconductor laser in which laser oscillation occurs in a fundamental mode in a striped manner, in a region near at least one emission end face, the excitation intensity of the laser light is greater in the peripheral region than in the central region of the stripe; A semiconductor laser device characterized in that in the region, the excitation intensity of the laser beam is highest in the central portion of the stripe. 2. In the device according to claim 1, a refractive index waveguide structure having the highest refractive index at the center of the stripe is formed in the vicinity of the output end face of the laser beam, and in other regions, the refractive index waveguide structure has the highest refractive index at the center of the stripe. A semiconductor laser device characterized in that the difference in refractive index between the front and peripheral portions is smaller than that near the end face, or zero, or the refractive index is lower in the central portion.
JP60193741A 1985-09-04 1985-09-04 Semiconductor laser device Expired - Lifetime JPH0815226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193741A JPH0815226B2 (en) 1985-09-04 1985-09-04 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193741A JPH0815226B2 (en) 1985-09-04 1985-09-04 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6254990A true JPS6254990A (en) 1987-03-10
JPH0815226B2 JPH0815226B2 (en) 1996-02-14

Family

ID=16313034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193741A Expired - Lifetime JPH0815226B2 (en) 1985-09-04 1985-09-04 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0815226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105234A (en) * 1988-11-29 1992-04-14 U.S. Philips Corporation Electroluminescent diode having a low capacitance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101986A (en) * 1983-11-08 1985-06-06 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS60101987A (en) * 1983-11-08 1985-06-06 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101986A (en) * 1983-11-08 1985-06-06 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS60101987A (en) * 1983-11-08 1985-06-06 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105234A (en) * 1988-11-29 1992-04-14 U.S. Philips Corporation Electroluminescent diode having a low capacitance

Also Published As

Publication number Publication date
JPH0815226B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JPS5940592A (en) Semiconductor laser element
JPS60789A (en) Semiconductor laser device
JPH01235397A (en) Semiconductor laser
JPS6254990A (en) Semiconductor laser element
JP2846668B2 (en) Broad area laser
JPS5861695A (en) Semiconductor laser element
JPS6037191A (en) Manufacture of semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS5980984A (en) Surface illuminant distribution feedback type semiconductor laser element
JPS6226884A (en) Semiconductor laser
JPH0587997B2 (en)
KR100363234B1 (en) Semiconductor laser diode with selectively buried ridge structure
JPS63306686A (en) Semiconductor laser device
JPH0824207B2 (en) Semiconductor laser device
JPS6142188A (en) Semiconductor laser device
JPH05206567A (en) Semiconductor laser
JPH0821749B2 (en) Integrated semiconductor laser
JPS5917293A (en) Semiconductor laser element
JPS59123289A (en) Semiconductor laser array device
JPH01181492A (en) Semiconductor laser element
JPS60198794A (en) Semiconductor laser element
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS5994485A (en) Semiconductor laser device
JPH02178987A (en) Semiconductor laser element
JPH03263890A (en) Semiconductor laser device and manufacture thereof