JPS6254801B2 - - Google Patents

Info

Publication number
JPS6254801B2
JPS6254801B2 JP8281679A JP8281679A JPS6254801B2 JP S6254801 B2 JPS6254801 B2 JP S6254801B2 JP 8281679 A JP8281679 A JP 8281679A JP 8281679 A JP8281679 A JP 8281679A JP S6254801 B2 JPS6254801 B2 JP S6254801B2
Authority
JP
Japan
Prior art keywords
tank
sec
polymerization
stirring
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8281679A
Other languages
Japanese (ja)
Other versions
JPS568404A (en
Inventor
Sadanobu Kato
Hidehiko Takizawa
Masao Atsumi
Yutaka Tagashira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8281679A priority Critical patent/JPS568404A/en
Publication of JPS568404A publication Critical patent/JPS568404A/en
Publication of JPS6254801B2 publication Critical patent/JPS6254801B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は残留添加剤等の夾雑物の少ない熱可塑
性重合体粒子の製造に関し、更に詳しくは撹拌機
付重合槽において水性媒体中で分散剤、分散助剤
等の添加剤の存在下に懸濁重合を行うにあたり、
特定の撹拌条件を採用することにより夾雑物の少
ない熱可塑性重合体粒子を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of thermoplastic polymer particles with little impurities such as residual additives, and more specifically to the production of thermoplastic polymer particles containing little impurities such as residual additives, and more specifically to the addition of dispersants, dispersion aids, etc. in an aqueous medium in a polymerization tank equipped with a stirrer. When carrying out suspension polymerization in the presence of an agent,
This invention relates to a method for producing thermoplastic polymer particles with less impurities by employing specific stirring conditions.

撹拌機付重合槽において、水性媒体中に、分散
剤、分散助剤等の添加剤を溶解又は分散させた系
内で重合性単量体を懸濁重合させ、重合体粒子を
得ることは、従来より広く行われている。分散剤
としては、例えば第三リン酸カルシウム、リン酸
マグネシウム、炭酸カルシウム、リン酸ナトリウ
ム、塩化カルシウム、あるいはこれらの併用系等
の難溶性無機化合物や、ポリビニルアルコール、
カルボキシメチルセルロース等の水溶性高分子化
合物が用いられる。さらに難溶性無機化合物を分
散剤とした場合には、分散助剤として、ラウリル
硫酸ナトリウム等の陰イオン性界面活性剤や、ポ
リオキシエチレン、ノニルフエノールエーテル、
ポリオキシエチレンソルビタンモノラウレート等
の非イオン性界面活性剤を併用することも知られ
ている。又、上記難溶性無機化合物と水溶性高分
子との併用など、分散剤、分散助剤の数多くの組
合せが発表されている。
In a polymerization tank equipped with a stirrer, a polymerizable monomer is subjected to suspension polymerization in a system in which additives such as a dispersant and a dispersion aid are dissolved or dispersed in an aqueous medium to obtain polymer particles. It is more widely practiced than before. Examples of dispersants include sparingly soluble inorganic compounds such as tribasic calcium phosphate, magnesium phosphate, calcium carbonate, sodium phosphate, calcium chloride, or a combination thereof, polyvinyl alcohol,
A water-soluble polymer compound such as carboxymethyl cellulose is used. Furthermore, when a poorly soluble inorganic compound is used as a dispersant, anionic surfactants such as sodium lauryl sulfate, polyoxyethylene, nonylphenol ether,
It is also known to use a nonionic surfactant such as polyoxyethylene sorbitan monolaurate. Furthermore, many combinations of dispersants and dispersion aids have been announced, such as the combination of the above-mentioned sparingly soluble inorganic compounds and water-soluble polymers.

このような懸濁重合は、従来より通常、多数羽
根付撹拌機とフインガーバツフルを設けた撹拌槽
により行われてきた。しかしながら、このような
従来の撹拌槽による懸濁重合は必ずしも満足すべ
きものではなかつた。すなわち、従来のこの種の
撹拌槽に設けられるフインガーバツフルは液体内
部に深く挿入されていたり、あるいは槽径Dに対
する液深さHの比H/Dの大きい槽では上下2段
に撹拌翼を設けたりしていたが、このような撹拌
槽ではバツフルが槽内での液体の上昇流を著しく
妨げたり、あるいは槽内を上下2つの層部分に分
離することが起つて、懸濁粒子の沈降あるいは浮
上、あるいは上層部と下層部での混合不均一など
が避け難かつた。そして、このような欠点を避け
るために、いたずらに撹拌速度を大きくすること
が行われていたが、撹拌のための消費動力は一般
に撹拌速度の3乗に比例するため、非常に大きな
動力を要し多大な経済的損失の原因となつてい
た。
Such suspension polymerization has conventionally been carried out in a stirring tank equipped with a multi-blade stirrer and a finger baffle. However, such conventional suspension polymerization using a stirring tank was not always satisfactory. In other words, the finger blades provided in conventional stirring tanks of this type are inserted deeply into the liquid, or in tanks with a large ratio H/D of liquid depth H to tank diameter D, stirring blades are installed in two stages, upper and lower. However, in such agitating tanks, the buffling significantly obstructs the upward flow of liquid in the tank, or separates the tank into two layers, upper and lower, causing suspended particles to It was difficult to avoid settling or flotation, or uneven mixing between the upper and lower layers. In order to avoid these drawbacks, the stirring speed was unnecessarily increased, but since the power consumption for stirring is generally proportional to the cube of the stirring speed, it required a very large amount of power. This caused huge economic losses.

上述したような従来の撹拌槽の欠点を解決し、
小さい撹拌動力により槽内に均一な混合状態を得
るための研究を行つた結果、本発明者らは既に、
槽内におけるフインガーバツフルの占める位置な
らびにフインガー長が槽内の混合状態に大きな影
響を与えることを見出し、一つの撹拌装置を開発
している。その撹拌装置は、底部に羽根付撹拌機
を設けた円筒形の反応装置において、撹拌装置の
直径に対するフインガーの水平方向長さの割合が
0.15〜0.38であるフインガー付バツフルをその円
筒部分の上部から1/2以内の内壁面に設けてなる
ことを特徴とするものである(昭和54年特許願第
54924号)。
Solving the drawbacks of conventional stirring tanks as mentioned above,
As a result of conducting research to obtain a uniform mixing state in the tank using a small stirring power, the present inventors have already found that
We have discovered that the position occupied by the finger buttful in the tank and the length of the fingers have a large effect on the mixing condition in the tank, and have developed a stirring device. The stirring device is a cylindrical reactor equipped with a bladed stirrer at the bottom, and the ratio of the horizontal length of the fingers to the diameter of the stirring device is
It is characterized by having a fingered buttful of 0.15 to 0.38 on the inner wall surface within 1/2 from the top of the cylindrical part (Patent Application No. 1982).
No. 54924).

本発明は上述した撹拌装置を用いて行う懸濁重
合の改良法を提供せんとするものである。すなわ
ち、上述した改良された撹拌装置ないし撹拌槽は
撹拌効果において優れたものであるが、これを懸
濁重合に適用する場合には一つの問題点がある。
The present invention aims to provide an improved method for suspension polymerization carried out using the above-mentioned stirring device. That is, although the above-mentioned improved stirring device or stirring tank has an excellent stirring effect, there is one problem when applying this to suspension polymerization.

懸濁重合を行う場合、粒子の懸濁を機械的撹拌
力のみで行うことは、いたずらに撹拌動力の増大
を招くのみで得策ではない。このため、前述した
ように分散剤ないしは分散助剤を使用し、その存
在下に撹拌重合を行うのが常である。これら分散
剤や分散助剤は、一般に重合終了後、脱水、水洗
等の後処理により、重合体粒子から取り除かれて
いるが、これらの後処理は重合体粒子の表面にの
み有効なものであり、重合体粒子内部に取り込ま
れた分散剤や分散助剤に対しては、殆んど効果が
無く、重合体粒子内部に取り込まれた添加剤は、
各種後処理工程を経てそのまま製品中に残存する
結果となる。
When carrying out suspension polymerization, it is not advisable to suspend the particles using only mechanical stirring power, as this only unnecessarily increases the stirring power. For this reason, as mentioned above, it is customary to use a dispersant or a dispersion aid and carry out the stirring polymerization in the presence of the dispersant or dispersion aid. These dispersants and dispersion aids are generally removed from polymer particles by post-treatments such as dehydration and water washing after polymerization, but these post-treatments are only effective on the surface of polymer particles. , it has almost no effect on dispersants and dispersion aids taken into the inside of the polymer particles, and additives taken into the inside of the polymer particles,
As a result, it remains in the product as it is after undergoing various post-processing steps.

したがつて、懸濁重合によつて得られる重合体
は塊状重合によつて得られる重合体に比べ、難溶
性無機化合物を分散剤として使う場合には透明な
重合体では透明性が必然的に劣り、又、水溶性高
分子を分散剤とする場合には、水溶性高分子の熱
劣化による色相の劣化が著しい。
Therefore, compared to polymers obtained by bulk polymerization, polymers obtained by suspension polymerization are less transparent when using poorly soluble inorganic compounds as dispersants. Moreover, when a water-soluble polymer is used as a dispersant, the hue deteriorates significantly due to thermal deterioration of the water-soluble polymer.

又、懸濁重合はその方法上、液状の重合性単量
体が液滴で水系媒体中に分散され、その液滴中で
重合反応がすすむものである。反応中は機械的撹
拌による液滴の分散・合一をたえず繰り返してお
り、この過程で、分散剤、分剤助剤等の夾雑物
も、粒子中に取り込まれる機会に遭遇していると
言える。重合反応がすすむにつれて、液滴の粘性
も増し、合一頻度が増す過程を経るが、この過程
で、夾雑物は粒子中に取り込まれ、固定化される
度合もより多くなる。これらのことが原因となつ
て、懸濁重合によつて得られる重合体粒子中には
夾雑物が多く含まれることは広く一般に知られて
おり、且つ、やむをえぬ現象であるとの考えが一
般的となつて夾雑物を減らそうとする試みはなさ
れていなかつた。
Further, suspension polymerization is a method in which a liquid polymerizable monomer is dispersed in droplets in an aqueous medium, and a polymerization reaction proceeds in the droplets. During the reaction, the droplets are constantly dispersed and coalesced by mechanical stirring, and during this process, it can be said that impurities such as dispersants and dispensing aids have the opportunity to be incorporated into the particles. . As the polymerization reaction progresses, the viscosity of the droplets increases and the frequency of coalescence increases, but during this process, impurities are incorporated into the particles and are immobilized to a greater degree. Due to these factors, it is widely known that polymer particles obtained by suspension polymerization contain a large amount of impurities, and it is generally believed that this is an unavoidable phenomenon. No attempt was made to reduce contaminants in a targeted manner.

このような懸濁重合に伴う添加剤で代表される
夾雑物の重合体粒子中への混入による問題は、前
述した改良された撹拌槽を用いる場合にも同様に
見出されるものである。しかしながら本発明者ら
が更に研究した結果、上述した改良撹拌槽を用い
る場合、撹拌翼先端の周速度U〔mm/sec〕と槽
内流体の循環時間θc〔sec〕との比U/θc
〔mm/sec2〕と、重合体粒子に取り込まれる夾雑
物、特に残留添加剤の量との間に相関関係が存在
するという知見を得た。しかして、この値U/θ
cを20〜80mm/sec2の範囲に制御することにより
均一な撹拌効果を維持しつつ重合体粒子中に残存
する夾雑物量を著しく減少可能なことを見出して
本発明を完成するに至つた。ここで、U/θc
工学的意味をより詳しく説明すると、Uは撹拌翼
の回転により吐出された流体が、撹拌翼先端で撹
拌翼の描く円の円周方向へ流動する速度であり、
槽内流体の水平方向流動を代表する値である。一
方θcは撹拌翼の回転により吐出された流体が槽
内の液面方向に上昇し、液面で反転下降し、再び
撹拌翼の所まで戻るのに要する時間であり、槽内
流体の垂直方向流動を代表する値である。すなわ
ち、U/θcを規定することは、槽内流体の水平
方向流動と垂直方向流動の逆数の比を規定するこ
とであり、本発明はこの比を一定範囲に制御する
ことが懸濁粒子の均一分散を確保しつつ重合体粒
子中への夾雑物の混入を可及的に少くする上で必
要であるとの知見に基づくものである。したがつ
て本発明の夾雑物の少い熱可塑性重合体粒子の製
造法は全体形状が大略円筒状でありその底部に撹
拌翼を備え且つその円筒部分の液面高さの上部か
ら1/2以内の高さにフインガーを1本有するフイ
ンガー付バツフルを備えてなり、液面下に目皿板
を持たない重合槽内で懸濁重合を行うにあたり、
撹拌翼先端の周速度U〔mm/sec〕と槽内流体の
循環時間θc〔sec〕との比U/θcが20〜80mm/
sec2の範囲となる撹拌条件下に重合を行うことを
特徴とするものである。
Problems caused by contaminants typified by additives associated with suspension polymerization mixed into polymer particles are also found when using the above-mentioned improved stirring tank. However, as a result of further research by the present inventors, when using the improved stirring tank described above, the ratio of the circumferential velocity U [mm/sec] of the tip of the stirring blade to the circulation time θ c [sec] of the fluid in the tank is U/θ. c
It has been found that there is a correlation between [mm/sec 2 ] and the amount of impurities, especially residual additives, incorporated into the polymer particles. Therefore, this value U/θ
The present invention was completed based on the discovery that by controlling c in the range of 20 to 80 mm/sec 2 , it is possible to significantly reduce the amount of impurities remaining in the polymer particles while maintaining a uniform stirring effect. Here, to explain the engineering meaning of U/θ c in more detail, U is the speed at which the fluid discharged by the rotation of the stirring blade flows in the circumferential direction of the circle drawn by the stirring blade at the tip of the stirring blade,
This value represents the horizontal flow of fluid in the tank. On the other hand, θ c is the time required for the fluid discharged by the rotation of the stirring blade to rise in the direction of the liquid level in the tank, turn around at the liquid level, descend, and return to the stirring blade again. This value is representative of directional flow. That is, to define U/θ c is to define the ratio of the reciprocal of the horizontal flow and the vertical flow of the fluid in the tank, and in the present invention, it is possible to control this ratio within a certain range to reduce suspended particles. This is based on the knowledge that it is necessary to ensure uniform dispersion of polymer particles while minimizing the amount of contaminants mixed into the polymer particles. Therefore, the method for producing thermoplastic polymer particles with less impurities according to the present invention has a generally cylindrical overall shape, a stirring blade is provided at the bottom, and the height is 1/2 from the top of the liquid level of the cylindrical portion. When carrying out suspension polymerization in a polymerization tank that does not have a perforated plate below the liquid level,
The ratio U/θ c of the circumferential speed U [mm/sec] at the tip of the stirring blade and the circulation time θ c [sec ] of the fluid in the tank is 20 to 80 mm/
It is characterized in that the polymerization is carried out under stirring conditions in the range of sec 2 .

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明で用いる重合槽は、好ましい一例を添付
の図面に示すような断面構造を有する。すなわ
ち、この例では、フアウドラー型3枚羽根付撹拌
翼1を槽の底部に設け、槽円筒部液面高さHの1/
2よりも上方液面に近い側に、バツフル軸径も含
めたフインガー長aなるフインガー3を有したフ
インガー付バツフル2を半径方向に対称的に2本
設置している。ここでフインガー先端は静止液面
4および該撹拌翼をモーター等の駆動機により撹
拌せしめた時の液面(以下撹拌時液面という)5
よりも、常に下方にフインガー付バツフルを設置
する。さらにフインガー長(より厳密には水平長
さ)aと槽径Dの割合(a/D)は0.15〜0.38と
なる様にフインガーを作成取付ける。本発明で
は、槽内流動を阻害する目皿板の設置は好ましく
ない。
A preferred example of the polymerization tank used in the present invention has a cross-sectional structure as shown in the attached drawings. That is, in this example, the Foudler-type three-blade stirring blade 1 is provided at the bottom of the tank, and the height H of the liquid level in the cylindrical part of the tank is 1/1.
Two fingered buffles 2 having fingers 3 having a finger length a including the buffle shaft diameter are installed symmetrically in the radial direction on the side closer to the upper liquid level than the buffles 2. Here, the tip of the finger is the static liquid level 4 and the liquid level when the stirring blade is stirred by a drive device such as a motor (hereinafter referred to as the liquid level during stirring) 5.
Instead, always install a buttful with fingers at the bottom. Furthermore, the fingers are prepared and attached so that the ratio (a/D) between the finger length (more precisely, the horizontal length) a and the tank diameter D is 0.15 to 0.38. In the present invention, it is not preferable to install a perforated plate that inhibits flow within the tank.

なお、バツフルは槽壁に直接取付けるのが理想
だが槽の製作が困難となるので、一般に槽の上部
からバツフル軸を挿入する。この場合、槽径Dに
対しバツフル軸中心と槽壁との距離は0.15D以下
の範囲が良い。0.15Dより大きいとバツフル軸と
槽壁の間にデツド・スペースができ、槽内の流動
が悪くなるので好ましくない。フインガーのバツ
フル軸とのなす角度は特に制限はなく、図面では
鋭角としているが、直角でも良く、さらに鈍角と
なつてフインガー槽の下方に向いていても良い。
槽内にフインガー付バツフルを2本挿入する場合
には、フインガーは各々同じ向きでも、異なる向
き同志であつても良い。またフインガーに反りや
ひねりをほどこしてもよい。また、フインガー付
バツフルのフインガーは、図面で示した様に1本
以上あれば良く、このことはフインガー幅に特に
限定されるものではないことと同義である。ま
た、フインガーは槽中心に角度0゜で設けられる
のが好ましいが、角度αがα≦30゜の範囲でフイ
ンガーを振ることも可能である。その場合a×
cosαの値が0.15〜0.38の範囲でなければ本発明
の効果は得られない。
Ideally, the buttful should be attached directly to the tank wall, but since this makes manufacturing the tank difficult, the buttful shaft is generally inserted from the top of the tank. In this case, with respect to the tank diameter D, the distance between the center of the baffle axis and the tank wall is preferably within a range of 0.15D or less. If it is larger than 0.15D, a dead space will be created between the buttful shaft and the tank wall, which will impair the flow in the tank, which is not preferable. The angle between the finger and the buttful axis is not particularly limited, and although it is shown as an acute angle in the drawing, it may be a right angle, or even an obtuse angle pointing downwards into the finger tank.
In the case of inserting two fingers with fingers into the tank, the fingers may be oriented in the same direction or may be oriented in different directions. The fingers may also be curved or twisted. Further, the number of fingers of the finger-equipped buttful may be one or more as shown in the drawings, and this is synonymous with the fact that the width of the fingers is not particularly limited. Further, although it is preferable that the finger is provided at an angle of 0° to the center of the tank, it is also possible to swing the finger at an angle α of α≦30°. In that case a×
The effects of the present invention cannot be obtained unless the value of cosα is in the range of 0.15 to 0.38.

次に、フインガー長aと槽径Dの割合い(a/
D)が0.15未満の場合は、液面中心部の混合均一
化が十分でなく、0.38より大きくなる場合は液面
に複雑な渦流を現出する傾向が強く、かえつて、
槽内の均一化を欠く結果となつて好ましくない。
Next, the ratio of finger length a to tank diameter D is (a/
When D) is less than 0.15, the mixing at the center of the liquid surface is not sufficiently homogeneous, and when it is greater than 0.38, there is a strong tendency for complex vortices to appear on the liquid surface, and on the contrary,
This is undesirable as it results in a lack of uniformity within the tank.

本発明で用いる撹拌翼は、撹拌槽底部近傍に置
かれるという条件で、特に限定されるものでな
く、フアウドラー翼以外にも、たとえばパドル型
翼などが用いられる。
The stirring blade used in the present invention is not particularly limited, provided that it is placed near the bottom of the stirring tank, and other than Foudler blades, for example, paddle-type blades can be used.

本発明では、このような装置を用いて懸濁重合
を行うにあたり、U/θc値を20〜80の範囲に制
御する。U/θc値が20未満では懸濁粒子の分散
が不均一となり重合体が団塊化する。また80を超
えると、重合体粒子中の夾雑物を減少する効果が
乏しいので透明性の改良効果が期待できない等、
品質が不満足である。U/θc値を求めるための
撹拌翼先端の周速度〔mm・sec-1〕、槽内流体の循
環時間〔sec〕は、化学工業社刊「撹拌装置」(昭
和45年11月1日発行)第21〜25頁に山本が記載す
る式と化学工学協会編「化学工学便覧」丸善株式
会社発行(昭和53年10月25日)第1314頁の表18・
1をもとにして算出した定数から得た以下の諸式
により計算できる。
In the present invention, when carrying out suspension polymerization using such an apparatus, the U/θ c value is controlled within the range of 20 to 80. If the U/θ c value is less than 20, the suspended particles will not be uniformly dispersed and the polymer will become agglomerated. Moreover, if it exceeds 80, the effect of reducing impurities in the polymer particles is poor, so the effect of improving transparency cannot be expected.
The quality is unsatisfactory. To obtain the U/θ c value, the circumferential speed of the tip of the stirring blade [mm・sec -1 ] and the circulation time of the fluid in the tank [sec] are obtained from "Agitator" published by Kagaku Kogyo Co., Ltd. (November 1, 1970). Publication) Formulas described by Yamamoto on pages 21 to 25 and Table 18 on page 1314 of "Chemical Engineering Handbook" edited by the Chemical Engineering Society, published by Maruzen Co., Ltd. (October 25, 1978)
It can be calculated using the following formulas obtained from constants calculated based on 1.

U=1000・d・N θc=V/qc qc=Nqc・N・d3qc=Nqd・〔1+0.16{(D/d)−1}〕 例えば フアウドラー型翼の場合 Nqd=0.29・(d/D/0.5)-2.5・(b/D/0
.05) また4枚パドル型翼の場合 Nqd=0.246・(d/D/0.5)-2.5・(b/D/
0.1) ここで各記号は以下の意味を有する。
U=1000・d・N θ c =V/qc qc=N qc・N・d 3 N qc =N qd・[1+0.16 {(D/d) 2 −1}] For example, in the case of a Foudler type wing, N qd = 0.29・(d/D/0.5 ) -2.5 (b/D/0
.. 05) In the case of a 4-paddle type wing, N qd = 0.246・( d/D/0.5) -2.5 (b/D/
0.1) Each symbol here has the following meaning.

V:槽内容物容量〔m3〕 d:撹拌翼径〔m〕 N:回転数〔sec-1〕 qc:循環流量〔m3・sec-1〕 D:槽径〔m〕 b:撹拌翼幅〔m〕 Nqc:循環流量数〔−〕 Nqd:吐出流量数〔−〕 np:羽根枚数〔−〕 U/θc比を制御する場合、たとえばU/θc
を80以下とするためには、(1)回転数Nを小さくす
る、(2)撹拌翼径dを大きくする、(3)撹拌翼幅bを
大きくする等のいずれかの手段が採られる。
V: Tank content capacity [m 3 ] d: Stirring blade diameter [m] N: Rotation speed [sec -1 ] qc: Circulation flow rate [m 3・sec -1 ] D: Tank diameter [m] b: Stirring blade Width [m] N qc : Circulation flow rate [-] N qd : Discharge flow rate [-] n p : Number of blades [-] When controlling the U/θ c ratio, for example, set the U/θ c value to 80 or less. In order to achieve this, any of the following methods may be taken: (1) reducing the rotation speed N, (2) increasing the diameter d of the stirring blades, and (3) increasing the width b of the stirring blades.

本発明における懸濁重合反応を行ないうる重合
性単量体としては、スチレン、α−メチルスチレ
ン、ジビニルベンゼン等のスチレン系単量体、塩
化ビニル、アクリロニトリル、メタクリル酸メチ
ル、酢酸ビニル等であり、それらの単独重合もし
くはそれらの共重合を行なうことができる。
Examples of polymerizable monomers that can undergo the suspension polymerization reaction in the present invention include styrene monomers such as styrene, α-methylstyrene, and divinylbenzene, vinyl chloride, acrylonitrile, methyl methacrylate, and vinyl acetate. Their homopolymerization or their copolymerization can be carried out.

又、重合開始剤、懸濁安定分散剤、分散助剤
も、特に限定するものではなく、各重合性単量体
に好適なものが選択され使用され得るし、可塑
剤、分子量調節剤等の他の助剤を使用することも
何ら問題がない。
Furthermore, the polymerization initiator, suspension stabilizing dispersant, and dispersion aid are not particularly limited, and those suitable for each polymerizable monomer can be selected and used, and plasticizers, molecular weight regulators, etc. There is no problem in using other auxiliaries.

上述したように本発明によれば、安定な分散を
維持しつつ重合体粒子中への夾雑物の混入量を減
少することができ、透明性、黄色度のすぐれた重
合粒子を得ることができる。また、このようにし
て得られる重合体粒子、たとえばポリスチレン粒
子に発泡剤を含浸するか、あるいは重合中に発泡
剤を加え発泡スチレンビーズとした場合、これか
ら得られる成形物は表面が平滑で美麗なものとな
る。
As described above, according to the present invention, it is possible to reduce the amount of impurities mixed into polymer particles while maintaining stable dispersion, and it is possible to obtain polymer particles with excellent transparency and yellowness. . In addition, if the polymer particles obtained in this way, for example polystyrene particles, are impregnated with a blowing agent or a blowing agent is added during polymerization to form expanded styrene beads, the molded product obtained from this will have a smooth and beautiful surface. Become something.

次に本発明を実施例を以つて説明するが、本発
明は実施例の範囲に限定されるものではない。
Next, the present invention will be explained using Examples, but the present invention is not limited to the scope of the Examples.

実施例 1 撹拌翼径dが2000mm、翼幅b200mmのフアウド
ラー型3枚羽根付撹拌翼を缶の底部に設けた、ま
たバツフル軸径も含めたフインガー水平長aが
750mmであり、バツフル軸とのなす角度60゜、槽
中心に対し角度0゜のフインガーを各1本有する
2本のフインガー付バツフルを半径方向に対称に
挿入した、槽径Dが2850mmで仕込容量Vが25m3
重合缶に、純水12500l、第3リン酸カルシウム
62.5Kg、ラウリル硫酸ナトリウム0.5Kgを入れ、
回転数N33r.p.mで撹拌した。ここに、スチレン
を12400lと重合開始剤を入れ、常法により懸濁重
合反応を行ない、重合終了後、脱水・水洗・乾燥
して、ポリスチレン粒子を得た。
Example 1 A Foudler-type three-blade stirring blade with a stirring blade diameter d of 2000 mm and a blade width b of 200 mm was installed at the bottom of the can, and the horizontal length a of the finger including the full shaft diameter was
The tank diameter D is 2850 mm, and the charging capacity is 2850 mm, in which two fingered buttfuls are inserted radially symmetrically, each having one finger at an angle of 60° with the buttful axis and 0° with respect to the center of the tank. 12,500 liters of pure water and tertiary calcium phosphate in a polymerization can with a V of 25 m 3
Add 62.5Kg and 0.5Kg of sodium lauryl sulfate.
Stirring was carried out at a rotational speed of N33 r.pm. 12,400 liters of styrene and a polymerization initiator were added thereto, and a suspension polymerization reaction was carried out by a conventional method. After the polymerization was completed, the mixture was dehydrated, washed with water, and dried to obtain polystyrene particles.

この重合反応中の状態でUは1100mm/sec、θc
は28sec、U/θc値は39mm/sec2であつた。
During this polymerization reaction, U is 1100 mm/sec, θ c
was 28 sec, and the U/θ c value was 39 mm/sec 2 .

得られたポリスチレン粒子中に夾雑物として含
まれるカルシウム量を塩酸と塩化ストロンチウム
溶液で処理し原子吸光分析を4227Åで測定したと
ころ6ppmと極めて少ない量であつた。このポリ
スチレン粒子を常法によりペレツト状とした後、
射出成形により試験片を作成し、JIS K 6714に
より曇り度を測定したところ0.2%と非常にすぐ
れた透明性を示した。
When the amount of calcium contained as a contaminant in the obtained polystyrene particles was treated with hydrochloric acid and a strontium chloride solution and measured by atomic absorption spectrometry at 4227 Å, the amount was found to be extremely small at 6 ppm. After making these polystyrene particles into pellets by a conventional method,
A test piece was prepared by injection molding, and its haze was measured according to JIS K 6714, and it showed excellent transparency of 0.2%.

又、得られたポリスチレン粒子を篩分け、0.5
〜0.8mmに粒子をそろえた後、常法にしたがい粒
子中に液化プロパン、液化ブタンの混合比1/1
の液化ガスを含浸させた。この含浸ポリスチレン
粒子を用いてスチーム加熱し約60倍の嵩倍率にし
た予備発泡粒子を得た後、200×120×120mmの金
型に充填し、スチーム圧0.7Kg/cm2Gで1分間加
熱成形し、発泡ポリスチレン成形物を得た。この
成形物表面は凹凸や空隙がほとんどなく、美麗で
あつた。
In addition, the obtained polystyrene particles were sieved and 0.5
After aligning the particles to ~0.8 mm, mix the particles with liquefied propane and liquefied butane at a mixing ratio of 1/1 according to the usual method.
impregnated with liquefied gas. These impregnated polystyrene particles were heated with steam to obtain pre-expanded particles with a bulk factor of approximately 60 times, then filled into a 200 x 120 x 120 mm mold and heated for 1 minute at a steam pressure of 0.7 Kg/cm 2 G. A foamed polystyrene molded product was obtained. The surface of this molded product was beautiful with almost no irregularities or voids.

実施例 2 撹拌翼dを1500mm、翼幅bを150mmのフアウド
ラー型3枚羽根に変え、回転数Nを60r.p.mとし
た以外は実施例1と同様に行ない、ポリスチレン
粒子を得た。
Example 2 Polystyrene particles were obtained in the same manner as in Example 1, except that the stirring blade d was changed to a Foudler-type three-blade with a blade width of 1500 mm and a blade width b of 150 mm, and the rotational speed N was set to 60 rpm.

この反応中のUは1500mm/sec、θc
19.5sec、U/θc値は77mm/sec2であつた。
During this reaction, U is 1500 mm/sec, and θ c is
19.5 sec, and the U/θ c value was 77 mm/sec 2 .

ポリスチレン粒子中のカルシウム量は11ppm
であり、この粒子より実施例1と同様にして得た
試験片の曇り度は0.3%で、すぐれた透明性を示
した。
Calcium content in polystyrene particles is 11ppm
A test piece obtained from these particles in the same manner as in Example 1 had a haze of 0.3% and exhibited excellent transparency.

比較例 1 実施例1において、回転数N60r.p.mとし、U
=2000mm/sec、θc=15.4sec、U/θc値で130
の状態で重合反応した以外は、実施例1と同様に
重合を行ないポリスチレン粒子を得た。このもの
のカルシウム量は22ppmであり、曇り度は0.6%
で肉眼でもやや濁りが感じられるほどに、透明性
は劣つていた。
Comparative Example 1 In Example 1, the rotation speed was N60r.pm, and U
= 2000mm/sec, θ c = 15.4 sec, U/θ c value is 130
Polystyrene particles were obtained by carrying out polymerization in the same manner as in Example 1, except that the polymerization reaction was carried out in the following state. The amount of calcium in this item is 22ppm, and the haze level is 0.6%.
The transparency was so poor that even the naked eye could feel it being slightly cloudy.

又、得られたポリスチレン粒子を実施例1と同
様に行なつて、発泡ポリスチレン成形物を得たと
ころ、この成形物表面は一部に魚鱗状になる粒子
があり、凹凸や空隙が多かつた。
In addition, when the obtained polystyrene particles were processed in the same manner as in Example 1 to obtain a foamed polystyrene molded product, the surface of this molded product had some particles that were shaped like fish scales and had many irregularities and voids. .

比較例 2 実施例2において、回転数N90r.p.mとし、U
=2250、θc=13sec、U/θc値で173mm/sec2
状態で重合反応した以外は、実施例2と同様に重
合を行ない、ポリスチレン粒子を得た。このもの
のカルシウム量は28ppmであり、曇り度は0.6%
で、比較例1と同様、成形試験片は肉眼でも濁り
が感じられた。
Comparative Example 2 In Example 2, the rotation speed was N90r.pm, and U
Polystyrene particles were obtained by carrying out polymerization in the same manner as in Example 2 , except that the polymerization reaction was carried out in a state where θ c =2250, θ c =13 sec, and a U/θ c value of 173 mm/sec 2 . The amount of calcium in this item is 28 ppm, and the haze level is 0.6%.
As in Comparative Example 1, the molded test piece was perceived to be cloudy even to the naked eye.

実施例 3 第3リン酸カルシウムとラウリル硫酸ナトリウ
ムの替りにポリビニルアルコール20Kgを分散剤と
して用いた以外は、実施例1と同様に重合を行な
いポリスチレン粒子を得た。
Example 3 Polystyrene particles were obtained by polymerization in the same manner as in Example 1, except that 20 kg of polyvinyl alcohol was used as a dispersant instead of tertiary calcium phosphate and sodium lauryl sulfate.

このポリスチレン粒子に含まれる残存ポリビニ
ルアルコール量をホウ酸溶液とヨードによる発色
を660nmの可視スペクトル吸収で測定したところ
2ppmと極めて少ない量であつた。
The amount of residual polyvinyl alcohol contained in these polystyrene particles was measured by color development using a boric acid solution and iodine using visible spectrum absorption at 660 nm.
The amount was extremely small at 2 ppm.

このポリスチレン粒子を常法によりペレツト状
とした後、射出成形により試験片を作成し、JIS
K 7103に準じて色差計により黄色度を測定した
ところ1.1で、肉眼では、黄味はほとんど感じら
れなかつた。
After making these polystyrene particles into pellets using a conventional method, test pieces were prepared by injection molding, and JIS
When the yellowness was measured using a color difference meter according to K 7103, it was 1.1, and the yellowness was hardly perceptible to the naked eye.

比較例 3 実施例3で、回転数65r.p.mとし、U=2170
mm/sec、θc=14.2sec、U/θc値で153mm/sec2
の状態で重合反応した以外は同様に行ないポリス
チレン粒子を得た。このものの残存ポリビニルア
ルコール量を測定したところ、40ppmであつ
た。射出成形試験片の黄色度は2.5で肉眼により
はつきりと黄味が感じられた。
Comparative Example 3 In Example 3, the rotation speed is 65 r.pm, and U = 2170
mm/sec, θ c = 14.2 sec, U/θ c value 153 mm/sec 2
Polystyrene particles were obtained in the same manner except that the polymerization reaction was carried out in the following conditions. When the amount of residual polyvinyl alcohol in this product was measured, it was 40 ppm. The yellowness of the injection molded test piece was 2.5, which gave it a bright yellow tint to the naked eye.

実施例 4 撹拌翼径d800mm、翼幅b120mmのパドル型4枚
羽根付撹拌翼を缶の底部に設けた、槽径D1400mm
で仕込容量4m3の重合缶に、純水2700l、メタク
リル酸メチル単量体1300l、第3リン酸カルシウ
ム13.5Kg、ドデシルベンゼンスルホン酸ナトリウ
ム80gを入れ、さらに重合開始剤を入れて、常法
により懸濁重合反応を行ないポリメタクリル酸メ
チル粒子を得た。重合中、翼は50r.p.mで撹拌
し、この時Uは1200mm/sec、θcは26sec、U/
θc値は51.5mm/sec2であつた。
Example 4 A tank with a diameter of 1400 mm, equipped with a paddle-type 4-blade stirring blade with a stirring blade diameter of d800 mm and a blade width of 120 mm at the bottom of the can.
Put 2700 liters of pure water, 1300 liters of methyl methacrylate monomer, 13.5 kg of tribasic calcium phosphate, and 80 g of sodium dodecylbenzenesulfonate into a polymerization can with a charging capacity of 4 m 3 , then add a polymerization initiator and suspend using the usual method. A polymerization reaction was carried out to obtain polymethyl methacrylate particles. During polymerization, the blade stirs at 50 rpm, at which time U is 1200 mm/sec, θ c is 26 sec, and U/
The θ c value was 51.5 mm/sec 2 .

ポリメタクリル酸メチル粒子中に含まれるカル
シウム量を、実施例1と同様に測定したところ、
8ppmと極めて少ない量であつた。実施例1と同
様に射出成形試験片を作成し、曇り度を測定した
ところ、0.2%と非常にすぐれた透明性を示し
た。
When the amount of calcium contained in polymethyl methacrylate particles was measured in the same manner as in Example 1,
The amount was extremely small at 8 ppm. An injection molded test piece was prepared in the same manner as in Example 1, and the degree of haze was measured, and it was found to have excellent transparency of 0.2%.

比較例 4 実施例4で、回転数N90r.p.mとし、U=2270
mm/sec、θc=13.7sec、U/θc値で167の状態
で重合反応した以外は同様に行ない、ポリメタク
リル酸メチル粒子を得た。このものに含まれるカ
ルシウム量は28ppmであり、曇り度は0.7%で肉
眼でもやや濁りが感じられるほどに、透明性は劣
つていた。
Comparative Example 4 In Example 4, the rotation speed is N90r.pm, and U=2270
Polymethyl methacrylate particles were obtained by carrying out the same procedure except that the polymerization reaction was carried out in mm/sec, θ c =13.7 sec, and U/θ c value of 167. The amount of calcium contained in this material was 28 ppm, and the degree of haze was 0.7%, so that it was slightly cloudy even to the naked eye, and its transparency was poor.

比較例 5 実施例1で、回転数Nを20r.p.mとし、U=
670mm/sec、θc=46sec、U/θcが14.5の状態
にした以外は、同様にして重合を行つたが、重合
率が約45%付近に達した時点で分散が消失し、重
合体が団塊化してしまつた。
Comparative Example 5 In Example 1, the rotation speed N is 20r.pm, and U=
Polymerization was carried out in the same manner except that the conditions were 670 mm/sec, θ c = 46 sec, and U/θ c of 14.5, but when the polymerization rate reached approximately 45%, the dispersion disappeared and the polymer has become a baby boom.

実施例 5 実施例1において、回転数N25r.p.mとし、U
=830mm/sec、θc=37sec、U/θc=22の状態
で実施した以外は実施例1と同様に重合を行なつ
て、ポリスチレン粒子を得た。このもののカルシ
ウム量は8ppmであり、曇り度は0.3%と極めてす
ぐれた透明性を示した。
Example 5 In Example 1, the rotation speed was N25r.pm, and U
Polystyrene particles were obtained by carrying out polymerization in the same manner as in Example 1, except that the polymerization was carried out under the conditions of =830 mm/sec, θ c =37 sec, and U/θ c =22. The amount of calcium in this product was 8 ppm, and the degree of haze was 0.3%, showing extremely excellent transparency.

また、得られたポリスチレン粒子を実施例1と
同様に行なつて、発泡ポリスチレン成形物を得た
ところ、成形品表面は凹凸や空隙のほとんどない
美麗なものであつた。
Furthermore, when the obtained polystyrene particles were treated in the same manner as in Example 1 to obtain a foamed polystyrene molded product, the surface of the molded product was beautiful with almost no irregularities or voids.

比較例 6 実施例1において、回転数N50r.p.mとし、U
=1670mm/sec、θc=18.5sec、U/θc=90の状
態で実施した以外は実施例1と同様に重合を行な
つて、ポリスチレン粒子を得た。このもののカル
シウム量は20ppmであり、曇り度は0.5%で、肉
眼でもやや濁りが感じられた。
Comparative Example 6 In Example 1, the rotation speed was N50r.pm, and U
Polystyrene particles were obtained by carrying out polymerization in the same manner as in Example 1, except that the polymerization was carried out under the conditions of =1670 mm/sec, θ c =18.5 sec, and U/θ c =90. The amount of calcium in this product was 20 ppm, and the degree of haze was 0.5%, making it slightly cloudy to the naked eye.

また、得られたポリスチレン粒子を実施例1と
同様に処理して、発泡ポリスチレン成形物を得た
ところ、この成形物表面は魚鱗状に光る粒子はみ
られないものの凹凸や空隙が多かつた。
Further, when the obtained polystyrene particles were treated in the same manner as in Example 1 to obtain a foamed polystyrene molded product, the surface of this molded product had many irregularities and voids, although no fish scale-like shiny particles were observed.

実施例 6 撹拌翼径dが450mm、翼巾b50mmのフアウドラ
ー型3枚羽根付撹拌翼を缶の底部に設けた、また
バツフル軸径も含めたフインガー水平長aが17mm
であり、バツフル軸とのなす角度60゜、槽中心に
対し角度0゜のフインガーを各1本有する2本の
フインガー付バツフルを半径方向に対称に挿入し
た、槽径Dが600mmで仕込み容量Vが0.2m3の重合
缶に、純水103リツトル、第三リン酸カルシウム
500g、ドデシルベンゼンスルホン酸ナトリウム
2gを入れ、回転数N80r.p.mで撹拌した。ここ
にメタクリル酸メチル49.5Kgとスチレン40.5Kg
(合計97リツトル)と重合開始剤とを入れ、常法
に従つて懸濁重合反応を行ない、重合終了後、脱
水、水洗、乾燥して、MS樹脂粒子を得た。
Example 6 A Foudler-type three-blade stirring blade with a stirring blade diameter d of 450 mm and a blade width b of 50 mm was installed at the bottom of the can, and the horizontal length a of the finger including the full shaft diameter was 17 mm.
The tank diameter D is 600 mm and the charging capacity V is a tank in which two fingered buttfuls each having one finger at an angle of 60° with the buttful axis and 0° with respect to the center of the tank are inserted symmetrically in the radial direction. into a 0.2 m 3 polymerization can, 103 liters of pure water, and tribasic calcium phosphate.
500 g of sodium dodecylbenzenesulfonate and 2 g of sodium dodecylbenzenesulfonate were added thereto, and the mixture was stirred at a rotation speed of N80 rpm. Here is 49.5Kg of methyl methacrylate and 40.5Kg of styrene.
(total of 97 liters) and a polymerization initiator were added, and a suspension polymerization reaction was carried out according to a conventional method. After the polymerization was completed, the mixture was dehydrated, washed with water, and dried to obtain MS resin particles.

この反応中の状態で、Uは600mm/sec、θc
8.3sec、U/θc値は72mm/sec2であつた。
During this reaction, U is 600 mm/sec, and θ c is
8.3sec, and the U/ θc value was 72mm/ sec2 .

得られたMS樹脂粒子中に夾雑物として含まれ
るカルシウム量を実施例1と同様にして測定した
ところ、9ppmと極めて少ない量であつた。ま
た、常法によりペレツト状としたのち成形し、実
施例1と同様にして曇り度を測定したところ、
0.2%と極めてすぐれた透明性を示した。
When the amount of calcium contained as a contaminant in the obtained MS resin particles was measured in the same manner as in Example 1, it was found to be an extremely small amount of 9 ppm. In addition, the pellets were formed into pellets using a conventional method and then molded, and the degree of haze was measured in the same manner as in Example 1.
It showed extremely high transparency at 0.2%.

比較例 7 実施例6で回転数N100r.p.mとした以外は実施
例6と同様にしてMS樹脂粒子を得た。
Comparative Example 7 MS resin particles were obtained in the same manner as in Example 6 except that the rotation speed was N100 r.pm.

この反応中の状態でUは750mm/sec、θc
6.7sec、U/θc値は112mm/sec2であつた。この
粒子中のカルシウム量は27ppmであり、曇り度
は0.6%であつて肉眼でも濁りが判る状態であ
り、工業的な商品価値の損なわれたものであつ
た。
During this reaction, U is 750 mm/sec, and θ c is
6.7sec, and the U/ θc value was 112mm/ sec2 . The amount of calcium in the particles was 27 ppm, and the degree of haze was 0.6%, which was visible to the naked eye, and the industrial value of the particles was lost.

比較例 8 実施例1で、フインガー水平長aが360mmであ
りバツフル軸とのなす角度60゜、槽中心に対して
角度0゜のフインガー6本付きのものを半径方向
に対称に2本挿入した以外は同様に重合を行なつ
て、ポリスチレン粒子を得た。U/θc値は実施
例1と同じである。
Comparative Example 8 In Example 1, two fingers with horizontal finger length a of 360 mm, an angle of 60° with the buttful axis, and 6 fingers with an angle of 0° with respect to the tank center were inserted symmetrically in the radial direction. Polystyrene particles were obtained by carrying out polymerization in the same manner except for the above. The U/θ c value is the same as in Example 1.

夾雑物のカルシウム量は35ppmであり、曇り
度は0.6%であつて白濁が見られた。また、実施
例1と同様に発泡ポリスチレン成形物を得たとこ
ろ、成形品表面は魚鱗状に光る粒子が多く、凹
凸、空隙が多かつた。
The amount of calcium as a contaminant was 35 ppm, and the degree of haze was 0.6%, showing white turbidity. Further, when a foamed polystyrene molded product was obtained in the same manner as in Example 1, the surface of the molded product had many particles that shone in a fish scale shape, and had many irregularities and voids.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施に適した撹拌槽の断面図で
ある。 1……撹拌翼、2……フインガー付バツフル、
3……フインガー、4……静止液面、5……撹拌
時液面、D……槽径、H……槽内液面円筒部高
さ、a……フインガー長。
The drawing is a cross-sectional view of a stirring tank suitable for implementing the present invention. 1... Stirring blade, 2... Batsuful with fingers,
3...Finger, 4...Static liquid level, 5...Liquid level during stirring, D...Tank diameter, H...Liquid level in tank height of cylindrical part, a...Finger length.

Claims (1)

【特許請求の範囲】 1 全体形状が大略円筒状であり、その底部に撹
拌翼を備え、且つその円筒部分液面高さの上部か
ら1/2以内の高さに、フインガーを1本有するフ
インガー付バツフルを備えてなり、液面下に目皿
板を持たない重合槽内で懸濁重合を行うにあた
り、撹拌翼先端の周速度U〔mm/sec〕と槽内流
体の循環時間θc〔sec〕との比U/θcが20〜80
mm/sec2の範囲となる撹拌条件下に重合を行うこ
とを特徴とする、夾雑物の少ない熱可塑性重合体
粒子の製造法。
[Claims] 1. A finger whose overall shape is approximately cylindrical, has a stirring blade at its bottom, and has one finger at a height within 1/2 from the top of the liquid level of the cylindrical portion. When carrying out suspension polymerization in a polymerization tank that is equipped with a perforated plate and does not have a perforated plate below the liquid surface, the circumferential speed of the stirring blade tip U [mm/sec] and the circulation time of the fluid in the tank θ c [ sec] ratio U/θ c is 20 to 80
A method for producing thermoplastic polymer particles with less impurities, characterized by carrying out polymerization under stirring conditions in the range of mm/sec 2 .
JP8281679A 1979-06-30 1979-06-30 Preparation of polymer particle containing little foreign matter Granted JPS568404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8281679A JPS568404A (en) 1979-06-30 1979-06-30 Preparation of polymer particle containing little foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8281679A JPS568404A (en) 1979-06-30 1979-06-30 Preparation of polymer particle containing little foreign matter

Publications (2)

Publication Number Publication Date
JPS568404A JPS568404A (en) 1981-01-28
JPS6254801B2 true JPS6254801B2 (en) 1987-11-17

Family

ID=13784921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8281679A Granted JPS568404A (en) 1979-06-30 1979-06-30 Preparation of polymer particle containing little foreign matter

Country Status (1)

Country Link
JP (1) JPS568404A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938351B2 (en) * 2011-01-06 2016-06-22 株式会社カネカ Method for producing methyl methacrylate polymer

Also Published As

Publication number Publication date
JPS568404A (en) 1981-01-28

Similar Documents

Publication Publication Date Title
KR100254656B1 (en) Process for preparing low density porous crosslinked polymeric materials
FI108279B (en) Expandable thermoplastic microspheres and process for making them
US4049604A (en) Emulsion polymerization method for preparing aqueous dispersions of organic polymer particles
KR19990044051A (en) Continuous process for preparing expandable styrene polymer beads
US2886297A (en) Brine creaming of latices
CN1223669A (en) Process for preparation of polymer particles
CZ28094A3 (en) Continuous process for preparing emulsions polymerizable to absorption foamy materials
EP0665866A1 (en) Process for preparing low density porous crosslinked polymeric materials
WO2007043816A1 (en) Method for preparing high molecule latex resin powder
US4075134A (en) Emulsion polymerization method for preparing microspheres having liquid center and seamless rigid walls
US4075138A (en) Polymerization process and vinylidene chloride microspheres produced thereby
CA2504395A1 (en) Controlled shear and turbulence flow pattern within a liquid in a vessel
CA2390505C (en) Emulsion polymerization process and reactor for such a process
JPS6254801B2 (en)
US3287286A (en) Continuous production of finely particled expandable styrene polymers
Bataille et al. Emulsion polymerization of styrene. I. Review of experimental data and digital simulation
WO2014111628A2 (en) Method of producing polystyrene beads having low moisture content
JP2003517508A (en) Method for producing porous material
KR950010981B1 (en) Expandable styrene polymer and styrene polymer foam
US2769788A (en) Method of making weighted polymer beads
JP2000239315A (en) Production of polymer
JPH0971603A (en) Coagulation enlargement of diene-based polymer rubber latex, graft copolymer and thermoplastic resin composition
JPH0819168B2 (en) Method for producing vinyl polymer particles and expandable vinyl polymer particles
CA1250085A (en) Polyvinyl chloride suspension polymerization process and product
JP2000119305A (en) Preparation of microcapsulated spherical polymer