JPS6254606B2 - - Google Patents

Info

Publication number
JPS6254606B2
JPS6254606B2 JP52127121A JP12712177A JPS6254606B2 JP S6254606 B2 JPS6254606 B2 JP S6254606B2 JP 52127121 A JP52127121 A JP 52127121A JP 12712177 A JP12712177 A JP 12712177A JP S6254606 B2 JPS6254606 B2 JP S6254606B2
Authority
JP
Japan
Prior art keywords
machining
gap
pulse
discharge
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52127121A
Other languages
Japanese (ja)
Other versions
JPS5461395A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP12712177A priority Critical patent/JPS5461395A/en
Publication of JPS5461395A publication Critical patent/JPS5461395A/en
Publication of JPS6254606B2 publication Critical patent/JPS6254606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Description

【発明の詳細な説明】 本発明は放電加工方法、特に加工パルスの発生
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrical discharge machining methods, and in particular to generation of machining pulses.

加工条件によつて設定されるパルス巾τpoと間
隔τpffを有する加工パルスのパルス列を用いて
加工するとき、安定加工するために従来通常採用
された手段は所定の時間々隔で前記パルス列を中
断することであり、中断することによつて間隙を
浄化し、アーク等の異常放電を防止するようにし
ていた。この場合、確かにパルス列の中間におい
てアーク等が発生しても次の中断時に消弧するこ
とができ、加工を安定することができるが、放電
を中断することによつて単位時間当りのパルス発
生数が減少し、また中断期間完了後に次の放電を
再開するとき間隙に放電起動のきつかけとなる加
工屑やガスの介在が無くなり容易に短時間には正
常放電に復帰しない、このことから加工速度が低
下し所期のスピードまでに向上できない欠点があ
つた。
When machining is performed using a pulse train of machining pulses having a pulse width τ po and an interval τ pff set depending on the machining conditions, the conventional means usually adopted for stable machining is to repeat the pulse train at predetermined time intervals. This was to cleanse the gap and prevent abnormal discharges such as arcs. In this case, even if an arc occurs in the middle of the pulse train, it can be extinguished at the next interruption and the machining can be stabilized. The number decreases, and when restarting the next discharge after the interruption period is completed, there are no machining debris or gas present in the gap that would trigger the discharge, and normal discharge does not return easily in a short period of time. There was a drawback that the speed decreased and the speed could not be improved to the desired level.

本発明はこの欠点を除去すべく提案されたもの
である。パルス列を用いた放電加工の加工速度を
所期の理論値まで近づけるよう制御したもので、
即ちパルス列のある期間に加工パルスの波高値Ip
を増大させるかまたはパルス間隔τpffを短縮、
パルス巾τpoの増大制御をして単位時間当りのエ
ネルギ供給量を急増させる制御を、放電電流の平
均値が一定値に保たれるように加工間隙を制御す
るサーボ送り制御の応答速度に比較して充分短
い、設定された所定の時間間隔又は加工間隙の放
電状態に応じた時間間隔で繰返すことにより、前
記加工パルスのパルス列による加工よりも加工間
隙を実質的に広げた状態で加工を行なうようにし
たことを特徴とするものである。
The present invention has been proposed to eliminate this drawback. The machining speed of electric discharge machining using a pulse train is controlled to approach the desired theoretical value.
In other words, the peak value Ip of the processing pulse during a certain period of the pulse train
increase or shorten the pulse interval τ pff ,
Compare the response speed of control that rapidly increases the amount of energy supplied per unit time by increasing the pulse width τ po to the response speed of servo feed control that controls the machining gap so that the average value of discharge current is maintained at a constant value. By repeating the process at a sufficiently short predetermined time interval or at a time interval depending on the discharge state of the machining gap, machining is performed with the machining gap substantially wider than machining using the pulse train of the machining pulses. It is characterized by the following.

以下図面により本発明を説明する。第1図は加
工パルスのパルス列を、またそのある期間に行な
われる単位時間当りのエネルギ供給量急増制御を
説明するもので、加工条件、即ち仕上、中仕上、
荒加工によつて加工パルスのパルス巾τpo、間隔
τpffが設定される。τpo=1〜100μs、τpff
10〜50μs程度に設定される。そしてイ図はこの
加工パルスのパルス列を所定時間中T2、間隔τpf
を短縮τpff′して電流密度を増大する制御をし、
この電流密度増大制御を所定の時間々隔T1で繰
返すようにしたもの、ロ図はT2時間中加工パル
スの波高値Ipを増大Ip′することにより加工電流
の電流密度を高め、所定の時間々隔T1でこれを
繰返す制御を行つた例である。ハ図は間隔τpff
を狭めるτpff′ことと、波高値Ipを増大Ip′するこ
とを同時に行つて設定時間中T2電流密度を増大
させ、これを間隙の放電状態に応じて変更制御さ
れる時間間隔T1で繰返して行なうようにしたも
のである。
The present invention will be explained below with reference to the drawings. Figure 1 explains the pulse train of machining pulses and the rapid control of the energy supply amount per unit time performed during a certain period of the pulse train, and shows the machining conditions, namely finishing, semi-finishing,
The pulse width τ po and interval τ pff of the machining pulse are set by rough machining. τ po = 1 to 100 μs, τ pff =
It is set to about 10 to 50 μs. Figure A shows the pulse train of this machining pulse during the predetermined time T 2 and the interval τ pf
Control is performed to increase the current density by shortening f τ pff ′,
This current density increase control is repeated at a predetermined time interval T 1 , and the figure below shows that the current density of the machining current is increased by increasing the peak value Ip of the machining pulse during T 2 hours, and the current density of the machining current is increased to reach the predetermined This is an example in which control is performed to repeat this at time intervals T1 . Figure C shows the interval τ pff
By simultaneously narrowing τ pff ′ and increasing the peak value Ip, the T 2 current density is increased during a set time, and this is changed at a time interval T 1 that is controlled according to the discharge state of the gap. It was designed to be repeated.

この電流密度の増大制御によつて所定のτpo
τpff加工パルスで繰返される加工間隙の放電状
態に変化をきたす。即ち加工間隙を形成する電極
に通常サーボ送り機構が設けてあり、サーボは間
隙、信号によつて制御される。加工間隙に流れる
電流が増大するときは間隙長を広げ、電流が低減
するときは間隙を狭めることによつて一定電流を
流すように制御している。このサーボによる間隙
の制御は一般に間隙長をlとすれば l=k(τpo)1/3Ip k;定数 τpo;加工パルス巾 Ip;波高値 で表わされる。したがつてIpは1パルスの波高値
であるが、サーボが追従できない高周波の場合は
平均電流値と考えてよく、平均電流値を高めるこ
とによつて間隙長が広がることがわかる。第1図
のようにパルス列のある期間に電流密度を高める
制御を行なうことによつてサーボにより加工間隙
は広がる。サーボ機構の追従スピードは通常加工
パルス列の周波数に比べて充分遅いから第1図の
ようにして電流密度の増大制御をサーボ送り制御
の応答速度に比較して充分短い時間間隔で時々繰
返すことによつて実質的に加工間隙を広げた状態
で加工することができる。この電流密度の増大制
御は全パルス列の1〜30%程度の範囲で制御する
ことによつて充分であり、電流密度を増加するこ
とを繰返して常に間隙を広げた状態で加工するこ
とができる。
By controlling the increase in current density, a predetermined τpo ,
τ pff Changes the electrical discharge state in the machining gap that is repeated with machining pulses. That is, a servo feed mechanism is usually provided on the electrode that forms the processing gap, and the servo is controlled by the gap and the signal. When the current flowing through the machining gap increases, the gap length is widened, and when the current decreases, the gap is narrowed, thereby controlling the flow of a constant current. Gap control by this servo is generally expressed by: where the gap length is l, l=k(τ po )1/3 Ip k; constant τ po ; machining pulse width Ip; peak value. Therefore, Ip is the peak value of one pulse, but in the case of a high frequency that cannot be followed by the servo, it can be considered as the average current value, and it can be seen that the gap length increases by increasing the average current value. As shown in FIG. 1, by controlling the current density to be increased during a certain period of the pulse train, the machining gap is widened by the servo. Since the follow-up speed of the servo mechanism is usually sufficiently slow compared to the frequency of the processing pulse train, it is possible to increase the current density by repeating it from time to time at sufficiently short time intervals compared to the response speed of the servo feed control, as shown in Figure 1. Therefore, machining can be performed with the machining gap substantially widened. It is sufficient to control the increase in current density within a range of about 1 to 30% of the total pulse train, and by repeatedly increasing the current density, processing can be performed with the gap constantly widened.

第2図はこのようなパルス発生制御を行なう放
電加工回路を示すもので、1は加工電極、2は被
加工体で、この両者の対向により加工間隙を形成
する。3は加工電力を供給する電源で、トランジ
スタ等のスイツチ4を介して加工間隔に並列接続
されている。スイツチ4のオン.オフスイツチン
グによつて電源3をオン.オフ制御して加工間隙
にパルスを加えるようにする。5は設定されたパ
ルス巾τpoと間隔τpffを有する加工パルスを発生
する発振器、6は放電回路に挿入した抵抗回路で
加工パルス放電の電流波高値Ipを決定し制御す
る。7は所定の時間々隔で発振器5を制御し発振
出力パルスの間隔τpffをτpff′に変更し、また回
路6を制御し放電々流波高値IpをIp′に変更制御
する時間制御装置で、マルチバイブレータ等の発
振出力パルスを信号として発振器5及び回路6の
定数変更制御を行なう。8は加工間隙の放電状態
を検出する検出回路で、これは例えば間隙の平均
電圧、電流を検出し判別し、また加工パルスの放
電々圧、電流をデジタルに検出し判別し、また積
分検出し判別する。また正常放電の際に認められ
る、高周波成分の検出が行なわれ、判別が行なわ
れる。検出信号の判別はシユミツト等により判別
レベルを設定して上下を判別し、複数レベルの判
別を行なう。9は検出回路8の判別信号によつて
作動する制御回路で、時間制御装置7の時間変更
制御を行なう。
FIG. 2 shows an electrical discharge machining circuit that performs such pulse generation control, in which 1 is a machining electrode, 2 is a workpiece, and a machining gap is formed by opposing each other. Reference numeral 3 denotes a power source for supplying machining power, which is connected in parallel to the machining interval via a switch 4 such as a transistor. Switch 4 on. Turn on power supply 3 by off-switching. Turn it off and apply pulses to the machining gap. 5 is an oscillator that generates a machining pulse having a set pulse width τ po and interval τ pff , and 6 is a resistor circuit inserted in the discharge circuit to determine and control the current peak value Ip of the machining pulse discharge. 7 is a time control device that controls the oscillator 5 at predetermined time intervals to change the oscillation output pulse interval τ pff to τ pff ', and also controls the circuit 6 to change the discharge current peak value Ip to Ip'. Then, constant change control of the oscillator 5 and the circuit 6 is performed using the oscillation output pulse of a multivibrator or the like as a signal. 8 is a detection circuit that detects the discharge state of the machining gap, which detects and discriminates the average voltage and current of the gap, digitally detects and discriminates the discharge voltage and current of the machining pulse, and performs integral detection. Discern. Also, high frequency components observed during normal discharge are detected and discriminated. The detection signal is discriminated by setting a discrimination level using a Schmitt method or the like to discriminate between upper and lower signals, and to perform discrimination at a plurality of levels. Reference numeral 9 denotes a control circuit operated by the discrimination signal of the detection circuit 8, which controls the time change of the time control device 7.

発振器5によつて発生する加工パルスは前記し
たように加工条件によつてτpo、τpff等が予じめ
設定され、加工面粗さが決定され、加工速度、加
工性能が決定される。この発振器5によりスイツ
チ4をオン.オフ制御し続けることによつて予定
された加工が行なわれる。又、サーボ送りによる
間隙の広狭制御に関しては、間隙に印加される加
工パルスの全てが放電起動するような間隙状態で
はアークに移行しやすく安定した加工を行なうこ
とができないため、印加して加工パルスの数10
%、多くても80%程度の放電発生率となるように
サーボ送りすることが必要であり、従つて、サー
ボ送り制御の基準となる平均電流値の設定は、パ
ルス幅τonとパルス間隔τoffの比及び波高値Ip
だけでなく放電発生率も考慮して設定される。そ
して時間制御装置7によつて、T2時間中加工パ
ルスは間隔τpffが短縮τpff′制御され(イ図)電
流密度が増大され、T2時間が経過すると、再度
間隔τpffに戻つて加工パルスが繰返され、T1
間が経過するとまた電流密度の増大制御が行なわ
れ、この時々電流密度の増大制御を行なうパルス
列の繰返しによつて電極のサーボ送り制御により
加工間隙を通常より広げた間隔での加工が続けら
れ、加工屑の排除効果を高め加工液の流動の効果
を高め、アーク.短絡等が発生し難い状態で安定
した加工を行なうことができる。時間々隔T1
T2等は制御装置7により最も安定した放電状態
で加工が続けられるよう設定され、単位時間当り
のエネルギ供給量の急増制御を行なう時間間隔
T1は、サーボ送り制御の応答速度に比較して充
分短く設定される。また時間制御装置7によつて
抵抗回路6の制御をすればT2時間中波高値Ipを
Ip′に増大制御して(ロ図)電流密度を高めるこ
とができ、これをT1経過後に繰返すことにより
前記と同様の間隙増大制御とそれによる安定加工
を続けることができる。また時間制御装置7によ
り発振器5と回路6の制御を同時に行なえば(ハ
図)のように制御でき、いずれも安定加工を行な
える。
As described above, the machining pulses generated by the oscillator 5 have τ po , τ pff , etc. set in advance according to the machining conditions, thereby determining the machined surface roughness, machining speed, and machining performance. This oscillator 5 turns on the switch 4. By continuing the off control, the scheduled machining is performed. In addition, regarding gap widening/narrowing control using servo feed, in a gap state where all of the machining pulses applied to the gap are activated by electric discharge, stable machining cannot be performed because it is easy to transition to arcing, so the machining pulses applied to the gap are number 10
It is necessary to perform servo feed so that the discharge occurrence rate is approximately 80% at most. Therefore, the average current value that is the standard for servo feed control must be set based on the pulse width τon and pulse interval τoff. Ratio and peak value Ip
It is set taking into consideration not only the discharge occurrence rate but also the discharge occurrence rate. Then, the time control device 7 controls the processing pulse interval τ pff to shorten the interval τ pff during T 2 hours (Figure A), increasing the current density, and after T 2 hours have passed, the interval τ pff returns to the interval τ pff . The machining pulses were repeated, and after T 1 hour elapsed, the current density was increased again, and by repeating the pulse train that occasionally increased the current density, the machining gap was made wider than usual by controlling the servo feed of the electrode. Machining can be continued at intervals, increasing the effect of removing machining debris and increasing the flow of machining fluid, and reducing the arc. Stable processing can be performed in a state where short circuits and the like are unlikely to occur. time interval T 1 ,
T 2 etc. are set by the control device 7 so that machining can be continued in the most stable discharge state, and the time interval is set to perform rapid control of the amount of energy supplied per unit time.
T 1 is set sufficiently short compared to the response speed of servo feed control. In addition, if the resistance circuit 6 is controlled by the time control device 7, the peak value Ip during T 2 hours can be controlled.
The current density can be increased by controlling the increase in Ip' (Fig. 2), and by repeating this after T1 has elapsed, it is possible to continue the same gap increase control as described above and stable machining thereby. Furthermore, if the oscillator 5 and the circuit 6 are controlled simultaneously by the time control device 7, the control can be performed as shown in Fig. C, and stable machining can be performed in both cases.

このようにして、パルス間隔τoffと波高値Ip
の制御により加工間隙を実質的に広げた状態で加
工が行なわれ、しかも、T2時間中は単位時間当
りのエネルギ供給量が大きいためにT1時間中の
加工パルス列による加工よりも多量の加工屑が生
成され、間隙が広げられても間隙には放電起動の
きつかけとなる加工屑がほど良く介在することに
より放電発生率が低下するようなことがなく、所
期の放電発生率で能率の良い加工を行なうことが
できる。又、単位時間当りのエネルギ急増制御を
間隙の放電状態に応じて行なうようにすれば、よ
り一層加工を安定化させて能率の良い加工を行な
うことができる。即ち、サーボ送り制御の応答速
度は加工パルス列の周波数に比べて遅いため、サ
ーボ送り制御では放電状態が不安定になつた時に
機敏に対応することができず、例えば加工パルス
が印加されても放電が起動しない無負荷放電が増
大して放電発生率が低下しても、間隙を狭めて所
期の放電発生率を回復させるのに時間がかかり加
工速度を低下させることになる。又、エネルギ供
給量急増制御を所定の時間間隔で行なう場合は、
例えばアーク発生時にたまたまエネルギ供給量が
増大されて放電状態が一層悪化することにもなり
かねない。従つて、検出回路8により放電状態を
検出し、間隙の平均電圧や電流から無負荷放電の
増大が検知された時は、制御回路9により時間制
御装置7を制御してエネルギ供給量を急増させ、
放電起動のきつかけとなる加工屑を増大させて速
やかに所期の放電発生率に復帰させ、又、放電電
圧や電流或いは正常放電の際に認められる高周波
成分の検出結果からアークや短絡状態が検知され
た時は、制御回路9により時間制御装置7を制御
してエネルギ供給量の急増を行なわせないように
することにより、安定した加工状態で能率の良い
加工を行なうことができる。尚、検出回路8によ
りアークや短絡の発生が検知された時は、制御回
路9の出力信号により発振器5の出力を停止させ
て加工パルスの間隙への供給を一時停止させるよ
うにすることが望ましい。
In this way, the pulse interval τoff and the peak value Ip
Machining is carried out with the machining gap substantially widened due to the control of Even if debris is generated and the gap is widened, there is just the right amount of machining debris in the gap that will trigger the discharge, so the discharge rate will not decrease and the efficiency will be maintained at the desired discharge rate. It is possible to perform good processing. Further, if the energy sudden increase control per unit time is performed in accordance with the discharge state of the gap, the machining can be further stabilized and the machining can be performed with high efficiency. In other words, the response speed of servo feed control is slower than the frequency of the machining pulse train, so servo feed control cannot quickly respond when the discharge condition becomes unstable. For example, even if a machining pulse is applied, the discharge Even if the number of no-load discharges that do not start increases and the rate of discharge occurrence decreases, it takes time to narrow the gap and restore the desired rate of discharge occurrence, resulting in a decrease in machining speed. In addition, when performing rapid energy supply control at predetermined time intervals,
For example, when an arc occurs, the amount of energy supplied may be increased by chance, which may further worsen the discharge condition. Therefore, when the detection circuit 8 detects the discharge state and an increase in no-load discharge is detected from the average voltage or current of the gap, the control circuit 9 controls the time control device 7 to rapidly increase the amount of energy supplied. ,
By increasing the amount of machining debris that triggers discharge, it is possible to quickly return to the desired rate of discharge occurrence, and also to detect arcing or short circuit conditions based on the detection results of discharge voltage, current, or high frequency components observed during normal discharge. When detected, the time control device 7 is controlled by the control circuit 9 to prevent a sudden increase in the amount of energy supplied, thereby allowing efficient machining to be performed in a stable machining state. Note that when the detection circuit 8 detects the occurrence of an arc or a short circuit, it is desirable that the output signal of the control circuit 9 is used to stop the output of the oscillator 5 and temporarily stop the supply of machining pulses to the gap. .

なお単位時間当りのエネルギ供給量の制御は加
工パルス巾のτpoを制御してもよいわけである。
τpoを増大しても加工面粗さは約1/3乗程度しか
粗くはならず容易に実用できる。また前記のIpを
増大した場合、例えば、Ipが2倍になつても加工
面粗さは約1.2倍程度にしか増加せず、10μRmax
の加工においてIpを2倍に増大制御する場合に加
工面粗さは約11〜12μRmax程度に増加するだけ
であり充分実用になる。
Note that the amount of energy supplied per unit time may be controlled by controlling the machining pulse width τpo .
Even if τ po is increased, the machined surface roughness will only become rougher to the 1/3 power, making it easy to put into practical use. Furthermore, when Ip is increased, for example, even if Ip doubles, the machined surface roughness only increases by about 1.2 times, which is 10μRmax.
When controlling Ip to double in the processing of , the machined surface roughness only increases to about 11 to 12 μRmax, which is sufficient for practical use.

以上のように本発明は、サーボ送り制御の応答
速度に比較して充分短い時間間隔で単位時間当り
のエネルギ供給量を増大して間隙を広げる制御を
行ない、この制御を繰返すようにしたので、実質
的に加工間隙は従来の定パルスを繰返す加工に比
較して平均的に広がつた間隙で加工が行なわれる
ことになり加工屑の排除効果、加工液の流動効果
等が良好になり、またアーク.短絡の発生が防止
でき極めて安定した加工を続けることができる。
加工パルス列は加工条件等により設定された値で
繰返され、目的とする加工を容易に行なうことが
できる。加工が安定化されることにより、加工間
隙に生成する加工屑やガスの排除のために行なわ
れるパルス列の中断制御や電極の急速ジヤンプ制
御の回数を従来に比べて減らすことができるた
め、加工停止時間が減少し加工速度を向上させる
ことができる。又、加工間隙が広げられても、加
工間隙には放電起動のきつかけとなる加工屑が一
定量(一定濃度)介在することになるため、所期
の放電発生率の放電を発生させて、所期の加工速
度で能率の良い加工を行なうことができる。加工
能率は従来能率が悪かつた仕上加工において特に
優れ、ほゞ2〜3倍にも向上することができた。
As described above, the present invention performs control to widen the gap by increasing the amount of energy supplied per unit time at sufficiently short time intervals compared to the response speed of servo feed control, and this control is repeated. In practice, machining is performed with a gap that is wider on average compared to conventional machining that repeats constant pulses, which improves the removal effect of machining debris and the flow effect of machining fluid. arc. Short circuits can be prevented and extremely stable machining can be continued.
The machining pulse train is repeated at a value set according to the machining conditions, etc., and the desired machining can be easily performed. By stabilizing machining, it is possible to reduce the number of times pulse train interruption control and electrode rapid jump control, which are performed to remove machining debris and gas generated in the machining gap, can be reduced compared to conventional methods, making it possible to stop machining. Time can be reduced and processing speed can be increased. In addition, even if the machining gap is widened, there will be a certain amount (constant concentration) of machining debris in the machining gap that will trigger the discharge, so it is necessary to generate the discharge at the desired rate of discharge. Efficient machining can be performed at the desired machining speed. The machining efficiency was particularly excellent in finishing machining, which was conventionally inefficient, and could be improved by about 2 to 3 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するパルス波形図、第2
図は本発明の一実施例回路図である。 1は電極、2は被加工体、3は電源、4はスイ
ツチ、5は加工パルス発振器、6は電流制御抵抗
回路、7は時間制御装置、8は放電状態検出回
路、9は制御回路である。
Figure 1 is a pulse waveform diagram explaining the present invention, Figure 2 is a pulse waveform diagram explaining the present invention.
The figure is a circuit diagram of one embodiment of the present invention. 1 is an electrode, 2 is a workpiece, 3 is a power source, 4 is a switch, 5 is a processing pulse oscillator, 6 is a current control resistance circuit, 7 is a time control device, 8 is a discharge state detection circuit, and 9 is a control circuit. .

Claims (1)

【特許請求の範囲】 1 加工条件により設定されるパルス幅τonと
間隔τoffを有する加工パルスのパルス列を加工
間隙に供給して放電を行ない、該放電電流を検出
して平均電流値が一定に保たれるように前記加工
間隙を形成する電極被加工体間にサーボ送り制御
を行なうようにした放電加工に於て、前記加工パ
ルスの波高値Ipの増大制御、パルス間隔τoffの
短縮制御、又はパルス幅τonの増大制御の1若
しくは2以上の制御により単位時間当りのエネル
ギ供給量を前記パルス列のある期間急増させる制
御を前記サーボ送り制御の応答速度に比較して充
分短い時間間隔で繰返すことにより、前記加工パ
ルスのパルス列による加工よりも加工間隙を実質
的に広げた状態で加工を行なうようにしたことを
特徴とする放電加工方法。 2 サーボ送り制御の応答速度に比較して充分短
い時間間隔が、設定される所定の時間間隔である
特許請求の範囲第1項に記載の放電加工方法。 3 サーボ送り制御の応答速度に比較して充分短
い時間間隔が、加工間隙の放電状態に応じて変更
制御される時間間隔である特許請求の範囲第1項
に記載の放電加工方法。
[Claims] 1. A pulse train of machining pulses having a pulse width τon and an interval τoff set according to machining conditions is supplied to the machining gap to generate electric discharge, and the discharge current is detected to maintain a constant average current value. In electrical discharge machining in which servo feed control is performed between the electrodes and the workpiece forming the machining gap so that the machining gap is sag, the machining pulse height value Ip is controlled to increase, the pulse interval τoff is shortened, or the pulse By repeating control to rapidly increase the amount of energy supplied per unit time for a certain period of the pulse train by controlling one or more of the increasing controls of the width τ at sufficiently short time intervals compared to the response speed of the servo feed control, An electrical discharge machining method characterized in that machining is performed with a machining gap substantially wider than machining using the pulse train of machining pulses. 2. The electrical discharge machining method according to claim 1, wherein the time interval is a predetermined time interval that is sufficiently short compared to the response speed of the servo feed control. 3. The electric discharge machining method according to claim 1, wherein the time interval that is sufficiently short compared to the response speed of the servo feed control is a time interval that is changed and controlled according to the electric discharge state of the machining gap.
JP12712177A 1977-10-21 1977-10-21 Electric spark machining Granted JPS5461395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12712177A JPS5461395A (en) 1977-10-21 1977-10-21 Electric spark machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12712177A JPS5461395A (en) 1977-10-21 1977-10-21 Electric spark machining

Publications (2)

Publication Number Publication Date
JPS5461395A JPS5461395A (en) 1979-05-17
JPS6254606B2 true JPS6254606B2 (en) 1987-11-16

Family

ID=14952117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12712177A Granted JPS5461395A (en) 1977-10-21 1977-10-21 Electric spark machining

Country Status (1)

Country Link
JP (1) JPS5461395A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411717A (en) * 1987-07-03 1989-01-17 Shizuoka Seiki Co Ltd Pulse feed method in electrochemical machine
JP5190973B1 (en) * 2011-12-19 2013-04-24 株式会社ソディック Wire cut electric discharge machining method and wire cut electric discharge machining apparatus

Also Published As

Publication number Publication date
JPS5461395A (en) 1979-05-17

Similar Documents

Publication Publication Date Title
US4798929A (en) Wire electric discharge machining apparatus
CN105121316B (en) The pulse of spark erosion equipment and clearance control
EP0124625B1 (en) Electric discharge machining control circuit
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
EP0525682B1 (en) Power supply for electronic discharge machining system
JP3773696B2 (en) Electric discharge machine power supply device
EP0034477B1 (en) A power source circuit for an electric discharge machine
US4357516A (en) EDM Method and apparatus utilizing successive trains of elementary pulses with controlled pulse-off periods
JPS6254606B2 (en)
JPS6238092B2 (en)
US5399826A (en) Electric discharge machining apparatus
JPS6146252B2 (en)
JPH0564032B2 (en)
US6169261B1 (en) Apparatus and method for generating an electric discharge for use in the line cutting of a workpiece
JP2801280B2 (en) Wire cut EDM power supply
JPS5937171B2 (en) Electric discharge machining equipment
JP3113305B2 (en) Electric discharge machine
JPH0453646B2 (en)
JP2914123B2 (en) Power supply unit for electric discharge machine
JPH06262435A (en) Electric discharge machining method and device
JP2657325B2 (en) Method and apparatus for controlling wire electric discharge machine
JPS6040333B2 (en) Electric discharge machining method
JP2587956B2 (en) Control device for wire electric discharge machine
JPS6312726B2 (en)
JPS61293717A (en) Electric discharge machine