JPS6254133B2 - - Google Patents

Info

Publication number
JPS6254133B2
JPS6254133B2 JP55121475A JP12147580A JPS6254133B2 JP S6254133 B2 JPS6254133 B2 JP S6254133B2 JP 55121475 A JP55121475 A JP 55121475A JP 12147580 A JP12147580 A JP 12147580A JP S6254133 B2 JPS6254133 B2 JP S6254133B2
Authority
JP
Japan
Prior art keywords
molecular weight
rubber
butadiene
low molecular
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55121475A
Other languages
Japanese (ja)
Other versions
JPS5747337A (en
Inventor
Satoru Sugihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP12147580A priority Critical patent/JPS5747337A/en
Publication of JPS5747337A publication Critical patent/JPS5747337A/en
Publication of JPS6254133B2 publication Critical patent/JPS6254133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、優れた流動加工性を有し、かつリユ
プケの反撥弾性で示されるゴム弾性および機械的
性質に優れた加硫物を提供するゴム組成物に関す
る。 現在、タイヤ用ゴムとしては天然ゴム(NR)、
スチレン−ブタジエン共重合ゴム(SBR)または
ポリブタジエンゴム(BR)が主として用いられ
ている。これらの固形ゴムは、通常高い補強効果
を与えるカーボンブラツク等の充填剤が配合さ
れ、タイヤ用ゴム配合物として用いられている
が、その配合物は流動加工性が悪く、均一な性能
を必要とするタイヤ等の工業的製造に供するのに
は多くの困難を伴うものであつた。そこで従来よ
り流動加工性を改善する目的でプロセスオイルや
粘着剤等の加工助剤を配合して均一なゴム組成物
とし、次いでタイヤが製造されていた。しかしな
がら、ラジアルタイヤ化が進み、さらには軽量タ
イヤおよび省燃費タイヤが強く指向され、したが
つては高いリユプケ反撥弾性、硬度および機械的
性質が要求される加硫物物性を有することが要求
されている現今、前述した加工助剤では満足でき
るものが得られなかつた。これらを改良するため
に液状ポリブタジエンや液状ポリイソプレン等の
液状ゴムを用いることが試みられてはいるが、か
ならずしも満足のゆくものでなかつた。特にリユ
プケ反撥弾性の点で充分なものが得られなかつ
た。 本発明者等は、これらの従来技術の欠点を改善
すべく、鋭意検討した結果、粘度平均分子量が
13000〜100000でビニル結合量が30%以下である
低分子量ブタジエン系重合体、好ましくは粘度平
均分子量が20000〜75000でかつゲルパーミエーシ
ヨンクロマトグラフイにて求められる分子量3000
以下の重合体の割合が15%以下である低分子量ブ
タジエン系重合体(具体的には、低分子量ブタジ
エン重合体またはブタジエン/イソプレンの重量
組成比が97/3〜30/70である低分子量ブタジエン
−イソプレン共重合体)を天然ゴム(NR)また
はスチレン−ブタジエン共重合ゴム(SBR)を主
体とした固形ゴム100重量部に対して3〜35重量
部配合することによつて流動加工性に優れた未加
硫ゴム組成物が得られるとともに、優れた加硫
物々性を示し、高いリユプケ反撥弾性を示す加硫
物が得られることを見出し、本発明を完成するに
到つた。 本発明において用いられる固形ゴムはムーニー
粘度(ML1+4(100℃))が35以上、好ましくは40
以上の天然ゴム(NR)またはスチレン−ブタジ
エン共重合ゴム(SBR)を主体とする。天然ゴム
としてはSMR−5L、SMR−20、SMR−50、RSS
#1、RSS#2、RSS#3、ADSおよびペールク
レープ等が挙げられ、それらの中でもムーニー粘
度(ML1+4(100℃))が35〜130、好ましくは40
〜90のものが好ましく用いられる。スチレン−ブ
タジエン共重合ゴムとしては、#1000台、#1100
台、#1500台、#1600台、#1700台および#1800
台のホツトラバーまたはコールドラバーが挙げら
れ、それらの中でもムーニー粘度(ML1+4(100
℃))が35以上、好ましくは50以上のものが好ま
しく用いられる。これらの固形ゴムにはポリブタ
ジエンゴム(BR)、ポリイソプレンゴム(IR)、
1,3−ペンタジエンゴム、エチレン−プロピレ
ン共重合ゴム(EPDM)、ポリクロロプレンゴム
(CR)およびブチルゴム(IIR)等の固形ゴムが
適量含有されて用いてもよい。 本発明において用いられる低分子量ブタジエン
系重合体は、粘度平均分子量が13000〜100000で
ビニル結合量が30%以下である低分子量ブタジエ
ン重合体または低分子量ブタジエン−イソプレン
共重合体である。その粘度平均分子量およびビニ
ル結合量が上記の範囲に限定されるものである。
粘度平均分子が上記範囲より低過ぎると天然ゴム
やスチレン−ブタジエン共重合ゴム等の固形ゴム
との共加硫性が悪くなるために、例えば反撥弾性
で表されるゴム弾性が劣悪になるとともに、加硫
物の硬度、モジユラス、強度等の性能が悪くな
る。一方粘度平均分子量が高過ぎると可塑効果が
発現されず、均一なゴム配合物が得られない。こ
の観点から粘度平均分子量は22000〜75000の範囲
にあるときに最良の結果が得られる。なおここで
粘度平均分子量(Mv)は、トルエン中30℃にお
ける固有粘度を測定し、低分子量ブタジエン系重
合体に占めるイソプレン単位の割合が50重量%を
越える場合は式〔η〕=1.21×10-4M77 にした

つて、また同割合が50重量%以下の場合は式
〔η〕=1.34×10-4M77 にしたがつて求めるこ

ができる。またビニル結合量は赤外線吸収スペク
トル法によつて求められる値であるが、30%以
下、好ましくは17%以下であることが必要であ
り、その範囲よりはずれると最終的に得られる加
硫ゴムのゴム弾性が低下して、所期の目的とする
ものが得られなくなる。 また、粘度平均分子量およびビニル結合の特定
されたものに加えて、ゲルパーミエーシヨンクロ
マトグラフイ(GPC)で求められる分子量が
3000以下の重合体または共重合体の割合が多くと
も15(重量)%である場合に特に所期の目的が達
成される。とりわけ10(重量)%以下の場合に顕
著である。 このような特定のミクロ構造および分子量を有
する低分子量ブタジエン系重合体はアニオン重合
法や配位アニオン重合法(例えばチーグラー系触
媒による重合法)をはじめとする種々の方法で製
造することができるが、ビニル結合量の生成量が
少なく、分子量分布がシヤープで低分子量部の割
合の生成量が小さく、かつ重合操作が極めて容易
なリチウム系触媒を用いたアニオン重合法によつ
て好ましく製造される。かかるリチウム系触媒を
用いたアニオン重合法としては、金属リチウムや
オルガノリチウム(例えばメチルリチウム、プロ
ピルリチウム、ブチルリチウムまたはジスチレニ
ルリチウム)を用いて、重合溶媒(n−ブタン、
イソペンタン、n−ヘキサン、n−ヘプタン、ベ
ンゼン、トルエンあるいはキシレン等の不活性炭
化水素)の存在下または不存在下にブタジエンモ
ノマーまたはブタジエンモノマーとイソプレンモ
ノマー(さらに本発明の主旨を損なわない範囲で
他の共重合性モノマー)を組合せて重合または共
重合するという方法が採用される。分子量は触媒
とモノマーの使用量とを調節することにより制御
することができる。なお共重合体は、重合系にブ
タジエンモノマーとイソプレンモノマーとを別々
に、あるいは同時に、さらには各々を分割して添
加することによつて製造される。そのブタジエ
ン/イソプレンの重量組成比は30/70以下である
ことが望ましい。ブタジエンの組成比が小さくな
ると、反撥弾性が小さくなつて所期の目的が達成
されなくなる場合があるので前記重量組成比とし
ては97/3〜40/60の範囲にあることが望ましい。 このような特定の低分子量ブタジエン重合体や
低分子量ブタジエン−イソプレン共重合体は、天
然ゴムやスチレン−ブタジエン共重合ゴムを主体
とする固形ゴムに配合されるがなかでも低分子量
ブタジエン重合体が好ましく用いられる。なお、
前記の低分子量ブタジエン重合体や低分子量ブタ
ジエン−イソプレン共重合体はその分子末端がカ
ルボキシル基や水酸基になつているものや分子鎖
にカルボキシル基を含有する化合物(例えば無水
マレイン酸、アクリル酸)や水酸基を含有する化
合物等を少量付加導入したものも含んでいてもよ
い。 天然ゴムとスチレン−ブタジエン共重合ゴムを
主体とする固形ゴムと低分子量ブタジエン系重合
体とは、バンバーリーミキサーやロールミル等の
常法によつて混合されるが、その混合割合はジエ
ン系固形ゴム100重量部に対して低分子量ブタジ
エン系重合体3〜35重量部、好ましくは5〜25重
量部の範囲が望ましい。 このようにしてゴム組成物が得られるが、他に
イオウ、パーオキサイドまたはキノイド類等の加
硫剤、加硫促進剤、ステアリン酸や酸化亜鉛等の
活性剤、カーボンブラツク、シリカ、クレーまた
は炭酸カルシウム等の補強作用の大きい充填剤、
さらにはワツクス等のゴム配合薬品が必要に応じ
て添加される。また極めて少量であればオイル、
ラノリン、粘着樹脂(石油系、ロジン系、テルペ
ン系あるいはフエノール系)等が配合されてもよ
い場合がある。 このようにして得られた本発明のゴム組成物は
バイアスタイヤやラジアルタイヤ、特にラジアル
タイヤの中でもスチールラジアルタイヤのトレツ
ド、カーカス、ブレーカー、サイドウオール、ビ
ードフイラー、スチールコードチエーフアーまた
はリムストリツプ等の各部に有用である。またタ
イヤ以外にもゴムベルト、防振ゴムまたはゴムホ
ース等の工業用品にも勿論有用である。 以下、実施例によつて本発明をより具体的に説
明するが、本発明はそれらによつて何ら限定され
るものではない。 実施例1および比較例1 ブチルリチウムを触媒としてブタジエンを重合
することにより、粘度平均分子量が57000でビニ
ル結合量が16%である低分子量ブタジエン重合体
(以下、LBR(A)と略記す)および粘度平均分子量
が7000でビニル結合量が8%である低分子量ブタ
ジエン(以下、LBR(B)と略記す)を得た。これ
らの低分子量ブタジエン重合体の分子量分布をゲ
ル・パーミエーシヨン・クロマトグラフイ
(GPC)にて測定したところ、低分子量ブタジエ
ン重合体LBR(A)および同LBR(B)における分子量
が3000以下のものの割合は、それぞれ、1%およ
び27%であつた。 これらの低分子量ブタジエン重合体LBR(A)お
よび同LBR(B)を用いて、第1表に示した配合で
バンバリーミキサ中で混合を行ない、ゴム配合物
とした。それらのムーニー粘度は低分子量ブタジ
エン重合体を用いない場合と比べると著しく低
い、流動加工性にすぐれたものであつた。 このようにして得たゴム配合物を145℃でプレ
ス加硫した。得られた加硫物の機械的性質等を測
定したところ、第1表の如き結果を得た。
The present invention relates to a rubber composition that provides a vulcanizate that has excellent flow processability and excellent rubber elasticity and mechanical properties as indicated by Ryupke's impact resilience. Currently, natural rubber (NR) is used as tire rubber.
Styrene-butadiene copolymer rubber (SBR) or polybutadiene rubber (BR) is mainly used. These solid rubbers are usually blended with fillers such as carbon black, which provide a high reinforcing effect, and are used as rubber compounds for tires, but these compounds have poor flow processability and require uniform performance. However, there were many difficulties involved in the industrial production of tires and the like. Conventionally, processing aids such as process oil and adhesives have been added to the rubber composition to improve fluidity and processability, resulting in a uniform rubber composition, which is then used to manufacture tires. However, as the use of radial tires progresses, there is a strong trend towards lightweight tires and fuel-efficient tires, and as a result, vulcanized materials are required to have physical properties that require high Ryupke impact resilience, hardness, and mechanical properties. In today's world, it has not been possible to obtain satisfactory results using the processing aids mentioned above. Attempts have been made to use liquid rubbers such as liquid polybutadiene and liquid polyisoprene to improve these problems, but these efforts have not always been satisfactory. In particular, it was not possible to obtain sufficient Ryupke repellency. In order to improve these drawbacks of the conventional technology, the inventors of the present invention have conducted intensive studies and found that the viscosity average molecular weight is
A low molecular weight butadiene polymer having a vinyl bond content of 13,000 to 100,000 and 30% or less, preferably a viscosity average molecular weight of 20,000 to 75,000 and a molecular weight of 3,000 determined by gel permeation chromatography.
Low molecular weight butadiene polymers containing 15% or less of the following polymers (specifically, low molecular weight butadiene polymers or low molecular weight butadiene polymers with a butadiene/isoprene weight composition ratio of 97/3 to 30/70. -Isoprene copolymer) is blended in an amount of 3 to 35 parts by weight per 100 parts by weight of solid rubber mainly composed of natural rubber (NR) or styrene-butadiene copolymer rubber (SBR), resulting in excellent flow processability. The present inventors have discovered that it is possible to obtain an unvulcanized rubber composition that exhibits excellent vulcanized properties and a vulcanized product that exhibits high Ryupke rebound properties, and has completed the present invention. The solid rubber used in the present invention has a Mooney viscosity (ML 1+4 (100°C)) of 35 or more, preferably 40.
Mainly made from the above natural rubber (NR) or styrene-butadiene copolymer rubber (SBR). Natural rubbers include SMR-5L, SMR-20, SMR-50, RSS
#1, RSS #2, RSS #3, ADS, pale crepe, etc. Among them, Mooney viscosity (ML 1+4 (100℃)) is 35 to 130, preferably 40.
~90 is preferably used. As styrene-butadiene copolymer rubber, #1000 and #1100
machines, #1500 machines, #1600 machines, #1700 machines and #1800 machines
hot rubber or cold rubber, among which Mooney viscosity (ML 1+4 (100
C)) is 35 or more, preferably 50 or more. These solid rubbers include polybutadiene rubber (BR), polyisoprene rubber (IR),
An appropriate amount of solid rubber such as 1,3-pentadiene rubber, ethylene-propylene copolymer rubber (EPDM), polychloroprene rubber (CR), and butyl rubber (IIR) may be used. The low molecular weight butadiene polymer used in the present invention is a low molecular weight butadiene polymer or a low molecular weight butadiene-isoprene copolymer having a viscosity average molecular weight of 13,000 to 100,000 and a vinyl bond content of 30% or less. Its viscosity average molecular weight and vinyl bond content are limited to the above ranges.
If the viscosity average molecule is too lower than the above range, the co-vulcanization with solid rubber such as natural rubber or styrene-butadiene copolymer rubber will deteriorate, resulting in poor rubber elasticity, expressed as rebound resilience, for example. Performance such as hardness, modulus, and strength of the vulcanizate deteriorates. On the other hand, if the viscosity average molecular weight is too high, the plasticizing effect will not be exhibited and a uniform rubber compound will not be obtained. From this point of view, the best results are obtained when the viscosity average molecular weight is in the range of 22,000 to 75,000. Here, the viscosity average molecular weight (M v ) is determined by measuring the intrinsic viscosity in toluene at 30°C, and when the proportion of isoprene units in the low molecular weight butadiene polymer exceeds 50% by weight, the formula [η] = 1.21 × 10 -4 M0 . 77 v , and if the same proportion is less than 50% by weight, the formula [η] = 1.34×10 -4 M 0 . 77 v . In addition, the vinyl bond content is a value determined by infrared absorption spectroscopy, and it needs to be 30% or less, preferably 17% or less, and if it deviates from this range, the final vulcanized rubber will be affected. The elasticity of the rubber decreases, making it impossible to obtain the intended purpose. In addition to the specified viscosity average molecular weight and vinyl bond, the molecular weight determined by gel permeation chromatography (GPC)
The intended purpose is particularly achieved if the proportion of polymers or copolymers of 3000 or less is at most 15% (by weight). This is especially noticeable when the amount is 10% (by weight) or less. Such low molecular weight butadiene polymers having a specific microstructure and molecular weight can be produced by various methods including anionic polymerization and coordination anionic polymerization (for example, polymerization using Ziegler catalysts). It is preferably produced by an anionic polymerization method using a lithium-based catalyst, which produces a small amount of vinyl bonds, a sharp molecular weight distribution, and a small proportion of low molecular weight parts, and which is extremely easy to polymerize. The anionic polymerization method using such a lithium-based catalyst uses metallic lithium or organolithium (for example, methyllithium, propyllithium, butyllithium, or distyrenyllithium) and a polymerization solvent (n-butane,
isopentane, n-hexane, n-heptane, benzene, toluene, or xylene) in the presence or absence of butadiene monomer or butadiene monomer and isoprene monomer (and other substances within the scope of the present invention). (copolymerizable monomers) are combined and polymerized or copolymerized. Molecular weight can be controlled by adjusting the amount of catalyst and monomer used. The copolymer is produced by adding butadiene monomer and isoprene monomer to the polymerization system separately or simultaneously, or by adding each separately. The butadiene/isoprene weight composition ratio is preferably 30/70 or less. If the composition ratio of butadiene becomes small, the impact resilience becomes small and the intended purpose may not be achieved, so the weight composition ratio is preferably in the range of 97/3 to 40/60. Such specific low molecular weight butadiene polymers and low molecular weight butadiene-isoprene copolymers are blended into solid rubbers mainly composed of natural rubber and styrene-butadiene copolymer rubber, but low molecular weight butadiene polymers are particularly preferred. used. In addition,
The above-mentioned low molecular weight butadiene polymers and low molecular weight butadiene-isoprene copolymers are those whose molecular terminals are carboxyl groups or hydroxyl groups, compounds containing carboxyl groups in the molecular chain (e.g. maleic anhydride, acrylic acid), It may also contain a small amount of a compound containing a hydroxyl group. A solid rubber mainly composed of natural rubber, styrene-butadiene copolymer rubber, and a low molecular weight butadiene polymer are mixed by a conventional method such as a Bamberley mixer or a roll mill, but the mixing ratio is higher than that of the diene solid rubber. The amount of the low molecular weight butadiene polymer is preferably 3 to 35 parts by weight, preferably 5 to 25 parts by weight, per 100 parts by weight. In this way, a rubber composition is obtained, in addition to which vulcanizing agents such as sulfur, peroxides or quinoids, vulcanization accelerators, activators such as stearic acid or zinc oxide, carbon black, silica, clay or carbonic acid are added. Fillers with strong reinforcing properties such as calcium,
Furthermore, rubber compounding chemicals such as wax are added as necessary. Also, if it is a very small amount, oil,
Lanolin, adhesive resin (petroleum-based, rosin-based, terpene-based or phenol-based), etc. may be blended. The rubber composition of the present invention thus obtained can be used in various parts of bias tires and radial tires, especially steel radial tires, such as the tread, carcass, breaker, sidewall, bead filler, steel cord chief, or rim strip. Useful. In addition to tires, it is of course useful for industrial products such as rubber belts, anti-vibration rubber, and rubber hoses. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 and Comparative Example 1 A low molecular weight butadiene polymer (hereinafter abbreviated as LBR(A)) having a viscosity average molecular weight of 57000 and a vinyl bond content of 16% was produced by polymerizing butadiene using butyllithium as a catalyst. A low molecular weight butadiene (hereinafter abbreviated as LBR(B)) having a viscosity average molecular weight of 7000 and a vinyl bond content of 8% was obtained. When the molecular weight distribution of these low molecular weight butadiene polymers was measured by gel permeation chromatography (GPC), it was found that the molecular weight of low molecular weight butadiene polymers LBR (A) and LBR (B) was 3000 or less. The proportions of these cases were 1% and 27%, respectively. These low molecular weight butadiene polymers LBR (A) and LBR (B) were mixed in a Banbury mixer according to the formulation shown in Table 1 to obtain a rubber compound. Their Mooney viscosity was significantly lower than that in the case where the low molecular weight butadiene polymer was not used, and they had excellent flow processability. The rubber compound thus obtained was press vulcanized at 145°C. When the mechanical properties etc. of the obtained vulcanizate were measured, the results shown in Table 1 were obtained.

【表】【table】

【表】 第1表から、ゴム配合物の加硫物の反撥弾性か
らみたゴム弾性は、粘度平均分子量が57000でビ
ニル結合量が16%で、かつ分子量が3000以下であ
る割合が1%である低分子量ブタジエン重合体
LBR(A)を用いた場合には充分なものであり、そ
れは粘度平均分子量が7000でビニル結合量が16%
で、かつ3000以下の分子量のものの割合が27%で
ある低分子量ブタジエン重合体LBR(B)を用いた
場合に比較してすぐれていることが判る。 実施例2および比較例2〜3 ブチルリチウムを触媒として不活性炭化水素溶
媒中でブタジエンモノマーとイソプレンモノマー
を共重合することにより、粘度平均分子量が
39000でビニル結合量が13%でブタジエン/イソ
プレンの重量組成比が60/40で、かつゲル・パー
ミエーシヨン・ゲルマトグラフイ(GPC)によ
つて求められる分子量が3000以下のものの割合が
5%以下である低分子量ブタジエン−イソプレン
共重合体(以下、LBIR(C)と略記す)を得た。な
お重合に際してはブタジエンモノマーおよびイソ
プレンモノマーを各々4分割して交互に添加し
た。 一方、不活性炭化水素溶媒中にエーテル化合物
を共存させること以外は前述した重合方法と同様
にしてブタジエンモノマーとイソプレンモノマー
とを共重合することにより、ビニル結合量が51%
である以外は前述の低分子量ブタジエン−イソプ
レン共重合体LBIR(C)とほぼ同様の低分子量ブタ
ジエン−イソプレン共重合体(以下、LBIR
(D)と略記す)を得た。 これらの2種類の低分子量ブタジエン−イソプ
レン共重合体、および市販のアルキルフエノール
樹脂を用いて第2表に示したゴム配合物をロール
ミルにて作製した。これらのゴム配合物は流動加
工性にすぐれたものであつた。
[Table] From Table 1, the rubber elasticity seen from the rebound elasticity of the vulcanizate of the rubber compound is when the viscosity average molecular weight is 57,000, the vinyl bond content is 16%, and the proportion of the molecular weight of 3,000 or less is 1%. Certain low molecular weight butadiene polymers
This is sufficient when using LBR(A), which has a viscosity average molecular weight of 7000 and a vinyl bond content of 16%.
It can be seen that this is superior to the case of using a low molecular weight butadiene polymer LBR (B) in which the proportion of molecules having a molecular weight of 3000 or less is 27%. Example 2 and Comparative Examples 2 to 3 By copolymerizing butadiene monomer and isoprene monomer in an inert hydrocarbon solvent using butyllithium as a catalyst, the viscosity average molecular weight was
39000, the amount of vinyl bonds is 13%, the weight composition ratio of butadiene/isoprene is 60/40, and the proportion of molecular weight determined by gel permeation gelatography (GPC) is 5% of 3000 or less. The following low molecular weight butadiene-isoprene copolymer (hereinafter abbreviated as LBIR(C)) was obtained. During the polymerization, butadiene monomer and isoprene monomer were each divided into four portions and added alternately. On the other hand, by copolymerizing butadiene monomer and isoprene monomer in the same manner as the polymerization method described above except for coexisting an ether compound in an inert hydrocarbon solvent, the amount of vinyl bonds was 51%.
A low molecular weight butadiene-isoprene copolymer (hereinafter referred to as LBIR
(abbreviated as (D)) was obtained. Rubber compounds shown in Table 2 were prepared using these two types of low molecular weight butadiene-isoprene copolymers and commercially available alkylphenol resins using a roll mill. These rubber compounds had excellent flow processability.

【表】 第2表から判るように、粘度平均分子量が
39000でビニル結合量が13%でブタジエン/イソ
プレンの重量組成比が60/40の低分子量ブタジエ
ン−イソプレン共重合体であつても、分子量が
3000以下のものの割合が5%以下である低分子量
ブタジエン−イソプレン共重合体LBIR(C)を用い
た場合には、分子量が3000以下のものの割合が21
%である低分子量ブタジエン−イソプレン共重合
体LBIR(D)およびフエノール樹脂を用いた場
合に比較して、流動加工性、および加硫物におけ
る強度的性能およびゴム弾性的性能の面ですぐれ
ている。 実施例3および比較例4〜5 ブチルリチウムを触媒として用い、不活性炭化
水素溶媒中でブタジエンを重合することにより、
粘度平均分子量が22000でビニル結合量が20%以
下で、分子量が3000以下のものの割合(GPCに
て測定)が6%である低分子量ブタジエン重合体
(以下、LBR−(E)と略記す)を得た。この場
合にはブチルリチウムを重合開始時に全量添加し
て重合を行なつているが、ブチルリチウムを重合
中、数回にわけて添加して重合したところ、粘度
平均分子量が24000でビニル結合量が21%で、分
子量が3000以下のものの割合(GPCにて測定)
が21%である低分子量ブタジエン重合体(以下、
LBR−(F)と略記す)を得た。 このようにして調製した2種類の低分子量ブタ
ジエン重合体LBR−(E)、同LBR−(F)および
アロマチツク系プロセスオイルを可塑剤として用
い、第3表に示した配合にてゴム配合物とした。 これらのゴム配合物を実施例1と同様にして加
硫し、得られた加硫物の物性を調べたところ、第
3表の如き結果を得た。
[Table] As can be seen from Table 2, the viscosity average molecular weight is
Even if it is a low molecular weight butadiene-isoprene copolymer with a vinyl bond content of 13% and a butadiene/isoprene weight composition ratio of 60/40, the molecular weight
When using a low molecular weight butadiene-isoprene copolymer LBIR (C) in which the proportion of molecular weight of 3000 or less is 5% or less, the proportion of molecular weight of 3000 or less is 21
% of low molecular weight butadiene-isoprene copolymer LBIR (D) and phenolic resin, it is superior in terms of flow processability, strength performance and rubber elasticity performance in vulcanizates. . Example 3 and Comparative Examples 4 to 5 By polymerizing butadiene in an inert hydrocarbon solvent using butyllithium as a catalyst,
A low molecular weight butadiene polymer (hereinafter abbreviated as LBR-(E)) with a viscosity average molecular weight of 22,000, a vinyl bond content of 20% or less, and a proportion of molecules with a molecular weight of 3,000 or less (measured by GPC) of 6%. I got it. In this case, the entire amount of butyllithium was added at the start of the polymerization, but when butyllithium was added several times during the polymerization, the viscosity average molecular weight was 24,000 and the amount of vinyl bonds was 21%, proportion of molecules with a molecular weight of 3000 or less (measured by GPC)
is a low molecular weight butadiene polymer (hereinafter referred to as
LBR-(F)) was obtained. Using the two types of low molecular weight butadiene polymers LBR-(E) and LBR-(F) prepared in this way and aromatic process oil as plasticizers, a rubber compound was prepared according to the formulation shown in Table 3. did. These rubber compounds were vulcanized in the same manner as in Example 1, and the physical properties of the obtained vulcanizates were examined, and the results shown in Table 3 were obtained.

【表】【table】

【表】 第3表から判るように、プロセスオイルを可塑
剤に用いたゴム配合物に比べて、粘度平均分子量
が22000および24000の低分子量ブタジエン重合体
LBR(E)および同LBR(F)を用いたゴム配
合物は、その加硫物の反撥弾性、機械的性質の点
ですぐれている。特に分子量が3000以下のものの
割合が少ない低分子量ブタジエン重合体LBR
(E)を用いた場合に顕著である。
[Table] As can be seen from Table 3, lower molecular weight butadiene polymers with viscosity average molecular weights of 22,000 and 24,000 compared to rubber compounds using process oil as a plasticizer.
Rubber compounds using LBR (E) and LBR (F) are excellent in impact resilience and mechanical properties of the vulcanized products. Low molecular weight butadiene polymer LBR with a particularly low proportion of molecules with a molecular weight of 3000 or less
This is noticeable when (E) is used.

Claims (1)

【特許請求の範囲】 1 天然ゴムまたはスチレン−ブタジエン共重合
ゴムを主体とした固形ゴム100重量部に粘度平均
分子量が13000〜100000でビニル結合量が30%以
下である低分子量ブタジエン系重合体3〜35重量
配合してなるゴム組成物。 2 低分子量ブタジエン系重合体が、その粘度平
均分子量が20000〜75000で、かつそのゲルパーミ
エーシヨンクロマトグラフイーにて求められる分
子量3000以下の重合体の割合が15%以下である低
分子量ブタジエン系重合体である特許請求の範囲
第1項記載のゴム組成物。 3 低分子量ブタジエン系重合体がアニオン重合
法によつて得られたブタジエン重合体である特許
請求の範囲第1項または第2項記載のゴム組成
物。 4 低分子量ブタジエン系重合体が、アニオン重
合法によつて得られたブタジエン/イソプレンの
重量組成比が97/3〜30/70であるブタジエン−イ
ソプレン共重合体である特許請求の範囲第1項ま
たは第2項記載のゴム組成物。 5 ゴム組成物がラジアルタイヤ用配合ゴムであ
る特許請求の範囲第1項から第4項のいずれかに
記載のゴム組成物。
[Scope of Claims] 1. A low molecular weight butadiene polymer having a viscosity average molecular weight of 13,000 to 100,000 and a vinyl bond content of 30% or less in 100 parts by weight of a solid rubber mainly composed of natural rubber or styrene-butadiene copolymer rubber. A rubber composition containing ~35% by weight. 2. A low molecular weight butadiene polymer in which the viscosity average molecular weight is 20,000 to 75,000, and the proportion of the polymer having a molecular weight of 3,000 or less as determined by gel permeation chromatography is 15% or less. The rubber composition according to claim 1, which is a polymer. 3. The rubber composition according to claim 1 or 2, wherein the low molecular weight butadiene polymer is a butadiene polymer obtained by an anionic polymerization method. 4. Claim 1, wherein the low molecular weight butadiene-based polymer is a butadiene-isoprene copolymer obtained by an anionic polymerization method and having a butadiene/isoprene weight composition ratio of 97/3 to 30/70. Or the rubber composition according to item 2. 5. The rubber composition according to any one of claims 1 to 4, wherein the rubber composition is a compounded rubber for radial tires.
JP12147580A 1980-09-01 1980-09-01 Rubber composition Granted JPS5747337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12147580A JPS5747337A (en) 1980-09-01 1980-09-01 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12147580A JPS5747337A (en) 1980-09-01 1980-09-01 Rubber composition

Publications (2)

Publication Number Publication Date
JPS5747337A JPS5747337A (en) 1982-03-18
JPS6254133B2 true JPS6254133B2 (en) 1987-11-13

Family

ID=14812067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12147580A Granted JPS5747337A (en) 1980-09-01 1980-09-01 Rubber composition

Country Status (1)

Country Link
JP (1) JPS5747337A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522970A (en) * 1984-06-25 1985-06-11 The Goodyear Tire & Rubber Company Tire with tread rubber containing medium vinyl polybutadiene with clay and carbon black
US6255397B1 (en) * 1999-09-10 2001-07-03 The Goodyear Tire & Rubber Company Rubber composition containing hydroxyl terminated liquid polymer and tire with sidewall thereof
JP2005226016A (en) * 2004-02-13 2005-08-25 Toyo Tire & Rubber Co Ltd Rubber composition for use in tire
JP5390816B2 (en) * 2008-09-18 2014-01-15 住友ゴム工業株式会社 Chafer rubber composition and tire
EP4310020A1 (en) 2021-03-18 2024-01-24 Kuraray Co., Ltd. Material for rubber kneading, sealed package using material for rubber kneading, method for producing material for rubber kneading, and method for producing rubber composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281389A (en) * 1962-12-12 1966-10-25 Columbian Carbon Processing of cis polybutadiene rubber by compounding with liquid polybutadienes
JPS5540740A (en) * 1978-09-18 1980-03-22 Bridgestone Corp Radial-ply tire having improved abrasion uniformity
JPS55125136A (en) * 1979-03-22 1980-09-26 Bridgestone Corp Rubber composition for tire tread
JPS55125135A (en) * 1979-03-22 1980-09-26 Japan Synthetic Rubber Co Ltd Rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281389A (en) * 1962-12-12 1966-10-25 Columbian Carbon Processing of cis polybutadiene rubber by compounding with liquid polybutadienes
JPS5540740A (en) * 1978-09-18 1980-03-22 Bridgestone Corp Radial-ply tire having improved abrasion uniformity
JPS55125136A (en) * 1979-03-22 1980-09-26 Bridgestone Corp Rubber composition for tire tread
JPS55125135A (en) * 1979-03-22 1980-09-26 Japan Synthetic Rubber Co Ltd Rubber composition

Also Published As

Publication number Publication date
JPS5747337A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
EP0260325B1 (en) Diene polymers, process for their preparation, and rubber composition containing them
JP2611717B2 (en) Butadiene copolymer
JP2781791B2 (en) Tire having a tread comprising a rubber blend comprising a rubbery polymer having a plurality of glass transition temperatures
EP2423239B1 (en) Copolymers of conjugated triene for improved filler interactions
JPS6245895B2 (en)
EP0150479A2 (en) Process for modifying conjugated diene polymers
JP4304791B2 (en) Conjugated diolefin copolymer rubber and rubber composition
JPH01229017A (en) Abc-block copolymer based butadiene, isoprene and styrene, its production and use
JP3378313B2 (en) Rubber composition
JPS63101440A (en) Rubber composition
JPS6354724B2 (en)
JP2992102B2 (en) Pneumatic tire
JPS6254133B2 (en)
JPS6114214A (en) Improved rubber-like polymer
JPS6250349A (en) Improved conjugated diene rubber composition for tire
JP3146506B2 (en) Method for producing diene polymer and rubber composition
JPH0629339B2 (en) Improved rubber composition for tires
JP2002284930A (en) Modified conjugated dienic polymer composition
WO2018101360A1 (en) Rubber composition and pneumatic tire
JPH0345098B2 (en)
JPH0686500B2 (en) Method for producing conjugated diolefin polymer
JPH0629338B2 (en) Rubber composition for tires
JPH021179B2 (en)
JP2002284934A (en) Rubber composition
WO2017170839A1 (en) Silane modified hydrocarbon resin and tire elastomer compound