JPS6254153A - Adp sensor - Google Patents

Adp sensor

Info

Publication number
JPS6254153A
JPS6254153A JP60194176A JP19417685A JPS6254153A JP S6254153 A JPS6254153 A JP S6254153A JP 60194176 A JP60194176 A JP 60194176A JP 19417685 A JP19417685 A JP 19417685A JP S6254153 A JPS6254153 A JP S6254153A
Authority
JP
Japan
Prior art keywords
sensor
sensitive
formula
film
adp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60194176A
Other languages
Japanese (ja)
Inventor
Keishiro Shirahama
白浜 啓四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60194176A priority Critical patent/JPS6254153A/en
Publication of JPS6254153A publication Critical patent/JPS6254153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To permit the selective measurement of adenosine diphosphate by using a specific bicyclo di-ammonium salt as a sensitive material to constitute an adenosine diphosphate sensor of a liquid film type electrode. CONSTITUTION:The bicyclo di-ammonium salt expressed by formula L and formula II is used as the sensitive material. In the formula, R, R' denote an alkyl and substd. alkyl of >=3C, X<-> denotes a monovalent anion, Y<--> denotes a divalent anion. For example, the bromide, etc. of 1, 4-diazabicyclo (2, 2, 2) octane are used. Such compd. is impregnated to porous ceramics or polymer to form a liquid film. The electrode is so constituted that both faces of the resultant sensitive film contact respectively with an internal liquid and measuring liquid to obtain the sensor. Since the above-mentioned sensitive material is used, the sensitive material is selectively sensitive with the adenosine diphosphate film and the accurate measurement is made possible.

Description

【発明の詳細な説明】 (産業上の利用性) 本発明はアデノシンニリン酸(以下、ADPと略称する
)を測定するセンサーに関する。このセンサーは−A 
L) P−AE生体のエネルギー代謝に凹4しているこ
とからエネルギー代謝機構の研究に利用される。また、
このセンサーは一エネルギー変換においてA D P 
濃度が変化するような反応に関与する酵素量の定量を行
なう検査機器として利用される。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applicability) The present invention relates to a sensor for measuring adenosine diphosphoric acid (hereinafter abbreviated as ADP). This sensor is -A
L) P-AE Since it has a negative impact on energy metabolism in living organisms, it is used for research on energy metabolism mechanisms. Also,
This sensor performs A D P in one energy conversion.
It is used as a testing device to quantify the amount of enzyme involved in reactions where the concentration changes.

(従来の技術と問題点) 生体中の微穢の化学成分の測定に於て、電極を用いる方
法は1頂便で迅速なこと一連続的な測定が可能であるこ
と等の特徴を有し、Na、に、Ca、11.0#  等
のイオンをはじめとする多くの化学成分の分析に利用さ
れている。
(Conventional techniques and problems) In measuring the chemical components of minute impurities in living organisms, the method using electrodes has the characteristics of being quick and capable of continuous measurement. It is used to analyze many chemical components including ions such as , Na, Ca, 11.0#, etc.

電極はその感応膜の神類により、ガラス電極、固体膜電
極、Ml漠型′鷹極、酵素電極等に分けることが出来る
が、この中で液膜型電彬は感応性物質を液膜溶媒に溶解
した液体全感応膜とする物′aであり、液体は膜の形態
を保つために多孔質セラミック支持体やポリ塩化ビニル
、シリコン明所等のマトリックスにより固定されている
。このような液膜m場は感応物質として有機物Wを用い
ることが出来るため、様々な物′aに対応する電極を作
製することが出来る。例えは「イオンN、極と酵素電極
」(鈴木周−編講談社すイエンテイフイク1981 )
p、16〜17に示されているように、パリノマイシン
金柑いたKf!極、ジ(nオクチルフェニル)ホスホネ
ート金用いたCa電極、テトラフェニルホウ素塩を用い
たビタミンBIN極等が市販、試作されている。
Electrodes can be divided into glass electrodes, solid membrane electrodes, M1-type 'hawk electrodes, enzyme electrodes, etc., depending on the type of sensitive membrane used. Among these, liquid membrane electrodes use a liquid membrane solvent to transfer the sensitive substance. The liquid is fixed in a matrix such as a porous ceramic support, polyvinyl chloride, or a silicone film in order to maintain the form of the film. Since such a liquid film m field can use an organic substance W as a sensitive substance, electrodes corresponding to various substances 'a' can be manufactured. An example is "Ion N, Pole and Enzyme Electrode" (Suzuki Shu, edited by Kodansha University, 1981)
As shown in p. 16-17, palinomycin kumquat was added to Kf! Ca electrodes using di(n-octylphenyl)phosphonate gold, vitamin BIN electrodes using tetraphenyl boron salt, etc. are commercially available and prototypes are being produced.

ADPは生体内において、A’rP(アデノシンホ 酸トリ療スフエート)とともに核酸の合成をはじめとし
、タンパク質、糖類、脂質の代謝に関与し、また筋肉の
収縮のような力学的エネルギー、生物発光の光エネルギ
ー等の源泉ともなっており、生物にとってエネルギーの
貯蔵、供給および運搬を仲介するきわめて重要な物質で
あるにもかかわらずADPの濃度を測定するためのセン
サーは発表されておらず、現在これらの値はカラムクロ
マトグラフィや電気泳動等により求められている。しか
し、これらの方法は前処理等の複雑な操作が必要な上に
、測定に時間がかかるという欠点が必−った。
In the living body, ADP is involved in the synthesis of nucleic acids, protein, sugar, and lipid metabolism together with A'rP (adenosinphoic acid trisulfate), and is also involved in mechanical energy such as muscle contraction and bioluminescent light. Although it is a source of energy and is an extremely important substance that mediates the storage, supply, and transport of energy for living organisms, no sensor has been published to measure the concentration of ADP, and these values are currently unknown. is determined by column chromatography, electrophoresis, etc. However, these methods require complicated operations such as pretreatment, and also have the disadvantage that measurement takes time.

(発明が解決しようとする111点) AI)Pを測定するセンサーが今fでに発表ざ几ていな
い理由は、Al)Pに選択的VC感応する、すなわち、
ADP濃度の変化に従って電位が変化するが、他の物質
の濃度が変化しても電位の変化がない、もしくは無視で
きるほど小さい物′aが見出されてい〆Cいことである
。したがって、本発明が解決しようとする問題点は、か
かろ物資?見出しこnftm応物質としたADP七ノサ
ーを得ろことである。
(111 points to be solved by the invention) The reason why sensors for measuring AI)P have not yet been announced is that they are selectively VC sensitive to AI)P, that is,
Although the potential changes as the ADP concentration changes, no change in the potential occurs or is so small that it can be ignored even when the concentration of other substances changes. Therefore, the problem to be solved by the present invention is, do you need to buy supplies? The aim is to obtain ADP henanoser as a NFTM-responsive material.

(問題点を解決するための手段) Chi2−C)12 で、ハ、B′は炭素数3以上のアルギル基もしくは置換
アルキル基、X−は−価の陰イオンおよびY〜は二価の
陰イオンを表わす)で表わされるビシクロジアンモニウ
ム塩がADPに対してよい選択性を有することを見出し
、これを用いろことによりADPに対して選択性のよい
センサ・−を得ることが出来た。
(Means for solving the problem) Chi2-C)12 where C, B' is an argyl group or substituted alkyl group having 3 or more carbon atoms, X- is a -valent anion, and Y~ is a divalent anion. It has been found that a bicyclodiammonium salt represented by the ion (representing an ion) has good selectivity for ADP, and by using this, a sensor with good selectivity for ADP can be obtained.

上記の一般式において、アルキル基としては、プロピル
基、ヘキシル基、オクチル基、デシル基、セチル基、ス
テアリル基等の直鎖アルキル基、インステアリル基等の
分校をもったアルキル基、シクロヘキシル基のような環
状アルキル基やこれらのアルキル基の一部がクロル基、
フロロ基のようなハロゲン基、メトキシ基、エトキシ基
のようなアルコキシ基、フェニル基、ナフチル基等のよ
うなアリル基等の疎水性の置換基により置換されたもの
が用いられる。なお、BとR′は閾−であっても異なっ
ていてもよい。
In the above general formula, the alkyl group includes straight-chain alkyl groups such as propyl, hexyl, octyl, decyl, cetyl, and stearyl, branched alkyl groups such as instearyl, and cyclohexyl. Cyclic alkyl groups such as and some of these alkyl groups are chloro groups,
Those substituted with a hydrophobic substituent such as a halogen group such as a fluoro group, an alkoxy group such as a methoxy group or an ethoxy group, or an allyl group such as a phenyl group or a naphthyl group are used. Note that B and R' may be thresholds or different.

つぎに、上記一般式におけるX−の例としては(支)−
1Br−等(7) ハpゲンイオン、CeO4−18O
N−5No3−等のイオンが、またY−の例としては8
04−等の陰イオンがあげられる。これらの陰イオンの
中でまたCe−は塩の水に対する溶解度が高いので、陰
イオンとしてはBrミNO3−1so、”−がとくに好
ましい。
Next, as an example of X- in the above general formula, (support) -
1Br- etc. (7) Hapgen ion, CeO4-18O
Ions such as N-5No3-, and examples of Y- are 8
Examples include anions such as 04-. Among these anions, Ce- has a high salt solubility in water, so Br, NO3-1so, "- is particularly preferred as an anion.

本発明で用いられる上記のビシクロジアンモニウム塩I
iN、N−ジセチルジアザビシクロ(21212)オク
タンジブロシドを例にとると次のようにして合成するこ
とが出来る。すなわち、1.4−ジアザビシクロ(2,
2,2)才り41 ”/ 1.0 g (8,9nu+
nol )トジセチルジブロミド16.2 g (53
mmol  ) fジメチルホルムアルデヒド90rr
LeK溶解、70°Cで2日間加熱し、反応終了後液を
冷却し、沈澱をジメチルホルムアミドで再結晶を繰り返
えすことにより、N、N’−ジステアリルジアンモニウ
ムジブロミドの結晶が得られる。(m、p235〜23
6℃、収率81%) 上記のビシクロジアンモニウム塩を感応物質としてセン
サーを作製するには、該ビシクロジアンモニウム場合む
液膜kt!!極膜として作製しなければならない。液膜
の作製については、ジー・ジエイ、ムーデイ((4、T
 Moody )著−「セレクテイプ・イオン センシ
ティブ エレクトロード(8elective  io
n  5ensitive  electrodes 
 ) J  (日本版「イオン選択電極」共立出版]9
79年)7草に詳し7く述べられている。すなわち、液
膜は該ビシクロジアンモニウム塩を疎水性の溶媒に溶解
し、これらを多孔質のセラミックもしくはポリマーに浸
みこませて作製するか、または該ビシクロジアンモニウ
ム塩全ガラス転移温度が室温より低いポリマーもしくは
ガラス転移温度が室温より高いポリマーに可塑剤を加え
たものに溶解して得られるが、膜の取扱いの容易さ、膜
の寿命の点からポリマーに溶解させるのが好ましい。電
極膜の形成は、該ビシクロジアンモニウム塩を高分子溶
液中に溶解し、これから被膜全形成して、これを電極膜
とするか、また、電極面に高分子溶液を塗布して電極面
に被膜を形成することにより行われる。用いられる高分
子化合物としてはシリコン樹脂、ポリ塩化ビニル、ポリ
クロロスチレン、ポリ塩化ビニリデン等があるが、これ
らの中で、ポリ塩化ビニルがその電位の安定性の面から
好ましい。ポリ塩化ビニル等のガラス転移温Iiが室温
より高いポリマーに支持体として用いる場合は、イオン
のモビリティを高めるために可塑剤を加える必要がめる
The above bicyclodiammonium salt I used in the present invention
Taking iN,N-dicetyldiazabicyclo(21212)octane dibroside as an example, it can be synthesized as follows. That is, 1,4-diazabicyclo(2,
2,2) Age 41” / 1.0 g (8,9nu+
nol) Todicetyl dibromide 16.2 g (53
mmol) f dimethyl formaldehyde 90rr
Dissolve LeK, heat at 70°C for 2 days, cool the solution after the reaction, and repeat the recrystallization of the precipitate with dimethylformamide to obtain crystals of N,N'-distearyldiammonium dibromide. . (m, p235-23
(6°C, yield 81%) To prepare a sensor using the above bicyclodiammonium salt as a sensitive substance, a liquid film kt! ! Must be fabricated as a polar membrane. For the preparation of liquid films, see G.G., Moody ((4, T.
``Selective Ion Sensitive Electrode (8elective io
n 5ensistive electrodes
) J (Japanese version “Ion Selective Electrode” Kyoritsu Shuppan) 9
(1979) It is described in detail in 7 Kusa. That is, the liquid film is prepared by dissolving the bicyclodiammonium salt in a hydrophobic solvent and infiltrating it into a porous ceramic or polymer, or by dissolving the bicyclodiammonium salt in a porous ceramic or polymer, or by dissolving the bicyclodiammonium salt in a porous ceramic or polymer. It can be obtained by dissolving it in a polymer or a polymer with a glass transition temperature higher than room temperature and a plasticizer added thereto, but it is preferable to dissolve it in a polymer from the viewpoint of ease of handling the membrane and longevity of the membrane. The electrode film can be formed by dissolving the bicyclodiammonium salt in a polymer solution, forming the entire film from this, and using this as an electrode film, or by applying a polymer solution to the electrode surface. This is done by forming a film. Examples of the polymer compound used include silicone resin, polyvinyl chloride, polychlorostyrene, polyvinylidene chloride, etc. Among these, polyvinyl chloride is preferable from the viewpoint of stability of its potential. When a polymer having a glass transition temperature Ii higher than room temperature, such as polyvinyl chloride, is used as a support, it is necessary to add a plasticizer to increase the mobility of ions.

このような可塑剤は一般に成型の除用いら几ている可塑
剤のいずnをも用いることができる。これらの可塑剤の
例としてはジオクチルフタレート、ジオクチルアジペー
ト、トリクレジルホスフェート等をめげることができる
。これらの高分子化合物を用いて、At)P感応膜を得
る方法としては、前述の如くビシクロジアンモニウム化
合物、高分子化合物及び要すれば可塑剤を適当な溶媒に
溶[4rし、これをガラス板等にキャストし、溶媒を蒸
発させたり、溶液を1百接ttl極上に・温布するだけ
でなく、高分子のかわりに−プレポリマー、モノマー等
を用いて、成型後重合させることによって作製すること
も可能である。上記のビシクロジアンモニウム塩は全同
形分に対して(1,01〜2重量%加えられるのが好ま
しい。
As such plasticizers, any plasticizer that is generally not used for molding can be used. Examples of these plasticizers include dioctyl phthalate, dioctyl adipate, tricresyl phosphate, and the like. As described above, the method for obtaining an At)P-sensitive film using these polymer compounds is to dissolve the bicyclodiammonium compound, the polymer compound, and, if necessary, a plasticizer in a suitable solvent [4r], and add this to glass. It is produced not only by casting on a plate, etc. and evaporating the solvent, or by heating the solution on a 100% TTL surface, but also by using prepolymers, monomers, etc. instead of polymers and polymerizing them after molding. It is also possible to do so. The above bicyclodiammonium salt is preferably added in an amount of 1.01 to 2% by weight based on the total isomorphic content.

本発明に用いられるt’ttiとしては、絶縁体の容器
中に内部電極及び濃度一定の内部液を有し、該ADP感
応膜の両面がそれぞれ内部液と測定液に接触するタイプ
のw!、極や、金属板や金属線等の導体上に直接該感応
膜を塗布した!極等がある。またMOS−FETの金属
ゲート感応膜を除き、直接測定液に接触するようにしだ
上’ E T pHセンサーのゲート部分に該感応膜を
被覆することによっても本発明のAt)Pセンサーを得
ることが出来る。このF E T pfiセンサーの作
製法については、例えば特開昭53−96890号に記
載されているが、非常に小型のセンサーが作製できる利
点がある。
The t'tti used in the present invention is of the type that has internal electrodes and an internal liquid with a constant concentration in an insulating container, and both sides of the ADP-sensitive membrane are in contact with the internal liquid and the measurement liquid, respectively. , the sensitive film was applied directly onto conductors such as poles, metal plates, and metal wires! There are extremes. The At)P sensor of the present invention can also be obtained by removing the metal gate sensitive film of the MOS-FET and coating the gate part of the MOS-FET pH sensor with the sensitive film so as to be in direct contact with the measuring liquid. I can do it. The method for manufacturing this FETpfi sensor is described in, for example, Japanese Patent Laid-Open No. 53-96890, which has the advantage that a very small sensor can be manufactured.

本発明で用いられる感応膜は、通常の他の液膜型の電極
膜に比べて、感応性物質の溶解度が低く、膜の電導性が
小さい欠点があるので、F E T plIセンサーを
利用したセンサーはとくに適している。
The sensitive membrane used in the present invention has the drawbacks that the solubility of the sensitive substance is low and the conductivity of the membrane is low compared to other ordinary liquid film type electrode membranes. Sensors are particularly suitable.

なぜならFETセンサーは本質的にゲート感応膜の電導
性を必要としない上に、ゲート表面に直接感応膜を薄く
することが可能だからである。
This is because FET sensors essentially do not require electrical conductivity of the gate sensitive film, and it is possible to form a thin sensitive film directly on the gate surface.

(作  用) 本発明で用いられるビシクロジアンモニウム塩がADP
に対して選択性を有し、感応物質とじて用いられるのは
、化合物中の2つのアンモニウム基がADPのリン酸基
のアニオン部分に選択的に配位し、疎水性の化合物全作
ることにより、膜とADP溶液の界面にAl)F濃度に
応じた界面電位全発生することによるものである。従っ
て、このC112−C112 ばならないが)1,1(’はADPとの複合体の水と膜
への分1を膜の方にかたよらせるためのもので炭素数3
以上のアルキル基であれば、様々な基により置換されて
いてもさしつかえない。しかしB、R′の炭素数が2以
下であれば、ADPとのコンプレックスは親水性が置く
なるので、かかる化合物は膜から水中への溶出が起り易
く、測定、保存中にドリフトがおこり、感度低下の原因
となる。また、これらのアルキル基または置換アルキル
基の炭素数はあまり大きくなると配位子の濃度を大きく
することが困難となるので炭素数30以下であることが
好ましい。
(Function) The bicyclodiammonium salt used in the present invention
It is used as a sensitive substance because the two ammonium groups in the compound selectively coordinate to the anion part of the phosphate group of ADP, creating a hydrophobic compound. This is due to the generation of an interfacial potential depending on the Al)F concentration at the interface between the membrane and the ADP solution. Therefore, this C112-C112 must be) 1,1 (' is for shifting the water and membrane of the complex with ADP toward the membrane, and has 3 carbon atoms.
Any of the above alkyl groups may be substituted with various groups. However, if the number of carbon atoms in B and R' is 2 or less, the complex with ADP becomes hydrophilic, so such compounds are likely to elute from the membrane into water, causing drift during measurement and storage, and sensitivity. This causes a decrease in the temperature. Furthermore, if the number of carbon atoms in these alkyl groups or substituted alkyl groups becomes too large, it becomes difficult to increase the concentration of the ligand, so it is preferable that the number of carbon atoms is 30 or less.

(実 施 例) 実施例1 1.4−ジアザビシクロ(2,2,2)オクタン1.0
 g(8,9mmol )とステアリルヨーダイト20
 g(53mmol )Vcジメチルホルムアミド(1
3M、 F ) 50m1t金加え、70℃で2日間加
熱した。過剰のステアリルa−ダイト、モノアンモニウ
ム塩を除去し、残った固体IDMFで再結晶を繰返し、
ジアンモニウム化合物の沃素塩を得た。これを臭酸によ
り沃素イオンを臭素イオンに置換し、臭化物塩を得た。
(Example) Example 1 1.4-diazabicyclo(2,2,2)octane 1.0
g (8,9 mmol) and stearyl iodite 20
g (53 mmol) Vc dimethylformamide (1
3M, F) 50ml of gold was added and heated at 70°C for 2 days. Excess stearyl a-dite and monoammonium salt were removed, and recrystallization was repeated with the remaining solid IDMF.
An iodide salt of a diammonium compound was obtained. Iodine ions were replaced with bromide ions using hydrochloric acid to obtain a bromide salt.

このジアンモニウム!M1.0mgとポリ塩化ビニル0
.2gと可塑剤としてジオクチルフタル酸0.8 g金
テトラヒドロフラン10―に65℃で加熱溶解させる。
This diammonium! M1.0mg and polyvinyl chloride 0
.. 2 g of dioctyl phthalic acid as a plasticizer and 0.8 g of gold tetrahydrofuran were dissolved by heating at 65°C.

こうして得らnた活量な溶液をガラス板上にキャストし
、乾燥空気中で溶媒を蒸発させ透明な厚さ±0.2mm
の膜を作製した。この換金直径ICmのPVC管の端に
PVOのテトラヒドロフラン溶液金柑いて貼付け、デシ
ケータ−中で24時間屹乾燥た。この膜を用いて、下記
の様な電池の両端の起電力と測定液中のA D P 濃
度との関係を測定した。
The active solution thus obtained was cast onto a glass plate, and the solvent was evaporated in dry air to form a transparent solution with a thickness of ±0.2 mm.
A film was prepared. A solution of PVO in tetrahydrofuran was pasted on the end of this PVC pipe with a diameter of ICm, and dried in a desiccator for 24 hours. Using this membrane, the relationship between the electromotive force at both ends of the battery and the ADP concentration in the measurement solution was measured as described below.

このセンサの起電力とADPω度の対数の間にはAI)
P濃度10 ”M〜10−3〜1の間で良好な直線関係
が県られ、その傾きは22 yFLk/log(A D
 )’ )で、hつた。
The difference between the electromotive force of this sensor and the logarithm of ADPω degrees is AI)
A good linear relationship was established between the P concentration 10''M~10-3~1, and the slope was 22yFLk/log(A D
)') So, I got h.

実施例2 特開昭54−66194に示されている方法で作製した
P E T palセンサーをゲート部を残[7て直径
1間のナイロンカテーテルに坤込んだ後に、実施例IV
cで用いたPVC、ジオクチルフタレートオヨびビシク
ロジアンモニウム塩のテトラヒドロフラン溶液i k’
 E Tゲート部にディップコートし、センサーを作製
した。このセンサーのPVCff4の膜厚は約30μで
あった。
Example 2 A PET pal sensor manufactured by the method shown in JP-A No. 54-66194 was inserted into a nylon catheter with a diameter of 1 mm, leaving the gate part.
PVC used in c, tetrahydrofuran solution of dioctyl phthalate and bicyclodiammonium salt i k'
The ET gate portion was dip coated to produce a sensor. The PVCff4 film thickness of this sensor was about 30μ.

このセンサーをドレイン電流30μA、ドレインソース
電圧5Vで、測定液のhl)PfJ度の対数とゲート−
ソース定圧の関係を測定した結果を第1図に示す。AT
Pのない場合ADP濃度の対数と出力との関係はADP
f)3度10 mNiから0.001rnMの非常に広
い範囲にわたってよい直線性を示し、その傾きは30 
rnV、/log(A D P )と、ネルンストの式
と一致する。また、ATPlmMが共存する場合、pH
5では感度曲線はM論曲線よりずれるが、p14 (i
−7に調節すればA D P O,2rnM以上の範囲
で直線性を示し、それ以下の濃度では出力は飽和する。
This sensor was connected at a drain current of 30 μA and a drain-source voltage of 5 V.
Figure 1 shows the results of measuring the relationship between source constant pressure. A.T.
In the absence of P, the relationship between the logarithm of ADP concentration and output is ADP
f) It shows good linearity over a very wide range from 3°10 mNi to 0.001rnM, and its slope is 30
rnV,/log(A D P ), which agrees with the Nernst equation. In addition, when ATPlmM coexists, the pH
5, the sensitivity curve deviates from the M theory curve, but p14 (i
When adjusted to -7, linearity is exhibited in the range of A D P O,2rnM or more, and the output is saturated at concentrations below that.

この曲線より、ADPのATPに対する選択係数は0.
049と計算される。このことは、このセンサーはAT
PよりADPに対し20倍以上もの(感度を持っている
ことを意味している。その他の物質に対する選択係数は
AMPo、047、N a2804 o、o 20、N
aC1はぼO、Na2t(PO40,004であり、こ
のセンサーがADPに特異的に感応するセンサーである
ことを示している。
From this curve, the selection coefficient of ADP to ATP is 0.
It is calculated as 049. This means that this sensor is AT
It is 20 times more sensitive to ADP than P (meaning it has a sensitivity).The selectivity coefficient for other substances is AMPo, 047, Na a2804 o, o 20, N
aC1 is O, Na2t (PO40,004), indicating that this sensor is specifically sensitive to ADP.

実施例3 実施例1で用いた のBr−′t−第1表に示すような各押の陰イオンで置
換した塩を作り、AI)Pに対する応答特性を測定した
。結果″fr第1表に示す。いずれの陰イオンでもAD
P6度の測定が可能であるが、なかでも前述のBr−の
ほか、NO,二804−1Cp−が抑い結果を示した。
Example 3 Salts substituted with Br-'t-anions of each type as shown in Table 1 used in Example 1 were prepared and their response characteristics to AI)P were measured. The results are shown in Table 1. AD for any anion.
It is possible to measure P6 degrees, but in addition to the above-mentioned Br-, NO, 2804-1Cp- showed suppressed results.

Ce04       Q       △    多
少ノイズあり8ON       O△       
 〃NO300良好 804      0      0        
t。
Ce04 Q △ Some noise 8ON △
〃NO300 Good 804 0 0
t.

Ce−○       ○        〃+】 ○
・・・20mV/(logADP)以上の感度を有する
※20・・・0.001〜1mMで直線性を有する△・
・・低濃度領域で飽和 (発明の効果) ADPは生体のエネルギー代謝、とくに筋収縮のエネル
ギー変換において重要な役割を果しており、生体中でそ
の量全測定することはエネルギー化N8)構の研究上重
要であるが、本発明で得られたセンサーはADPg度が
0.001 tnM−10m Mのひろい範囲でネルン
スト応答を示し、またA T P。
Ce−○ ○ 〃+】 ○
...Has a sensitivity of 20mV/(logADP) or more *20...Has linearity at 0.001 to 1mM △・
...Saturation in the low concentration region (effect of the invention) ADP plays an important role in the energy metabolism of the living body, especially in the energy conversion of muscle contraction, and measuring the total amount in the living body is a research on energy conversion N8) structure. Importantly, the sensor obtained in the present invention exhibits a Nernst response in a wide range of ADPg from 0.001 tnM to 10mM, and also has ATP.

AMPに対する相対感度もそれぞれ20倍、21倍と良
好な選択性を示す。測定はpH調整をした試料に直接電
極を浸漬するだけでよく、本発明のセンサーを用いるこ
とによりADP濃度の簡便、迅速な選択的測定が可能と
なる。さらに、上Pエネルギー変換においてADPe4
度が変化するような反応に関与する酵素1kをAi)P
の増減の速度より求めることが可能であり、ADPセン
サーはこれらの酵素層の定量を行なう検査機器に使用で
きる可能性を有している。
The relative sensitivity to AMP is 20 times and 21 times, respectively, indicating good selectivity. For measurement, it is sufficient to simply immerse the electrode directly in the pH-adjusted sample, and by using the sensor of the present invention, it becomes possible to easily and quickly selectively measure the ADP concentration. Furthermore, in the upper P energy conversion, ADPe4
Ai)P enzyme 1k involved in reactions that change the degree
It can be determined from the rate of increase and decrease of the enzyme layer, and the ADP sensor has the potential to be used as a testing device for quantifying these enzyme layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はADP濃度(mu )と本発明のセンサーのソ
ース電位(mV )との関係(25℃)を示すグラフで
ある。図において○・・・AL)Pのみの水溶液(pa
l 7 )、△−・−A T P 1 mM共存する水
溶液(pH5)、・・A T 1’ l mAI共存す
る水溶液(Pi(7)を示す。
FIG. 1 is a graph showing the relationship (at 25° C.) between the ADP concentration (mu) and the source potential (mV) of the sensor of the present invention. In the figure, ○...AL) Aqueous solution of P only (pa
l 7 ), Δ-.-A T P 1 mM coexisting aqueous solution (pH 5), . . AT 1' l mAI coexisting aqueous solution (Pi(7)).

Claims (1)

【特許請求の範囲】 一般式▲数式、化学式、表等があります▼または ▲数式、化学式、表等があります▼(式において、R、 R′は炭素数3以上のアルキル基もしくは置換アルキル
基、X^−は一価の陰イオンおよびY^−^−は二価の
陰イオンを表わす)で表わされるビシクロジアンモニウ
ム塩を感応物質とする液膜型アデノシンニリン酸センサ
ー。
[Claims] General formula ▲ Numerical formula, chemical formula, table, etc. ▼ or ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R and R' are an alkyl group or substituted alkyl group having 3 or more carbon atoms, A liquid film type adenosine diphosphate sensor using a bicyclodiammonium salt represented by (X^- represents a monovalent anion and Y^-^- represents a divalent anion) as a sensitive substance.
JP60194176A 1985-09-02 1985-09-02 Adp sensor Pending JPS6254153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194176A JPS6254153A (en) 1985-09-02 1985-09-02 Adp sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194176A JPS6254153A (en) 1985-09-02 1985-09-02 Adp sensor

Publications (1)

Publication Number Publication Date
JPS6254153A true JPS6254153A (en) 1987-03-09

Family

ID=16320191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194176A Pending JPS6254153A (en) 1985-09-02 1985-09-02 Adp sensor

Country Status (1)

Country Link
JP (1) JPS6254153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544989A (en) * 2019-08-19 2022-10-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド Improved solid-state magnesium ion-selective microelectrodes and methods of making and using them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544989A (en) * 2019-08-19 2022-10-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド Improved solid-state magnesium ion-selective microelectrodes and methods of making and using them

Similar Documents

Publication Publication Date Title
US4713165A (en) Sensor having ion-selective electrodes
Shatkay Ion specific membranes as electrodes in determination of activity of calcium
US4813424A (en) Long-life membrane electrode for non-ionic species
US6663756B2 (en) Microchip-type oxygen gas sensor based on differential potentiometry
JPS63500539A (en) Sensor with ion selective electrode
CN102636532A (en) Medical type all-solid potassium ion selectivity sensor and preparation method thereof
Mendecki et al. Simple, robust, and plasticizer-free iodide-selective sensor based on copolymerized triazole-based ionic liquid
Manikandan et al. Simultaneous electrochemical determination of adenine and guanine using poly 2-naphthol orange film–modified electrode
JPS6254153A (en) Adp sensor
Artigas et al. Development of a photopolymerisable membrane for calcium ion sensors: Application to soil drainage waters
Abramova et al. Application of an ion-selective field effect transistor with a photocured polymer membrane in nephrology for determination of potassium ions in dialysis solutions and in blood plasma
JPH042902B2 (en)
Zine et al. All-solid-state hydrogen sensing microelectrodes based on novel PPy [3, 3′-Co (1, 2-C2B9H11) 2] as a solid internal contact
CA2106463A1 (en) Magnesium electrode
Pui et al. Micro-size potentiometric probes for gas and substrate sensing
Kormosh et al. Potentiometric Sensor for Benzylpenicillin Determination
JPH0347459B2 (en)
Khalil et al. Ion-selective electrode for the determination of prazosin in tablets
US3716335A (en) Assaying with change in electron spin resonance spectrum based on chirality
Sun et al. Electrochemiluminescence from Ru (bpy) 32+ immobilized in poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate)–poly (vinyl alcohol) composite films
Chou et al. Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes
Meyer et al. Thermodynamics of amino acid-copper (II) complexes
WO1987000168A2 (en) Ionophores and ion-selective membranes containing the same
Rahimi et al. Fabrication of a novel casein phosphopeptides/multi-walled carbon nanotubes/micro hybrid resin as mixed matrix membrane-junction reference electrode
JPS61213660A (en) Ph sensor