JPS6254654B2 - - Google Patents
Info
- Publication number
- JPS6254654B2 JPS6254654B2 JP57166363A JP16636382A JPS6254654B2 JP S6254654 B2 JPS6254654 B2 JP S6254654B2 JP 57166363 A JP57166363 A JP 57166363A JP 16636382 A JP16636382 A JP 16636382A JP S6254654 B2 JPS6254654 B2 JP S6254654B2
- Authority
- JP
- Japan
- Prior art keywords
- viscosity
- screw
- resin
- pressure
- extrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011347 resin Substances 0.000 claims description 63
- 229920005989 resin Polymers 0.000 claims description 63
- 238000001125 extrusion Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 27
- 230000000704 physical effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- -1 shear rate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/53—Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92019—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92085—Velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92085—Velocity
- B29C2948/92095—Angular velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92085—Velocity
- B29C2948/92104—Flow or feed rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/9238—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/9238—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/9239—Screw or gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92466—Auxiliary unit, e.g. for external melt filtering, re-combining or transfer between units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
- B29C2948/9259—Angular velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
- B29C2948/926—Flow or feed rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92952—Drive section, e.g. gearbox, motor or drive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
本発明は押出機の押出量を時間に対して一定に
保とうとする押出量の制御方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling an extrusion rate to keep the output rate of an extruder constant over time.
第1図は従来の押出量のコントロール方式を示
したものである。すなわち、第1図中のA方式
は、押出機先端の圧力を測定し、この圧力を一定
に保つべく、スクリユ駆動モータ1の回転を制御
するものであり(押出機先端の圧力をモータの回
転数にフイードバツクする方式)、一般に広く採
用されている。 FIG. 1 shows a conventional method for controlling the extrusion rate. That is, method A in Fig. 1 measures the pressure at the tip of the extruder and controls the rotation of the screw drive motor 1 to keep this pressure constant (the pressure at the tip of the extruder is controlled by the rotation of the motor). (feedback method) is generally widely adopted.
また第1図中のB方式は、ダイ2から出た後の
半製品、あるいは製品の厚み、重量を一定に保つ
べく、この厚み、重量を測定し、スクリユ駆動モ
ータ1の回転を制御するものであり(製品の厚
み、重量をモータの回転数にフイードバツクする
方式)、これも押出成形においては広く使用され
ている方法である。 In addition, method B in Fig. 1 measures the thickness and weight of the semi-finished product or product after it comes out of the die 2 and controls the rotation of the screw drive motor 1 in order to keep the thickness and weight constant. (a method in which the thickness and weight of the product are fed back to the rotational speed of the motor), which is also a method widely used in extrusion molding.
なお、第1図中の3は原料樹脂供給用ホツパ、
4は原料樹脂、5は減速機、6はシリンダを加熱
するヒータ、7はシリンダ、8は樹脂を可塑化す
るスクリユ、9は樹脂圧力検出器、10は押出樹
脂、11,11′は制御(演算)装置である。 In addition, 3 in Fig. 1 is a hopper for supplying raw material resin;
4 is a raw resin, 5 is a speed reducer, 6 is a heater that heats the cylinder, 7 is a cylinder, 8 is a screw that plasticizes the resin, 9 is a resin pressure detector, 10 is an extruded resin, 11, 11' are controls ( It is a calculation) device.
さてAの方式では、押出機先端の圧力は一定に
保つことができるが、樹脂の溶融粘度が変化した
場合、Q≒aPD/η……〔a:ダイの形状によつ
て決まる定数、η:粘度、PD:押出機先端圧
(≒ダイ圧)、Q:押出量〕の関係にある押出量は
(たとえば押出機先端圧を一定に制御しても)、一
定にはなり得ない。このようなことは、原料が数
種の樹脂をブレンドしたもの、あるいは原料中に
再生原料を含む場合等で原料の混合比率を一定に
保つことが困難な場合におこる。 Now, in method A, the pressure at the tip of the extruder can be kept constant, but when the melt viscosity of the resin changes, Q≒aP D /η... [a: constant determined by the shape of the die, η : viscosity, P D : extruder tip pressure (≈die pressure), Q: extrusion rate] The extrusion rate cannot be constant (for example, even if the extruder tip pressure is controlled to be constant). This happens when it is difficult to keep the mixing ratio of the raw materials constant, such as when the raw materials are a blend of several types of resins or when the raw materials include recycled raw materials.
またBの方式は、長周期の押出量変動を取り除
くという点では効果ある制御方式であるが、下記
の大きな二つの欠点がある。即ち、
製品の厚み、重量を連続的に、かつ製品を傷
つけずに精度良く測定するには、多大な費用を
かけた設備を必要とする。 Although method B is an effective control method in terms of eliminating long-term fluctuations in extrusion rate, it has the following two major drawbacks. That is, in order to continuously and accurately measure the thickness and weight of a product without damaging the product, expensive equipment is required.
厚み、重量の測定位置は、通常製品が冷却さ
れた後、即ち、ダイから出てある時間経過した
後であるため、これら厚み、重量と制御要素で
あるスクリユ回転数の間には時間遅れがあり、
短時間の変動を消しさることはできない。 Thickness and weight are usually measured after the product has cooled down, that is, after a certain period of time has elapsed after it has come out of the die, so there is a time lag between the thickness and weight and the screw rotation speed, which is a control element. can be,
Short-term fluctuations cannot be eliminated.
押出成形機では、押出量を一定に保つことが、
製品品質上重要なポイントである。また押出機に
は同時に、低樹脂温度、高押出量などが要求され
る。そしてこれらの要求のほとんどは、スクリユ
の機能によつて達成されるのが主流であるが、こ
のスクリユで全てを達成するのは困難となりつつ
ある。すなわち、低樹脂温度、高押出量の要求に
応えるためには、スクリユ計量化部の溝深さは深
くしなければならないが、そうすれば押出量の計
量性は不良となる。なお、現在押出機のスクリユ
は、高押出量をねらうためこの傾向にあるが、原
料組成に不均一性がある場合には、押出量が変動
するという不具合の発生が多い。 In an extrusion molding machine, keeping the extrusion amount constant is
This is an important point in terms of product quality. At the same time, the extruder is required to have low resin temperature, high extrusion rate, etc. Most of these requirements are mainly achieved by the functions of the screw, but it is becoming difficult to achieve all of them with the screw. That is, in order to meet the demands for low resin temperature and high extrusion rate, the groove depth of the screw metering section must be made deep, but if this is done, the measurability of the extrusion rate becomes poor. Note that current extruder screws tend to do this because they aim for a high throughput, but if there is non-uniformity in the raw material composition, problems such as fluctuations in the extrusion rate often occur.
またこの高品質(低樹脂温、押出量変動小)
で、かつ高生産量という要求に応えるべく、押出
量をスクリユの計量性以外の手段によつて一定に
保とうという方法がとられているが、これら各方
法ともコストあるいは技樹上に問題点が多かつ
た。 In addition, this high quality (low resin temperature, small fluctuation in extrusion amount)
In order to meet the demand for high production volume, methods have been adopted in which the extrusion rate is kept constant by means other than the metering properties of the screw, but each of these methods has problems in terms of cost or technology. There were many.
本発明は設備費が小さく、制御性の良い、押出
量の制御方法を提供しようとするものである。 The present invention aims to provide a method for controlling the extrusion rate with low equipment cost and good controllability.
押出量Qは、ニユートン流体として扱つた場
合、前述の式で表わされる。即ち、
Q=PD/η ……
溶融樹脂を非ニユートン流体として取扱つた場
合でも、PとηとQの関係式は導くことができ
る。従つて、PD、ηの両方を計測し、これから
Qを演算式で求め、このQを一定にするよう制御
しようとする点が本発明の特徴である。またこの
粘度ηの計測手段を、スクリユ先端部シリンダに
取付けた圧力検出器により、スクリユに伴つて発
生する圧力波形から求めようとする点も特徴とす
るものである。 The extrusion amount Q is expressed by the above-mentioned formula when treated as a Newtonian fluid. That is, Q=P D /η...Even when the molten resin is treated as a non-Newtonian fluid, the relational expression between P, η, and Q can be derived. Therefore, the present invention is characterized in that both P D and η are measured, Q is calculated from the calculated equations, and Q is controlled to be constant. Another feature of the present invention is that the viscosity η is determined from the pressure waveform generated by the screw using a pressure detector attached to the cylinder at the tip of the screw.
以上の点を整理してみると第22図(従来のA
方式)、第23図(従来のB方式)、第24図(本
発明方法)となる。 If we organize the above points, we can see Figure 22 (conventional A
23 (conventional method B), and FIG. 24 (method of the present invention).
本発明によると、原料の組成が変化しても、ま
たシリンダ設定温度の変更、スクリユ先端圧力の
変化(スクリーンの目詰り等による)、スクリユ
の回転数の変化により、押出機出口樹脂温度が変
化しても、その時々のダイ入口の樹脂圧力、粘度
を検出し押出量を演算して、押出量を目標の値に
コントロールすることができる。 According to the present invention, even if the composition of the raw material changes, the temperature of the resin at the exit of the extruder changes due to changes in the cylinder temperature setting, changes in the screw tip pressure (due to screen clogging, etc.), and changes in the screw rotation speed. However, the extrusion amount can be controlled to a target value by detecting the resin pressure and viscosity at the die inlet and calculating the extrusion amount.
なお、第24図において粘度に関して補足する
と、樹脂は同一の樹脂がスクリユ内、ダイ内を流
れるのであり、両者の樹脂温度はほぼ等しいた
め、樹脂温度の検出と、演算での樹脂温度の取扱
いはやめることもできる(これは精度には大きな
影響を与えない)。 In addition, regarding the viscosity in Fig. 24, the same resin flows in the screw and the die, and the resin temperature in both is almost the same, so the detection of the resin temperature and the handling of the resin temperature in calculations are as follows: You can also turn it off (this does not significantly affect accuracy).
以下本発明の実施例を図面について説明する
と、システムの概要は第24図に示したとおりで
ある。また本発明のコントロールシステムを図示
したのが第2図であり、図中第1図と同一部分は
同一の符号で示す。 An embodiment of the present invention will be described below with reference to the drawings.The outline of the system is as shown in FIG. 24. FIG. 2 illustrates the control system of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals.
さて第2図において、本発明は押出機を出た後
のダイ2の入口前の樹脂圧力の検出器9と、スク
リユ8先端部のシリンダ7に取付けた樹脂圧力計
12により、スクリユ8内の圧力を検出して、粘
度を演算する。このダイ2の入口前の樹脂圧力
と、その粘度から押出量を演算し、この演算した
押出量が、設定した目標押出量に合致するよう、
スクリユ8を駆動しているモータ1の回転数を制
御しようとする方式に関するものである。また1
3は演算制御装置である。 Now, in FIG. 2, the present invention uses a resin pressure detector 9 in front of the inlet of the die 2 after exiting the extruder, and a resin pressure gauge 12 attached to the cylinder 7 at the tip of the screw 8 to measure the pressure inside the screw 8. Detects pressure and calculates viscosity. The extrusion amount is calculated from the resin pressure before the inlet of the die 2 and its viscosity, and the extrusion amount is adjusted so that the calculated extrusion amount matches the set target extrusion amount.
This relates to a method for controlling the rotation speed of the motor 1 that drives the screw 8. Also 1
3 is an arithmetic and control unit.
なお、スクリユ8内の圧力からの粘度の演算、
またダイ2の入口圧力とその演算した粘度から押
出量を演算する演算式は、通過する溶融樹脂をニ
ユートン流体として仮定するか、非ニユートン流
体の凝塑性流体と仮定するか、あるいは樹脂の流
動に伴う発熱、熱伝導を考慮するか否かによつて
多少異るが、ここでは簡便的にニユートン流体と
し、発熱熱伝導は無視した演算式で説明する。ま
たダイ入口での樹脂圧力の検出は一般に広く行な
われており、ここでは説明は省略する。 In addition, calculation of viscosity from the pressure inside the screw 8,
In addition, the calculation formula for calculating the extrusion amount from the inlet pressure of die 2 and its calculated viscosity may be based on the assumption that the molten resin passing through is a Newtonian fluid, a non-Newtonian solidifying fluid, or based on the flow of the resin. Although it differs somewhat depending on whether or not the accompanying heat generation and heat conduction are taken into account, here we will explain it using a calculation formula that is simply a Newtonian fluid and ignores heat generation and heat conduction. Furthermore, detection of the resin pressure at the die inlet is generally widely performed, and its explanation will be omitted here.
ダイ入口樹脂圧力Pと粘度η(原料組成、剪断
速度、樹脂温度によつて変化する)から押出量を
演算する式は前記式のとおりである。また本発
明の1例として、予じめ予想される原料組成よ
り、剪断速度、樹脂温度の関数として、後述の如
く粘度特性式を記憶させておく方式がある。 The formula for calculating the extrusion amount from the resin pressure P at the die inlet and the viscosity η (which varies depending on the raw material composition, shear rate, and resin temperature) is as shown in the above formula. Further, as an example of the present invention, there is a method in which a viscosity characteristic equation is stored as a function of shear rate and resin temperature based on a previously predicted raw material composition as described below.
次にスクリユ先端部のシリンダに取付けた樹脂
圧力の検出の仕方、およびその検出圧力から、粘
度を演算する方法について述べる(以下全てニユ
ートン流体と仮定し、発熱伝熱は無視する)。そ
して本発明では、その方法として以下の3個の実
施例を示す。 Next, we will discuss how to detect the pressure of the resin attached to the cylinder at the tip of the screw, and how to calculate the viscosity from the detected pressure (hereinafter, we will assume that everything is a Newtonian fluid and ignore heat transfer). In the present invention, the following three embodiments are shown as methods for this purpose.
先ず第1実施例として、スクリユの一般的形状
であるフルフライトスクリユ8(フライト条数1
条)を使用した場合(第3図)、シリンダ7に取
付けた圧力検出器12で記録した圧力波形は、よ
く知られているように、第5図に示すごとく、の
こ刃状のスクリユ1回転ごとに増減する形とな
る。なお、第3図はスクリユ先端部のシリンダに
樹脂圧力計を取り付けた状態を示す断面図、第4
図は第3図の展開断面図、第5図はスクリユ先端
部で計測した樹脂圧力波形図である。 First, as a first example, a full flight screw 8 (number of flights 1) which is a general shape of a screw
3), the pressure waveform recorded by the pressure detector 12 attached to the cylinder 7 is as shown in FIG. It increases and decreases with each rotation. Furthermore, Fig. 3 is a cross-sectional view showing the state in which a resin pressure gauge is attached to the cylinder at the tip of the screw.
The figure is a developed sectional view of FIG. 3, and FIG. 5 is a resin pressure waveform diagram measured at the tip of the screw.
さてニユートン流体として取扱つた場合、第5
図のような波形を示した場合の圧力差は、下式で
示すことができる。 Now, when treated as a Newtonian fluid, the fifth
The pressure difference when the waveform shown in the figure is shown can be expressed by the following formula.
式でNはスクリユ回転数を示す。他の形状を
示す文字は第3図、第4図に示してある。また
Vbはスクリユの周速であり、Vbjはその周速のZ
方向成分を示す。但し本式は一般的フルフライト
スクリユ(フライト条数1条)の場合についての
ものである。このときスクリユの軸芯に直角な断
面でのシリンダ内周方向、スクリユ溝の接触長さ
dは、
d=W/sinθb=πD−e/sinθbである。
従つて式
より、液相樹脂の搬送されるスクリユ先端のフル
フライト部分の樹脂圧力波形を計測すれば、この
部分を通過する樹脂の粘度は計算できる。 In the formula, N indicates the screw rotation speed. Letters indicating other shapes are shown in FIGS. 3 and 4. Also
Vb is the circumferential speed of the screw, and Vbj is the Z of that circumferential speed.
Indicates the directional component. However, this formula is for the case of a general full-flight screw (one flight thread). At this time, the contact length d of the screw groove in the inner peripheral direction of the cylinder in a cross section perpendicular to the axis of the screw is as follows: d=W/sin θb=πD-e/sin θb.
Therefore, from the formula, by measuring the resin pressure waveform at the full flight part at the tip of the screw where the liquid phase resin is conveyed, the viscosity of the resin passing through this part can be calculated.
次に他の粘度を求める方法として(第2実施
例)、液相樹脂の通過するスクリユ先端部形状
を、第8図のようなリードを持たない浅溝形状と
し、この部分でのスクリユ1回転ごとに発生する
樹脂圧力波形を計測して求める方法がある。この
場合第7図に示すような圧力波形と粘度との関係
式は、
△P/d=△P/l=6ηπDN/H2……
と簡便化される。 Next, as another method for determining the viscosity (second example), the shape of the tip of the screw through which the liquid phase resin passes is made into a shallow groove shape without a lead as shown in Fig. 8, and one revolution of the screw in this part is made. There is a method to obtain it by measuring the resin pressure waveform generated at each time. In this case, the relational expression between the pressure waveform and viscosity as shown in FIG. 7 can be simplified as ΔP/d=ΔP/l=6ηπDN/H 2 .
また通常のフルフライトスクリユ形状部の樹脂
圧力波計より粘度を求める方法では、ある一定の
押出量を得るためには、溝深さは余り浅くできな
いが、本方法の場合には、粘度を求めるために工
夫した部分の溝深さは浅くすることが可能である
ため、△P/dを拡大した形で計測できる利点があ
る。ここで第9図は第8図のX〜X断面図、第1
0図は第8図におけるX〜X部分のスクリユの外
面展開図、第11図、第12図、第13図は夫々
第10図のB〜B、C〜C、D〜D断面図であ
る。 In addition, with the usual method of determining viscosity using a resin pressure wave meter for a full-flight screw-shaped part, the groove depth cannot be made too shallow in order to obtain a certain extrusion amount, but in the case of this method, the viscosity can be Since it is possible to make the groove depth of the portion devised for determination shallow, there is an advantage that ΔP/d can be measured in an enlarged form. Here, FIG. 9 is a sectional view from X to X in FIG.
Figure 0 is an external development view of the screw in the X-X portion in Figure 8, and Figures 11, 12, and 13 are cross-sectional views of B-B, C-C, and D-D in Figure 10, respectively. .
次に圧力から粘度ηが求められる理由を詳細に
説明すると、圧力測定部は第8図に示す如くスク
リユ先端部に、回転方向に開口したコの字溝(図
では半周の長さ)が設けられている。即ち、両サ
イドは土手リ、行止りに土手チを有する浅い溝ヌ
(入口A〜Aには土手は無い)を有する。 Next, to explain in detail why the viscosity η is determined from the pressure, as shown in Figure 8, the pressure measurement part has a U-shaped groove (half circumference length in the figure) at the tip of the screw that opens in the rotational direction. It is being That is, both sides have banks and shallow grooves with banks at the end (there are no banks at the entrances A to A).
今溶融樹脂がスクリユ部に満されていて、スク
リユが回転すると、溶融樹脂は高粘度なため、シ
リンダと溝底ヌで生ずる剪断抵抗によつて溶融樹
脂はコの字溝に押込まれ、コの字溝の奥程圧力が
高くなる。これを樹脂圧力計12aで検出する
と、第7図の如くなり、圧力P1は圧力計位置がコ
の字溝の一番奥、土手チ部に達する寸前の時のも
の、圧力P2は圧力計位置がコの字溝を通過した
後、コの字溝入口A〜Aに達する間のものであ
る。 When the screw part is filled with molten resin and the screw rotates, since the molten resin has a high viscosity, the molten resin is pushed into the U-shaped groove by the shear resistance generated between the cylinder and the bottom of the groove. The pressure increases deeper into the groove. When this is detected by the resin pressure gauge 12a, it will be as shown in Fig. 7, where the pressure P 1 is the pressure when the pressure gauge is at the deepest part of the U-shaped groove, just before reaching the edge of the bank, and the pressure P 2 is the pressure This is the time between the meter position passing through the U-shaped groove and reaching the U-shaped groove entrances A to A.
この関係を数式で表わしたものが前記式であ
り、運転条件と△Pが分れば、粘度ηが求められ
るものである。なお、第1、第2実施例とも構造
は異るが、粘度測定原理は前記と同一である。 The above equation is a mathematical expression of this relationship, and if the operating conditions and ΔP are known, the viscosity η can be determined. Although the structures of the first and second embodiments are different, the principle of viscosity measurement is the same as that described above.
さらに第1、第2実施例のスクリユとシリンダ
と構造をとり変えた構造(第14図)、すなわ
ち、スクリユ8の溝のない円筒形状とし、シリン
ダ側に溝14を切つた溝造部材15を取付ける
と、この部分のシリンダに取付けた圧力計12
b,12cの示す樹脂圧力は、もはやスクリユ1
回転ごとののこ刃状波形は描かず、第6図に示す
ような圧力波形となる(第6図は押出機先端部に
第14図に示すスクリユ、シリンダの構造を持つ
場合の樹脂圧力の時間的変化図)。なお第15図
に示すスクリユ軸直角断面2点12b,12cの
圧力差が、式の△Pに当る。またdに対しlが
対応する。 Furthermore, the screw and cylinder structure of the first and second embodiments are changed (Fig. 14), that is, the screw 8 has a cylindrical shape without a groove, and the groove member 15 has a groove 14 cut on the cylinder side. When installed, the pressure gauge 12 attached to the cylinder in this part
The resin pressure indicated by b and 12c is no longer the same as that of screw 1.
The sawtooth waveform for each rotation is not drawn, but the pressure waveform is as shown in Figure 6. (Figure 6 shows the resin pressure when the extruder tip has the screw and cylinder structure shown in Figure 14. (temporal change diagram). Note that the pressure difference between the two points 12b and 12c in the section perpendicular to the screw axis shown in FIG. 15 corresponds to ΔP in the equation. Also, l corresponds to d.
従つて本案の場合
△P/d=P1−P2/l=6ηπDN/H2……
となり、粘度を求めるための演算が簡略化できる
(演算装置の簡略化可能)。なお、剪断速度γ〓につ
いては簡便的にはシリンダ、スクリユ間の間隙を
hとすると、
γ〓=πDN/h ……
で与えることができる。 Therefore, in the present case, ΔP/d=P 1 -P 2 /l=6ηπDN/H 2 ..., and the calculation for determining the viscosity can be simplified (the calculation device can be simplified). The shear rate γ can be simply given as follows, where h is the gap between the cylinder and the screw.
またスクリユ先端部の圧力波形から求めた粘度
η0と、ダイからの樹脂の押出量を演算するとき
に使用する粘度ηについて説明すると、溶融樹脂
の粘度は、測定条件である剪断速度γ〓と、温度T
によつて変るので、スクリユの先端部装置で測定
した粘度は、ダイへの流量計算のために設けられ
ている圧力検出器9の位置での樹脂粘度に換算し
なければならない。 Also, to explain the viscosity η 0 obtained from the pressure waveform at the tip of the screw and the viscosity η used when calculating the amount of resin extruded from the die, the viscosity of the molten resin is determined by the shear rate γ 〓 which is the measurement condition. , temperature T
Therefore, the viscosity measured by the screw tip device must be converted to the resin viscosity at the pressure detector 9 provided for calculating the flow rate to the die.
溶融樹脂の粘度特性は、キヤピラリーレオメー
タ等の粘度測定器であらかじめ剪断速度γ〓と、温
度Tでその関係を調べておく(これを粘度特性の
ベースデータとする)。 Regarding the viscosity characteristics of the molten resin, the relationship between the shear rate γ and the temperature T is investigated in advance using a viscosity measuring device such as a capillary rheometer (this is used as the base data for the viscosity characteristics).
第20図は、例えばキヤピラリーレオメータで
計測した粘度特性と、スクリユ先端部装置で測定
した粘度が測定法の差(原料組成の変化)により
同一温度、同一剪断速度でも差異が生ずるので、
スクリユ先端部装置の実測値でキヤピラリーレオ
メータの粘度特性を補正する手段を述べている。 Figure 20 shows that, for example, the viscosity characteristics measured with a capillary rheometer and the viscosity measured with a screw tip device differ even at the same temperature and shear rate due to differences in measurement methods (changes in raw material composition).
This paper describes a means for correcting the viscosity characteristics of a capillary rheometer using actual measurements of the screw tip device.
また第21図はスクリユ先端部の粘度測定装置
部の温度と、ダイ流入部の圧力検出器9位置での
温度は同じと見做した場合であり、あらかじめキ
ヤピラリーレオメータ等で、温度、剪断速度を変
えて特性を測つておき、スクリユ先端部での或る
剪断速度における実測粘度を、キヤピラリーレオ
メータの相当する温度カーブに近似し、任意の剪
断速度における粘度を求める方法である。 Figure 21 shows the case where the temperature at the viscosity measuring device at the tip of the screw is assumed to be the same as the temperature at the pressure detector 9 position at the inlet of the die. This is a method in which the properties are measured by changing the viscosity, and the actually measured viscosity at a certain shear rate at the tip of the screw is approximated to the corresponding temperature curve of a capillary rheometer to determine the viscosity at any shear rate.
さてスクリユ先端部の圧力波形から演算して得
た粘度は、粘度特性としては一般に良く知られて
いるように、剪断速度γ〓、温度Tの関数として示
される粘度ηの1ポイント(ある剪断速度、ある
温度での粘度)である。この1ポイントの粘度η
0と、ダイからの押出量演算の粘度ηの大小の関
係は、同一樹脂が流れ出るのであり、傾向は同一
となる。 Now, the viscosity obtained by calculating from the pressure waveform at the tip of the screw is, as is generally well known as a viscosity characteristic, one point of viscosity η expressed as a function of shear rate γ〓 and temperature T (at a certain shear rate , viscosity at a certain temperature). The viscosity η of this one point
The relationship between 0 and the viscosity η calculated by the extrusion amount from the die is that the same resin flows out, and the tendency is the same.
すなわち、スクリユ内圧力から求めた粘度が低
下すれば、ダイ内を流れる粘度も低下する。この
場合両者の低下の割合を等しいとして、スクリユ
回転数の変化、すなわち粘度検出部の剪断速度変
化による粘度変化を補正した粘度をη′とし、
P0/η′を一定となるよう制御すればよい。すな
わち、
η′=Kγ〓n=K(πDN/h)n
という関係式等により補正可能である。(K:温
度の関数(この場合一定)、nは定数)。 That is, if the viscosity determined from the internal pressure of the screw decreases, the viscosity flowing inside the die also decreases. In this case, assuming that the rate of decrease in both is equal, the viscosity corrected for the change in viscosity due to the change in screw rotation speed, that is, the change in shear rate of the viscosity detection section, is defined as η′,
It is sufficient to control P 0 /η′ to be constant. That is, it can be corrected using the relational expression η'= Kγ〓n =K(πDN/h) n , etc. (K: function of temperature (constant in this case), n is constant).
しかしさらに精度を上げるためには、あらかじ
め予想される原料組成の粘度を、別な物性測定器
で測定しておき、この値を記憶し、この粘度と演
算した1ポイントの粘度を対比することにより、
刻々押出されている樹脂の粘度を剪断速度、温度
の関数として推定して行なう方法がある。なお、
粘度の温度の関数としての取扱いについては、同
一の樹脂がスクリユ内、ダイ内を通過するのであ
り、両者通過時の樹脂温度は等しいとして、無視
することもできる。 However, in order to further improve accuracy, it is possible to measure the expected viscosity of the raw material composition in advance using a separate physical property measuring instrument, store this value, and compare this viscosity with the calculated viscosity at one point. ,
There is a method of estimating the viscosity of the extruded resin as a function of shear rate and temperature. In addition,
Regarding the handling of viscosity as a function of temperature, it can be ignored since the same resin passes through the screw and the die, and the resin temperature during both passages is the same.
次に粘度特性式として、下式を用いた場合の2
つの例について述べる。 Next, as the viscosity characteristic formula, 2 when using the following formula
Let's discuss two examples.
logη=a0+a1logγ〓+a11(logγ〓)2
+a2T+a22T2+a12Tlogγ〓 ……
(a0,a1,a11,a2,a22,a12は定数)
○イ 上式があらかじめ他の物性測定器で測定した
粘度から判明していたとすれば、スクリユ内樹
脂圧力から求めた粘度η0,γ〓0,T2(測定
した樹脂温度)を代入して
logη0=a′0+a1logγ〓0
+a11(logγ〓0)2+a2T2+
a22T2 2+a12T2logγ〓 ……
よりa′0を求め(a1,a11,a2,a22,a12は記憶し
ていた粘性特性式の定数)、a0の代りにa′0を代
入した粘度特性式とし、これをダイからの押出
量の演算をする場合の粘度として使用する。 logη=a 0 +a 1 logγ〓+a 11 (logγ〓) 2 +a 2 T+a 22 T 2 +a 12 Tlogγ〓 ... (a 0 , a 1 , a 11 , a 2 , a 22 , a 12 are constants) ○I If the above equation is known in advance from the viscosity measured with another physical property measuring instrument, then by substituting the viscosity η 0 , γ〓 0 , T 2 (measured resin temperature) determined from the resin pressure inside the screw, logη 0 can be calculated. =a′ 0 +a 1 logγ〓 0 +a 11 (logγ〓 0 ) 2 +a 2 T 2 + a 22 T 2 2 +a 12 T 2 logγ〓 ... Find a′ 0 from (a 1 , a 11 , a 2 , a 22 , a 12 are constants of the memorized viscosity characteristic equation), substitute a′ 0 in place of a 0 to create the viscosity characteristic equation, and use this as the viscosity when calculating the amount of extrusion from the die. do.
○ロ 温度を無視した場合には、前記の式にη
0,γ〓0を代入し、Tの値を求める。この求め
たTの値T′を代入し、
a″0=a0+a2T′、a″1=a1+a12T′としlogη=a″0
+a″1logγ〓+a11(logγ〓)2 ……
の式を、粘性特性式とし、これをダイからの押
出量の演算をする場合の粘度として使用する。○B If temperature is ignored, η is added to the above equation.
0 , γ〓 Substitute 0 and find the value of T. Substituting this obtained value of T, T′, a″ 0 = a 0 + a 2 T′, a″ 1 = a 1 + a 12 T′, and logη = a″ 0
+a″ 1 logγ〓+a 11 (logγ〓) 2 ... is used as the viscosity characteristic formula, and this is used as the viscosity when calculating the amount of extrusion from the die.
以上の○イ,○ロの例を説明補助として、第20
図,第21図に粘度特性曲線を示した。なお、第
20図は樹脂温度を検出し、剪断速度、温度に対
し粘度が変化する割合を、あらかじめ他の測定器
で計測した粘度と同等となるよう、押出されてい
る樹脂の粘度を推定する方法を示す。また第21
図はあらかじめ他の測定器で計測した粘度が、剪
断速度に対し変化する割合と同等となるよう押出
されている樹脂の粘度を推定する方法を示す。 Using the above examples of ○a and ○b as an explanation aid, the 20th
The viscosity characteristic curves are shown in Fig. 21. In addition, Fig. 20 detects the resin temperature and estimates the viscosity of the extruded resin so that the rate of change in viscosity with respect to shear rate and temperature is equal to the viscosity measured in advance with another measuring device. Show how. Also the 21st
The figure shows a method for estimating the viscosity of the extruded resin so that the viscosity, measured in advance with another measuring device, changes at a rate equivalent to the shear rate.
第1図は従来の押出機における押出量の制御方
法を説明するシステム図、第2図は本発明の実施
例を示す押出機における押出量の制御方法を説明
するシステム図、第3図は本発明の第1実施例に
おけるスクリユ先端部を示す断面図、第4図は第
3図の展開図、第5図は同スクリユ先端部で測定
した樹脂圧力波形図、第6図は第14図のスクリ
ユにおける樹脂圧力の時間的変化図、第7図は第
8図におけるスクリユによる樹脂圧力の時間的変
化図、第8図は本発明の第2実施例におけるシリ
ンダ、スクリユ先端部の断面図、第9図は第8図
のX〜X断面図、第10図は第8図におけるX〜
X部分のスクリユの外面展開図、第11図,第1
2図及び第13図は夫々第10図のB〜B、C〜
C及びD〜D断面図、第14図は本発明の第3実
施例におけるシリンダ、スクリユ先端部の断面
図、第15図は第14図のY〜Y断面図、第16
図は第14図のY〜Y断面でのシリンダ側溝展開
図、第17図、第18図及び第19図は夫々第1
6図のB〜B、C〜C及びD〜D断面図、第20
図及び第21図は夫々粘度特性曲線を示す線図、
第22図は従来のA方式のブロツク図、第23図
は従来のB方式のブロツク図、第24図は本発明
方法の1実施例を示すブロツク図である。
図の主要部分の説明、1……スクリユ駆動用モ
ータ、2……ダイ、3……ホツパ、4……原料樹
脂、6……ヒータ、7……シリンダ、8……スク
リユ、9……樹脂圧力検出器、10……押出樹
脂、12……樹脂圧力計、13……演算制御装
置。
Fig. 1 is a system diagram explaining a method of controlling the extrusion rate in a conventional extruder, Fig. 2 is a system diagram explaining a method of controlling the extrusion rate in an extruder showing an embodiment of the present invention, and Fig. 3 is a system diagram of the present invention. 4 is a developed view of FIG. 3, FIG. 5 is a resin pressure waveform diagram measured at the screw tip, and FIG. 6 is a cross-sectional view of the screw tip in the first embodiment of the invention. FIG. 7 is a diagram of the temporal change in resin pressure due to the screw in FIG. 8. FIG. Figure 9 is a cross-sectional view from X to X in Figure 8, and Figure 10 is a cross-sectional view from X to X in Figure 8.
External developed view of the screw in the X section, Figure 11, Figure 1
Figures 2 and 13 are B~B, C~ in Figure 10, respectively.
14 is a sectional view of the tip of the cylinder and screw in the third embodiment of the present invention; FIG. 15 is a sectional view of Y-Y in FIG. 14;
The figure is a developed view of the cylinder side groove in the Y-Y cross section of Figure 14, and Figures 17, 18, and 19 are
B-B, C-C and D-D sectional views of Figure 6, No. 20
and FIG. 21 are diagrams showing viscosity characteristic curves, respectively.
FIG. 22 is a block diagram of the conventional method A, FIG. 23 is a block diagram of the conventional method B, and FIG. 24 is a block diagram showing one embodiment of the method of the present invention. Explanation of the main parts of the diagram: 1... Screw drive motor, 2... Die, 3... Hopper, 4... Raw resin, 6... Heater, 7... Cylinder, 8... Screw, 9... Resin Pressure detector, 10... Extruded resin, 12... Resin pressure gauge, 13... Arithmetic control device.
Claims (1)
ダに取付けた樹脂圧力検出器で測定した圧力から
演算して求めた粘度からダイを通過する押出量を
演算し、この演算押出量が設定した押出量に等し
くなるようスクリユの回転数を制御すると共に、
前記粘度を演算する際、あらかじめ他の物性測定
器で求めておいた粘度を記憶させておき、これと
スクリユ先端部の樹脂圧力から求めた粘度を対比
させ、前記ダイでの押出量を演算する時使用する
粘度を推定することを特徴とする押出量の制御方
法。1 Calculate the amount of extrusion passing through the die from the resin pressure at the die inlet and the viscosity calculated from the pressure measured with the resin pressure detector attached to the cylinder at the tip of the screw, and make sure that this calculated amount of extrusion matches the set amount of extrusion. In addition to controlling the rotation speed of the screw so that it is equal,
When calculating the viscosity, the viscosity determined in advance with another physical property measuring device is memorized, and this is compared with the viscosity determined from the resin pressure at the tip of the screw to calculate the amount of extrusion through the die. A method for controlling an extrusion amount, characterized by estimating a viscosity to be used at a time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57166363A JPS5954538A (en) | 1982-09-24 | 1982-09-24 | Controlling method of extrusion amount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57166363A JPS5954538A (en) | 1982-09-24 | 1982-09-24 | Controlling method of extrusion amount |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5954538A JPS5954538A (en) | 1984-03-29 |
JPS6254654B2 true JPS6254654B2 (en) | 1987-11-16 |
Family
ID=15830003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57166363A Granted JPS5954538A (en) | 1982-09-24 | 1982-09-24 | Controlling method of extrusion amount |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5954538A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3526050C2 (en) * | 1985-07-20 | 1994-11-17 | Krupp Ag Hoesch Krupp | Process for operating an extruder |
DE3545747C2 (en) * | 1985-12-21 | 1994-10-06 | Krupp Ag Hoesch Krupp | Extruder monitoring |
SE452129B (en) * | 1986-03-07 | 1987-11-16 | Bo Nilsson | PROCEDURE FOR CONTROL OF PROCESSING AND EXPATURE OF PLASTIC MASS BY STRUCTURE |
FI84575C (en) * | 1988-09-14 | 1991-12-27 | Partek Ab | FOERFARANDE OCH GLIDGJUTNINGSMASKIN FOER GJUTNING AV EN ELLER FLERA PARALLELLA BETONGPRODUKTER. |
AT414225B (en) * | 2004-06-25 | 2006-10-15 | Technoplast Kunststofftechnik | PROCESS FOR PRODUCING PROFILES FROM THERMOPLASTIC PLASTIC |
JP4563739B2 (en) * | 2004-07-09 | 2010-10-13 | 株式会社日本製鋼所 | Extruded product manufacturing method and manufacturing apparatus |
-
1982
- 1982-09-24 JP JP57166363A patent/JPS5954538A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5954538A (en) | 1984-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1308530C (en) | Procedure for manufacturing pipes and sections out of thermoplastic plastics | |
CN111601695B (en) | Extruder with axial displacement | |
US4241602A (en) | Rheometer | |
EP0409982B1 (en) | Control unit for injection molding machines | |
CA1147922A (en) | Method of extruding and shaping thermoplastic material | |
US6152720A (en) | Device for stable widthwise regulation of bulb angle in extrusion of sheets of heat-sensitive plastics through a calender opening formed by intake rollers | |
US8298461B2 (en) | Method for the measurement of the temperature of a plastified plastic material at the exit of an extruder | |
US7018191B2 (en) | Plastics extruder dimension and viscosity control system | |
GB2482603A (en) | Rotational rheometer for measuring flow properties of samples | |
US5277058A (en) | Adjustable gap rheometer | |
JPS6254654B2 (en) | ||
JPH05506926A (en) | Novel in-process polymer melt rheometer | |
CN110539470A (en) | Device and method for measuring rubber viscosity in metering section of rubber extruder on line | |
JP3819318B2 (en) | Screw runout measuring method of screw type extruder and screw type extruder | |
JP2012131176A (en) | Plasticizing device | |
US6182503B1 (en) | On-line rheological measurement for process control | |
JPS58126131A (en) | Resin temperature controlling method of plastic molding machine | |
JP4845684B2 (en) | Control method of sheet forming apparatus | |
JPS5844463B2 (en) | Netsukaso Seiji Yushifilm Noatsusachiyouseihohou | |
JPH0214118A (en) | Raw material consumption sensor for synthetic resin extruder and control method for extrusion quantity | |
JPS59103735A (en) | Formation of extruded piece of thermoplastic resin | |
Chan et al. | An experimental study of exit pressures for polymer melts | |
Kalyon et al. | An adjustable gap in-line rheometer | |
JP2536321B2 (en) | Extrusion control device of extruder | |
JPS6176337A (en) | Molten resin extruder |