JPS6254851A - Optical recording card - Google Patents

Optical recording card

Info

Publication number
JPS6254851A
JPS6254851A JP60193767A JP19376785A JPS6254851A JP S6254851 A JPS6254851 A JP S6254851A JP 60193767 A JP60193767 A JP 60193767A JP 19376785 A JP19376785 A JP 19376785A JP S6254851 A JPS6254851 A JP S6254851A
Authority
JP
Japan
Prior art keywords
layer
recording
temp
energy
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60193767A
Other languages
Japanese (ja)
Inventor
Yoshihira Maeda
佳均 前田
Ryuji Watanabe
隆二 渡辺
Shoichi Nagai
正一 永井
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60193767A priority Critical patent/JPS6254851A/en
Publication of JPS6254851A publication Critical patent/JPS6254851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Credit Cards Or The Like (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain film constitution having high utilizing efficiency of energy by providing a recording medium layer, absorption layer and interference layer between transparent substrates and forming the recording medium layer of a metal, alloy or semiconductor forming the crystal structure different from the equil. phase at a room temp. by quick cooling from the solid state of a high temp. CONSTITUTION:Much part of incident energy is absorbed in the absorption layer 5 and is changed to heat energy to quickly elevate the temp. of the absorption layer 5 when the absorption layer 5 consisting of material which absorbs the incident energy is provided on the incident energy side of the recording medium layer 2. As a result, the much heat energy is transferred from the absorption layer 5 to the recording layer 2 by heat transfer and the temp. of the layer 2 rises quickly up to the temp. higher than in the case having no absorption layer 5. The recording medium layer 2 consists of the metal or alloy which has the crystal structure different at the 1st temp. (high temp.) higher than room temp. nd the temp. (low temp.) lower than the 1st temp. in the solid state and has the crystal structure different from the crystal structure having the equil. phase at room temp. by quick cooling from the high temp. Said la perferably generates a volumetric change by a crystal change.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高密度パルスレーザを用いて1μmφ以下のス
ポットを記録信号として再生でき高密度記録が可能にな
る。従来磁気カードが使われてきた銀行の出金業務や鉄
道の改札業務への利用やまた書換え可能を利用したコン
ピュータの入力カード、フロッピーディスクタイプの記
録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention enables high-density recording by using a high-density pulsed laser to reproduce a spot of 1 μm or less in diameter as a recording signal. The present invention relates to applications for bank withdrawal operations and railway ticket gate operations, where magnetic cards have traditionally been used, as well as computer input cards and floppy disk type recording media that utilize rewritability.

〔発明の背景〕[Background of the invention]

近年、銀行、鉄道その他種々の分野において、紙、プラ
スチックシートなどの基体上に磁性層を形成せしめ、こ
の磁性層に情録信号を記録するようにした磁気記録カー
ド、例えば、バンクカード。
In recent years, magnetic recording cards such as bank cards, in which a magnetic layer is formed on a substrate such as paper or a plastic sheet, and information signals are recorded on this magnetic layer, have been used in banks, railways, and various other fields.

磁気定期券、磁気タイプ用記録カードなど種々のものが
使用されている。これらの磁気カードは。
Various types are used, such as magnetic commuter passes and magnetic type recording cards. These magnetic cards.

通常再生時に磁気ヘッドと激しく摺接するため、反復使
用することによりその磁性層が摩耗脱落したり表面にキ
ズを生じて再生出力が低下し、誤動作を生じる一因とな
っている。(特公昭56−50339号)またその対策
として表面保護層等が考えられている。しかし磁気カー
ドとヘッドとの接触摩耗は避けられず磁気カードの寿命
を短かくしている。
During normal reproduction, the magnetic head comes into strong sliding contact with the magnetic head, and repeated use causes the magnetic layer to wear off or cause scratches on the surface, reducing the reproduction output and causing malfunctions. (Japanese Patent Publication No. 56-50339) Also, as a countermeasure against this problem, a surface protective layer and the like have been considered. However, contact wear between the magnetic card and the head is unavoidable, shortening the life of the magnetic card.

磁気カードは記録方法に磁気を利用する為に環境中の磁
界による磁気汚染、Ta区構造i;よる記録密度の限界
、再生信号の低S/N比の為に記録媒体としての安定性
・信頼性が低かったので従来の磁気カードには単純で少
量の情報記録用として用いられていた。
Because magnetic cards use magnetism for recording, they suffer from magnetic contamination due to magnetic fields in the environment, limitations on recording density due to the Ta zonal structure, and stability and reliability as a recording medium due to the low S/N ratio of reproduced signals. Because of its low magnetic properties, conventional magnetic cards were used to simply record small amounts of information.

近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザのエネルギーを情報の記録。
In recent years, as information recording becomes more dense and digital, various information recording and reproducing methods are being developed. Especially recording information about laser energy.

消法、再生に利用した光ディスク等の光学記録方式は工
業レアメタルNα80,1983(光ディスクと材料)
に記載されているように磁気記録方式に比べ、高い記録
密度が可能であり、今後の情報記録の有力な方式である
。レーザの光エネルギーにより記録媒体に不可逆又は可
逆的に物理的変化を起こすものとしては、記録部分の媒
体を破壊あるいは成形して凹凸をつけ、再生にはこの凹
凸部分でのレーザ光の干渉による光−反射量の変化を利
用する。Taやその合金を利用して、その溶解、昇華に
よる凹凸の成形が一般的に知られている。この種の媒体
では毒性など若干の問題を含んでいる可逆的変化を起こ
す。
The optical recording method of optical discs used for erasure and reproduction is industrial rare metal Nα80, 1983 (Optical discs and materials)
As described in , it is possible to achieve higher recording densities than magnetic recording methods, and is a promising method for information recording in the future. Physical changes that occur irreversibly or reversibly in a recording medium due to laser light energy include destroying or shaping the medium in the recording area to create unevenness, and for reproduction, light is generated due to the interference of laser light on these uneven areas. - Utilize changes in the amount of reflection. It is generally known to form irregularities by melting and sublimating Ta or its alloys. This type of vehicle undergoes reversible changes which pose some problems such as toxicity.

記録媒体としては光磁気材料が主流である。この方法は
光エネルギーを利用してキュリ一点あるいは補償点温度
付近で媒体の局部的な磁気異方性を反転させ記録し、そ
の部分での偏光入射光の磁気ファラデー効果及び磁気カ
ー効果による偏光面の回転量にて再生する。この方法は
書き換え可能型の光学記録方式の最も有望なものとして
数年後の実用化を目指し精力的な研究開発が進められて
いる。しかし、現在のところ偏光面回転量の大きな材料
がなく多層膜化などの種々の工夫をしてもS/N、C/
Nなどの出力レベルが小さいという大きな問題がある。
Magneto-optical materials are the mainstream for recording media. This method utilizes optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or compensation point temperature, and the polarization plane of the polarized incident light at that part due to the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation. This method is considered to be the most promising rewritable optical recording method, and active research and development is underway with the aim of putting it into practical use in the next few years. However, there is currently no material with a large amount of rotation of the plane of polarization, and even with various efforts such as multilayer film formation, the S/N and C/
There is a big problem that the output level of N etc. is small.

また環境の磁気に汚染されやすい欠点がある。その他の
方式として記録媒体の非晶質と結晶質の可逆的相変化に
よる反射率変化を利用したものである0例えばナショナ
ルテクニカルレポートあける第29巻第5号(Nati
onalTechnical Report Vo n
 29 Na 5 ) (1983)に記載TeOxに
少量のGeおよびSnを添加した合金がある。
It also has the disadvantage of being easily contaminated by environmental magnetism. Other methods utilize changes in reflectance due to reversible phase changes between amorphous and crystalline recording media.
onalTechnical Report Von
29 Na 5 ) (1983), there is an alloy in which small amounts of Ge and Sn are added to TeOx.

しかし、この方式は非晶質相の結晶化温が低く、常温に
おける相の熱的不安定さが記録信号の信頼性に結びつく
大きな問題点である。
However, this method has a major problem in that the crystallization temperature of the amorphous phase is low, and the thermal instability of the phase at room temperature affects the reliability of the recorded signal.

一方1色調変化を利用した合金として、特開昭57−1
40845号のCu−(12〜15)wt%AQ−(1
〜5)wt%Niがある。(12〜15)wt%AQ −(1〜5)wt%Ni−残Cuよりなる合金はマルテ
ンサイト変態温度を境にして、赤から黄金色に可逆的に
変化することを利用したものである。
On the other hand, as an alloy utilizing one color tone change, JP-A-57-1
Cu-(12-15)wt%AQ-(1
~5) There is wt%Ni. The alloy consisting of (12-15) wt% AQ - (1-5) wt% Ni - residual Cu takes advantage of the fact that it reversibly changes from red to golden yellow at the martensitic transformation temperature. .

またA tg −Z n系合金は規則−不規則変態温度
を境にして、ピンク色から白色に可逆時に変化すること
を利用したものである。
Further, the Atg-Zn alloy utilizes the fact that the color changes reversibly from pink to white at the regular-disorder transformation temperature.

〔発明の目的〕[Purpose of the invention]

本発明は従来の磁気カードでは得られなかった光学記録
方式による高密度記録を実現し、高機能。
The present invention achieves high-density recording using an optical recording method, which was not possible with conventional magnetic cards, and is highly functional.

長寿命化、多目的利用価値を有した光学カードを提供す
るにある。
The purpose of the present invention is to provide an optical card with a long service life and multipurpose use value.

〔発明の概要〕[Summary of the invention]

本発明の光学記録カードは、加熱急冷によって部分的に
広域を消去する方法がある。
The optical recording card of the present invention has a method of partially erasing a wide area by heating and rapidly cooling.

本発明の記録及び再生の原理の例は次の通りである。先
ず、記録媒体を局部的に加熱し該加熱後の急冷によって
高温度領域での結晶構造を低温度領域で保持させて所定
の情報を記録し、又は高温相をベースとして9局部的に
加熱して高温相中に局部的に低温相によって記録し、記
録部分に光を照射して加熱部分と非加熱部分の光学的特
性の差を検出して情報を再生することができる。更に情
報として記録された部分を記録時の加熱温度より低い温
度又は高い温度で加熱し記録された情報を消去すること
ができる。光はレーザ光線が好ましく、特に短波長レー
ザが好ましい1本発明の加熱部分と非加熱部分との反射
率が500nm又は800nm付近の波長において最も
大きいので、このような波長を有するレーザ光を再生に
用いるのが好ましい。記録、再生には同じレーザ源が用
いられ、消去に記録のものよりエネルギー密度を小さく
した他のレーザ光を照射するのが好ましい。
An example of the recording and reproducing principle of the present invention is as follows. First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or locally heated based on the high temperature phase. Information can be reproduced by recording locally in a low-temperature phase during a high-temperature phase, and by irradiating the recorded portion with light and detecting the difference in optical characteristics between the heated portion and the non-heated portion. Furthermore, the recorded information can be erased by heating the portion recorded as information at a temperature lower or higher than the heating temperature at the time of recording. The light is preferably a laser beam, and a short wavelength laser is particularly preferable.1 Since the reflectance between the heated part and the non-heated part of the present invention is greatest at a wavelength around 500 nm or 800 nm, a laser beam having such a wavelength is used for reproduction. It is preferable to use It is preferable that the same laser source be used for recording and reproducing, and for erasing, a different laser beam having a lower energy density than that for recording is irradiated.

本発明は、光エネルギーの入射による加熱によって情報
を記録する記録体層を有する光学記録カードにおいて、
前記記録体層の光エネルギー入射側に該入射光エネルギ
ーの干渉層及び吸収層の少なくとも一方が設けられてい
ることを特徴とする光学記録カードにある。
The present invention provides an optical recording card having a recording layer that records information by heating due to the incidence of light energy.
The optical recording card is characterized in that at least one of an interference layer and an absorption layer for the incident light energy is provided on the light energy incident side of the recording layer.

何らかの手段により、光学記録カードからの反射エネル
ギーを少なくできれば、記録体層に入力する熱量が増加
し、記録体層の温度が急速に上昇し、高速書込が可能と
なるとともに、より少なく入射エネルギーで書込み又は
消去が可能となるため、書込み感度又は消去感度が高く
なり記録信号再生の信頼性が増す。前記記録体層は固体
状態で少なくとも2種類の結晶構造を有し、一方の温度
領域での結晶構造を他方の温度領域で保持し、及び/又
は結晶状態で互いに異なった体積変化を生じる金属又は
合金又は半導体からなることを特徴とする。なお、結晶
変化が生じなくても凹凸の変化を生じる金属又は合金で
あれば使用できる。
If the reflected energy from the optical recording card can be reduced by some means, the amount of heat input to the recording layer will increase, the temperature of the recording layer will rise rapidly, and high-speed writing will be possible, while also reducing the amount of incident energy. Since writing or erasing can be performed in the same manner, the writing sensitivity or erasing sensitivity is increased and the reliability of recording signal reproduction is increased. The recording layer has at least two types of crystal structures in a solid state, and is a metal or It is characterized by being made of an alloy or a semiconductor. Note that any metal or alloy that causes a change in unevenness can be used even if no crystal change occurs.

(吸収層、干渉M) 第1図(a)に示す如く、記録体層2の入射エネルギー
側に入射エネルギーを吸収する物質からなる吸収層5を
設けると、入射エネルギーの多くの部分が、吸収層5に
おいて吸収されて熱エネルギーに変化し、吸収層5の温
度が急激に上昇する。
(Absorption layer, interference M) As shown in FIG. 1(a), when the absorption layer 5 made of a substance that absorbs incident energy is provided on the incident energy side of the recording layer 2, most of the incident energy is absorbed. It is absorbed in the layer 5 and converted into thermal energy, causing the temperature of the absorption layer 5 to rise rapidly.

その結果、吸収層5から記録層2へ多くの熱エネルギー
が熱伝導により伝達され、記録WI2の温度も、吸収層
5のない場合に比較して、急速にかつ高温度まで上昇す
る。この吸収層5の厚さとしては情報記録再生媒体の表
面反射率(反射エネルギー/入射エネルギーの比)が、
5%〜80%となるような厚さが望ましい0反射率が5
%未満になると、反射光の強度が小さくなるため、記録
部分と未記録部分の反射光強度を比較して記録信号を読
取る記録信号再生時の信号対雑音比(S/N比)が劣下
してしまい不利である。また反射率が、80%を越える
と入射エネルギーの多くが、吸収Jll15において熱
エネルギーに変わることなく反射されてしまうため、吸
収層5の温度が上がらなくなる。その結果、記録層2へ
の熱エネルギーの伝達がほとんどなくなり、書込感度又
は消去感度の増加は期待できない、吸収層として電磁波
(例えば、レーザ光・光)を熱エネルギーに変換するも
のである。
As a result, much thermal energy is transferred from the absorption layer 5 to the recording layer 2 by thermal conduction, and the temperature of the recording WI2 also rises rapidly to a higher temperature than in the case without the absorption layer 5. The thickness of the absorption layer 5 is determined by the surface reflectance (ratio of reflected energy/incident energy) of the information recording/reproducing medium.
The thickness is preferably 5% to 80%, and the reflectance is 5.
If it is less than %, the intensity of the reflected light decreases, so the signal-to-noise ratio (S/N ratio) during recorded signal playback, where the recorded signal is read by comparing the reflected light intensity of the recorded part and the unrecorded part, deteriorates. This is a disadvantage. Furthermore, if the reflectance exceeds 80%, most of the incident energy will be reflected at the absorption layer 15 without being converted into thermal energy, so that the temperature of the absorption layer 5 will not rise. As a result, almost no thermal energy is transmitted to the recording layer 2, and no increase in writing sensitivity or erasing sensitivity can be expected.The absorbing layer converts electromagnetic waves (for example, laser beams and light) into thermal energy.

吸収層としては一酸化シリコン、酸化マンガン。The absorption layer is silicon monoxide and manganese oxide.

酸化チタン、酸化クロム、酸化銅、四三酸化鉄等の薄膜
を使用することができ、半透過性が好ましい。特に、着
色されたもので、黒体となっているものが好ましく、光
に対して10〜30%のエネルギー吸収性を有し、50
%以下の透過性を有するものが好ましい。厚さは50n
m以下、より好ましくは30〜50nmである0表面反
射率を低減する手段として、入射エネルギーの干渉効果
を利用する方法がある6 酸化タンタル、アルミナ等の50%以上のエネルギー透
過性の膜とするのが好ましい。その厚さは50〜500
nmが好ましく、無色が好ましい。
Thin films of titanium oxide, chromium oxide, copper oxide, triiron tetroxide, etc. can be used, and semi-permeable films are preferred. In particular, colored ones that have a black body are preferred, and have an energy absorption of 10 to 30% to light, and a 50%
% or less is preferred. Thickness is 50n
As a means of reducing the surface reflectance of 0 nm or less, preferably 30 to 50 nm, there is a method of utilizing the interference effect of incident energy. 6 Use a film with energy transmittance of 50% or more, such as tantalum oxide or alumina. is preferable. Its thickness is 50-500
nm is preferable, and colorless is preferable.

例えば、第1図(a)のように記録層2のエネルギー入
射側に適当な厚さの無色透明な干渉層1を設けると、入
射エネルギーの何割かは、この干渉層1の表面で反射さ
れる。残りの入射エネルギーは、干渉層1の内部まで入
り込み、記録層2まで到達する。この到達した入射エネ
ルギーの何割かは記録層2の表面で反射されて、干渉層
1を逆に通過して干渉層1の表面に到達する。この時、
入射エネルギーが電磁波のように波動性を有していると
前記の干渉層1の表面で反射してきたエネルギーの波と
、記録層2の表面での反射エネルギーの波が干渉を起こ
す、前記2つのエネルギーの波の位相がエネルギーの波
の波長の半分だけずれているとエネルギー波の山と谷の
部分が相殺し合って、エネルギー波の振幅が、減少する
。このことは。
For example, if a colorless and transparent interference layer 1 of an appropriate thickness is provided on the energy incident side of the recording layer 2 as shown in FIG. Ru. The remaining incident energy penetrates into the interference layer 1 and reaches the recording layer 2. Some percentage of the incident energy that has reached the recording layer 2 is reflected by the surface of the recording layer 2, passes through the interference layer 1 in the opposite direction, and reaches the surface of the interference layer 1. At this time,
When the incident energy has a wave nature like an electromagnetic wave, the energy wave reflected on the surface of the interference layer 1 and the energy wave reflected on the surface of the recording layer 2 cause interference. If the phase of the energy wave is shifted by half the wavelength of the energy wave, the peaks and troughs of the energy wave cancel each other out, and the amplitude of the energy wave decreases. About this.

゛声質的に情報記録再生媒体の表面から反射して返って
くるエネルギーが減少することを意味する。
This means that the energy reflected back from the surface of the information recording/reproducing medium is reduced in terms of voice quality.

すなわち、干渉層1の厚さを適切な値にすれば、エネル
ギー反射率が下げることができる。この場合、干渉層1
部分での光の吸収はきわめて少ないから、入射エネルギ
ーから反射エネルギーを差し引いた残りのエネルギーは
全て記録層2で吸収され、記録層2の温度は干渉層1が
ない場合に比較して、より急速に高温度にまで上昇する
That is, by setting the thickness of the interference layer 1 to an appropriate value, the energy reflectance can be lowered. In this case, interference layer 1
Since the absorption of light in this area is extremely small, the remaining energy after subtracting the reflected energy from the incident energy is all absorbed by the recording layer 2, and the temperature of the recording layer 2 increases more rapidly than when there is no interference layer 1. temperature rises to high temperature.

前記のf&適な干渉層の厚さは、干渉の理論によって導
かれる次式によって決めることができる。
The thickness of the interference layer described above can be determined by the following equation derived from the theory of interference.

λ (m=o、1,2.3・・・) ここで、 d :干渉層の厚さ nl:干渉層の屈折率 λ :エネルギー波の波長 又、干渉膜の屈折率の最適な値n□′ は干渉の理論か
ら同様に導びかれ次式で表わされる。
λ (m=o, 1, 2.3...) where, d: thickness of the interference layer nl: refractive index of the interference layer λ: wavelength of the energy wave or optimal value n of the refractive index of the interference film □′ is similarly derived from the theory of interference and is expressed by the following equation.

n11=5−         ・1旧・・(2)ここ
で、 n2=記録体層2の屈折率 前記した反射率を低減させる層は、入射エネルギー吸収
層又は干渉層として、単独の機能を有するものであった
が、1つの層に、干渉層としての機能と、吸収層として
の機能を同時に持たせることも可能である。
n11=5-・1 old...(2) Here, n2=Refractive index of recording layer 2 The layer that reduces the reflectance described above has an independent function as an incident energy absorption layer or an interference layer. However, it is also possible for one layer to have the functions of an interference layer and an absorption layer at the same time.

(記録体層) 本発明の記録体層は、前述のように固体状態で室温より
高い第1の温度(高温)及び第1の温堂より低い温度(
低温)状態で異なった結晶構造を有し、前記高温からの
急冷によって室温で平衝相である結晶構造と異なる結晶
構造を有する金属又は合金からなり、結晶変化によって
体積変化を生じるものが好ましい。
(Recording layer) As described above, the recording layer of the present invention has a first temperature (high temperature) higher than room temperature and a temperature lower than the first temperature (high temperature) in a solid state.
It is preferable that the metal or alloy is made of a metal or an alloy that has a crystal structure different from that in the equilibrium phase at room temperature upon rapid cooling from the high temperature, and that causes a volume change due to crystal change.

本発明に係る合金は高温の同相状態からの急冷により同
一温度で少なくとも2種の分光反射率を有し、可逆的に
分光反都景を変えることのできるものである。すなわち
、本発明に係る合金は同相状態で少なくとも2つの温度
領域で結晶構造の異なった相を有し、それらの内、高温
相を急冷した状態と非急冷の標準状態の低温相状態とで
分光反射率が異なり、高温相温度領域での加熱急冷と低
温相温度領域での加熱冷却により分光反射率が可逆的に
変化するものである。
The alloy according to the present invention has at least two types of spectral reflectance at the same temperature by rapid cooling from a high-temperature in-phase state, and can reversibly change the spectral reflection. That is, the alloy according to the present invention has phases with different crystal structures in at least two temperature regions in the same phase state, and among these, the high-temperature phase is quenched and the low-temperature phase state is the standard state without quenching. The reflectance is different, and the spectral reflectance changes reversibly by heating and cooling in the high phase temperature region and heating and cooling in the low temperature phase region.

また光学記録カードへの応用に際して、記録密度として
、20メガビット/d以上となるような微小面積での情
報の製作には0.01〜0.2μmの膜厚とするのがよ
い、記録体層として気相あるいは液相から直接急冷固化
させて所定の形状にすることが有効である。これらの方
法にはPVD法(蒸着、スパッタリング法等)、CVD
法、溶湯を高速回転する高熱伝導性を有する部材からな
る、特に金属ロール円周面上に注湯して急冷凝固させる
溶湯急冷法、電気メッキ。化学メッキ法等がある。粉末
状の材料を利用する場合、基板上に塗布して基板上に接
着することが効果的である。塗布する場合、粉末を加熱
しても反応などを起こさないバインダーがよい。また、
加熱による材料の酸化等を防止するため、材料表面、基
板上に形成した膜あるいは塗布層表面をコーティングす
ることも有効である。
In addition, when applying to optical recording cards, the recording layer should preferably have a film thickness of 0.01 to 0.2 μm to produce information in a minute area with a recording density of 20 megabits/d or more. It is effective to directly rapidly cool and solidify the material from the gas or liquid phase to form it into a predetermined shape. These methods include PVD (evaporation, sputtering, etc.), CVD
electroplating, a molten metal quenching method in which molten metal is rotated at high speed, made of a member with high thermal conductivity, and is poured onto the circumferential surface of a metal roll and rapidly solidified; and electroplating. There are chemical plating methods, etc. When using a powdered material, it is effective to apply it onto a substrate and adhere it to the substrate. When applying, a binder that does not cause any reaction even when the powder is heated is preferred. Also,
In order to prevent oxidation of the material due to heating, it is also effective to coat the surface of the material, the film formed on the substrate, or the surface of the coating layer.

粉末は、溶湯を気体又は液体の冷媒とともに噴震させて
水中に投入させて急冷するガイアトマイズ法によって形
成させることが好ましい、その粒径はO’、 1 m以
下が好ましく、特に粒径1μm以下の超微粉が好ましい
The powder is preferably formed by a Gaia atomization method in which molten metal is ejected together with a gaseous or liquid refrigerant and then poured into water to be rapidly cooled.The particle size is preferably 0.1 m or less, particularly 1 μm or less. Ultrafine powder is preferred.

膜は前述の如く蒸着、スパッタリング、CVD。The film was deposited by vapor deposition, sputtering, or CVD as described above.

電気メッキ、化学メッキ等によって形成できる。It can be formed by electroplating, chemical plating, etc.

特に、0.1μm以下の膜厚を形成するにはスパッタリ
ングが好ましい。スパッタリングは目標の合金組成のコ
ントロールが容易にできる。
In particular, sputtering is preferable to form a film with a thickness of 0.1 μm or less. Sputtering allows easy control of the target alloy composition.

本発明の光学記録カードは両面記録が可能である。第1
図(b)と(d)に示した様に二枚の記録体層を用いる
ことで両面に独立の信号を記録、再生。
The optical recording card of the present invention allows double-sided recording. 1st
As shown in Figures (b) and (d), by using two recording layers, independent signals can be recorded and reproduced on both sides.

消去することができる。これは磁気カード及び光磁気応
用カードにない特徴であり本発明の光学記録のカード大
きな長所である。前記(b)と(d)において吸収層及
び干渉層をそれぞれ両面に設けると効果的セある。第1
図(C)は二枚の透明アクリル樹脂板の間に記録体層を
挾んだ構造であり、アクリル樹脂板が保熱効果と耐久性
をもつものである。
Can be erased. This is a feature not found in magnetic cards and magneto-optical cards, and is a great advantage of the optical recording card of the present invention. In (b) and (d) above, it is effective to provide an absorption layer and an interference layer on both sides, respectively. 1st
Figure (C) shows a structure in which a recording layer is sandwiched between two transparent acrylic resin plates, and the acrylic resin plates have a heat retaining effect and durability.

第2図(a)は、記録体層が金属又は合金であるため面
方向の熱伝導によるエネルギーの散iを防ぐ構造である
。同図(b)は両面記録を行う場合の構造を示す。
FIG. 2(a) shows a structure in which the recording layer is made of metal or an alloy to prevent energy dissipation due to thermal conduction in the surface direction. FIG. 5B shows a structure for double-sided recording.

(基板) ガードの基板には、ポリ塩化ビニール、透過アクリル樹
脂、ポリカーボネート等のプラスチック等の軽量で充分
な支持性を有する加工精度の良いものが好ましい、特に
金属又合金と密着性の良いものが好ましい、基板と記録
体層の熱膨張差等が高温変形の原因となる場合は、AQ
板等を基板に用いるのが好ましい。゛ 〔発明の実施例〕 (実施例1) 第3図の(b)が第1図の(a)の干渉層ICTaxO
s* 500nm厚さ)を付加した膜構成における分光
反射特性であり、著しい干渉が生じていることが分かる
。第4図の(a)は透明アクリル樹脂板4の上にAg−
40重量%Zn合金膜2のみをスパッタ蒸着したもので
記録部、未記録部とも反射率が高い、これに対し、(b
)図は干渉の谷を利用しているが、Arレーザ(λhr
 = 488 n m )及び半導体レーザ(λb=8
30nm)の各波長のところで著しく反射率が下がって
いることが分かる。すなわち、(a)図の干渉層なしの
場合に比べて、レーザ光の投入エネルギーが記録媒体中
に効率良く吸収され、少ないパワーで記録、消去が達成
されることを意味する。なお、ここでは、干渉[1を高
屈折率のTa、O,とし、500nmとしている。同様
に、このような光の干渉を用いた他の例は干渉層1とし
て屈折率が大で、透過性のあるものが望ましく、AQ、
○、を干渉層とした場合であり、膜厚を干渉条件に合わ
せれば同様に反射率が下がる0図4の(a)、 (b)
は記録体膜をCu−14重量%Al−4重量%Ni12
に置き換えた場合であり、第4図の(a)は干渉膜1な
し、(b)は干渉膜(T a*o*e 500 n m
厚さ)を付加した膜構成における分光反射特性を示す、
この場合も第3図のA g −’40重量%Zn合金膜
2と同様に、Arレーザ及び半導体レーザの各波長のと
ころで反射率が著しく下がっていることが分かる。半導
体レーザにより1μm以下の幅でデジタル、アナログの
記録・再生ができることを確認された。また、これらの
色の変化と同時にベース面に凹又は凸部が生じて記録さ
れ、消去によって元、の平坦な面に元ることか確認され
た。
(Substrate) For the substrate of the guard, it is preferable to use plastics such as polyvinyl chloride, transparent acrylic resin, and polycarbonate, which are lightweight, have sufficient support, and have good processing precision.In particular, materials with good adhesion to metals or alloys are preferred. Preferably, if the difference in thermal expansion between the substrate and the recording layer causes high temperature deformation, AQ
It is preferable to use a plate or the like as the substrate.゛[Embodiments of the invention] (Example 1) FIG. 3(b) is the interference layer ICTaxO of FIG. 1(a).
This is the spectral reflection characteristic of the film configuration with the addition of s* (thickness: 500 nm), and it can be seen that significant interference occurs. FIG. 4(a) shows Ag-
The 40 wt % Zn alloy film 2 alone was sputter-deposited, and the reflectance was high in both the recorded and unrecorded areas.
) figure uses the valley of interference, but Ar laser (λhr
= 488 nm) and semiconductor laser (λb = 8
It can be seen that the reflectance decreases significantly at each wavelength (30 nm). That is, compared to the case without an interference layer as shown in FIG. 3(a), the energy of the laser beam is absorbed into the recording medium more efficiently, and recording and erasing can be achieved with less power. In addition, here, the interference [1 is Ta, O, which has a high refractive index, and is 500 nm. Similarly, in other examples using such light interference, it is desirable that the interference layer 1 has a high refractive index and is transparent;
This is the case where ○ is used as an interference layer, and if the film thickness is adjusted to the interference conditions, the reflectance will similarly decrease.0 Figure 4 (a) and (b)
The recording film was made of Cu-14% by weight Al-4% by weight Ni12
(a) without the interference film 1, and (b) with the interference film (Ta*o*e 500 nm
This shows the spectral reflection characteristics of a film configuration with added thickness.
In this case as well, similarly to the A g -'40 wt % Zn alloy film 2 in FIG. 3, it can be seen that the reflectance is significantly reduced at each wavelength of the Ar laser and the semiconductor laser. It was confirmed that digital and analog recording and playback can be performed with a width of 1 μm or less using a semiconductor laser. It was also confirmed that concave or convex portions were recorded on the base surface at the same time as these color changes, and that the original flat surface was restored by erasing.

従って本発明により低エネルギー記録再生消去が可能と
なり光学記録カード専用装置をコンパクトなものにする
ことが可能である。
Therefore, according to the present invention, low energy recording, reproducing and erasing is possible, and a device dedicated to optical recording cards can be made compact.

(実施例2) 実施例1と同様に、第5図の(a)は塩化ビニル基板3
の上にスパッタ蒸着によりAg−40重量%Zn合金膜
2(膜厚10100nを設け、更にその上にCr−ox
(クロム酸化物)5を真空蒸着法により5〜10nm設
けた。このCr・Oxは前記したように、反射率の高い
金属情報記録層上に熱吸収層として付加したものである
。上述した結晶−結晶の相変化合金膜においては、それ
自身が高い反射率を有するため、レーザ光の入熱効率が
悪い、これをカバーするために記録層上に’Cr−0x
13を設けているのである。第5図は。
(Example 2) As in Example 1, (a) of FIG. 5 shows the vinyl chloride substrate 3.
An Ag-40 wt % Zn alloy film 2 (thickness 10100 nm) was formed on the film by sputter deposition, and a Cr-ox
(Chromium oxide) 5 was provided to a thickness of 5 to 10 nm by vacuum evaporation. As described above, this Cr.Ox is added as a heat absorption layer on the metal information recording layer having high reflectance. The above-mentioned crystal-crystal phase change alloy film itself has a high reflectance, so the heat input efficiency of the laser beam is poor.
13 are provided. Figure 5 is.

熱吸収層がある場合と、ない場合との分光反射特性を比
較したものである。この図から分かるように約300−
1000 n mの波長域において、熱吸収層付きの膜
構成のものが反射率が下がることが分かる。更に、第1
図(a)の記録層をCu−14重量%八へ−4重量%N
iとし、同様にCr・Oxを付加したものである。この
場合もやはり反射率を下げる効果があることが分かった
。又、熱吸収M5を他にCu、014やFa、0415
  に置き換えた場合でも、同じように反射率を下げる
効果がみられる。記録層の体積変化を前述と同様に生じ
た。
This is a comparison of the spectral reflection characteristics with and without a heat absorption layer. As you can see from this figure, about 300-
It can be seen that in the wavelength range of 1000 nm, the reflectance of the film structure with a heat absorption layer decreases. Furthermore, the first
The recording layer in figure (a) is made of Cu-14% by weight and N-4% by weight.
i, with Cr.Ox added in the same way. It was found that this case also had the effect of lowering the reflectance. In addition, in addition to heat absorbing M5, Cu, 014, Fa, 0415
Even when replaced with , the same effect of lowering the reflectance can be seen. The volume change of the recording layer occurred in the same manner as described above.

(実施例3) 実施例1と同様に第1図(c)に示す、透過アクリル基
板4の間にスパッタ蒸着によりA g −40重量%Z
n合金膜2を約1100n設け、更にその上下にCr・
Oxを10〜20nm空気蒸着法により設けた。このC
r−0xは熱吸収層という性質を持たせる他に、更に厚
さを増させて、同時に干渉による反射率の低下を狙った
ものである。
(Example 3) Similarly to Example 1, A g -40% by weight Z was deposited between the transparent acrylic substrates 4 by sputter deposition as shown in FIG. 1(c).
Approximately 1100 nm of n alloy film 2 is provided, and Cr.
Ox was provided by air evaporation to a thickness of 10-20 nm. This C
In addition to having the property of a heat absorption layer, r-0x is made to have an increased thickness, and at the same time aims to reduce the reflectance due to interference.

このCr−oxは透過性を有するとともに屈折率が大き
いため、わずかの膜厚で大きな干渉効果が得られた。第
5図は熱吸収及び干渉の両効果を狙った上記膜構成の場
合と、記録層8のみの場合と−の分光反射特性を示す、
この図から分かるように、500〜11000nの波長
領域において干渉効果に −より反射率が著しく下がる
と同時に、吸収効果もみられ、全体の反射率が下がって
いることが分かり、この点では、Ta2O,と同様にC
r・Oxも反射率を下げ、レーザ光の入熱効率を増大さ
せるのに適したものであり、第1図(c)のような膜構
成は非常に実用的なものであると言える。記録層の体積
変化が前述と同様に生じた。
Since this Cr-ox has transparency and a large refractive index, a large interference effect was obtained with a small film thickness. FIG. 5 shows the spectral reflection characteristics in the case of the above film structure aiming at both heat absorption and interference effects and in the case of only the recording layer 8.
As can be seen from this figure, in the wavelength region of 500 to 11,000 nm, the reflectance decreases significantly due to interference effects, and at the same time absorption effects are also observed, resulting in a decrease in the overall reflectance. Similarly, C
r.Ox is also suitable for lowering the reflectance and increasing the heat input efficiency of laser light, and it can be said that the film structure as shown in FIG. 1(c) is very practical. The volume change of the recording layer occurred in the same manner as described above.

(実施例4) 5.4 X 8.5 X O,75t  のカード形状
の基板として塩化ビニル、アクリル樹脂又はアルミニウ
ム板を用い、基板上に記録体層としてAg−40wt%
Zn合金のスパッタ又は真空蒸着膜(厚膜200 n 
m ) *干渉層としてTa、O,のスパッタ又は真空
蒸着膜(厚膜500nm)を設けた。第2図(C)の様
に20mWのフォーカス半導体レーザで(830m+波
長)で1μmφ以下の記録スポットを作ることができ、
同様に半導体レーザを用いて安定にデジタル信号を再生
することができた。
(Example 4) Vinyl chloride, acrylic resin or aluminum plate was used as a card-shaped substrate of 5.4 x 8.5 x O, 75t, and Ag-40wt% was used as a recording layer on the substrate.
Zn alloy sputtered or vacuum deposited film (thick film 200n
m) *A sputtered or vacuum-deposited film (thick film of 500 nm) of Ta and O was provided as an interference layer. As shown in Figure 2 (C), a recording spot of 1 μmφ or less can be created using a 20 mW focused semiconductor laser (830 m + wavelength).
Similarly, we were able to stably reproduce digital signals using a semiconductor laser.

その後20mWのデフォーカス半導体レーザを記録スポ
ットに同期照射したところ、記録スポットは消去された
。以上から、消去可能な光学記録カードが有効であるこ
とが判明した。
Thereafter, when the recording spot was synchronously irradiated with a 20 mW defocused semiconductor laser, the recording spot was erased. From the above, it has been found that erasable optical recording cards are effective.

(実施例5) 特に可塑性に優れ支持体として強度を有したポリミド樹
脂シートに記録体AgZn合金をスパッタ法、真空蒸着
法等で20〜50nm膜厚で作成した。これは第6図に
示すようにロール状に平面状から変形可能であり第7図
に示すように送りローラーに巻き付け、高速の記録再生
に適した形状になるものである。
(Example 5) A recording material made of an AgZn alloy having a film thickness of 20 to 50 nm was prepared by a sputtering method, a vacuum evaporation method, etc. on a polyimide resin sheet having particularly excellent plasticity and strength as a support. As shown in FIG. 6, this can be deformed from a planar shape into a roll shape, and as shown in FIG. 7, it can be wound around a feed roller to form a shape suitable for high-speed recording and reproduction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特に結晶−結晶間の相変化による分光
反射率差又は体積変化による反射率差を利用した光学記
録カードへの応用としてエネルギーの利用効率の高い膜
構成が得られる効果がある。
According to the present invention, it is possible to obtain a film structure with high energy utilization efficiency, especially when applied to optical recording cards that utilize spectral reflectance differences due to phase changes between crystals or reflectance differences due to volume changes. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第2図は本発明の一実施例の光学記録カードの層
構造図、第3〜第5図は分光反射特性を示す線図、第6
.第7図は本発明の詳細な説明図である。 1・・・干渉層、2・・・記録体層、3・・・塩化ビニ
ル基板、4・・・透明アクリル樹脂板、5・・・吸収層
、6・・・金属板。 代理人 弁理士 小川9男 /2リー、麿′  飄 、■ 8.′ 第 1  口 (α) 第 2 口 (a、) (C) 第 3 目 ;i長(υす 第 4 目 (α) 液長(わす 第 5 口 (C) 流失(4列)
Figures 1 to 2 are layer structure diagrams of an optical recording card according to an embodiment of the present invention, Figures 3 to 5 are diagrams showing spectral reflection characteristics, and Figure 6 is a diagram showing spectral reflection characteristics.
.. FIG. 7 is a detailed explanatory diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Interference layer, 2... Recording layer, 3... Vinyl chloride substrate, 4... Transparent acrylic resin plate, 5... Absorption layer, 6... Metal plate. Agent: Patent attorney Ogawa 9/2 Lee, Maro' 飄, ■ 8. ' 1st port (α) 2nd port (a,) (C) 3rd port;

Claims (1)

【特許請求の範囲】[Claims] 1、金属又は機械的支持性の高い樹脂材基板の少なくと
も両面又は少なくとも二枚の光学的に透過性の高い機械
的支持性のある樹脂材基板の間に記録体層と前記記録体
層の光入射側に吸収層と干渉層を設け前記記録体層が高
温の固体状態からの急冷により室温での平衝相と異なる
結晶構造を形成する金属、合金又は半導体であることを
特徴とする光学記録カード。
1. At least both sides of a metal or resin substrate with high mechanical support, or between at least two optically transparent resin substrates with high mechanical support, a recording layer and the light of the recording layer Optical recording, characterized in that an absorption layer and an interference layer are provided on the incident side, and the recording layer is made of a metal, alloy, or semiconductor that forms a crystal structure different from an equilibrium phase at room temperature by rapid cooling from a high-temperature solid state. card.
JP60193767A 1985-09-04 1985-09-04 Optical recording card Pending JPS6254851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193767A JPS6254851A (en) 1985-09-04 1985-09-04 Optical recording card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193767A JPS6254851A (en) 1985-09-04 1985-09-04 Optical recording card

Publications (1)

Publication Number Publication Date
JPS6254851A true JPS6254851A (en) 1987-03-10

Family

ID=16313467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193767A Pending JPS6254851A (en) 1985-09-04 1985-09-04 Optical recording card

Country Status (1)

Country Link
JP (1) JPS6254851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280098A (en) * 1985-10-04 1987-04-13 大日本印刷株式会社 Program storage system by optical card
US5244770A (en) * 1991-10-23 1993-09-14 Eastman Kodak Company Donor element for laser color transfer
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280098A (en) * 1985-10-04 1987-04-13 大日本印刷株式会社 Program storage system by optical card
US5244770A (en) * 1991-10-23 1993-09-14 Eastman Kodak Company Donor element for laser color transfer
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof

Similar Documents

Publication Publication Date Title
US4651172A (en) Information recording medium
JPS60186825A (en) Information recording and reproducing device
JPS61133065A (en) Optical information recording device
JPH01149238A (en) Optical information recording medium
JPS6254851A (en) Optical recording card
JPS6169935A (en) Spectral reflectance variable alloy and recording material
JP2002298433A (en) Phase change optical recording medium
JPS61196445A (en) Photomagnetic disk
JPS6278746A (en) Optical recording tape and its production
JP3138661B2 (en) Phase change optical disk
JPS60151850A (en) Optical recording medium
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JPS61194658A (en) Information recording medium
JP3602589B2 (en) Optical recording medium and optical recording method
JP3532427B2 (en) Phase change optical recording medium
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JPH0448113B2 (en)
JPS6119745A (en) Spectral reflectance variable alloy and recording material
JPS62226445A (en) Optical recording medium
JPH05303781A (en) Magnetic optical recording medium
JPH03160634A (en) Optical recording medium
JP3138514B2 (en) Information optical recording medium and recording / reproducing method thereof
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS6383932A (en) Optical recording medium
JP2636694B2 (en) Recording / reproducing method and recording / reproducing apparatus for magneto-optical recording medium