JPS6254055A - Drill made of hard alloy - Google Patents

Drill made of hard alloy

Info

Publication number
JPS6254055A
JPS6254055A JP19414385A JP19414385A JPS6254055A JP S6254055 A JPS6254055 A JP S6254055A JP 19414385 A JP19414385 A JP 19414385A JP 19414385 A JP19414385 A JP 19414385A JP S6254055 A JPS6254055 A JP S6254055A
Authority
JP
Japan
Prior art keywords
drill
cutting edge
carbide
hard alloy
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19414385A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakai
中井 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Original Assignee
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daijietsuto Kogyo Kk, Dijet Industrial Co Ltd filed Critical Daijietsuto Kogyo Kk
Priority to JP19414385A priority Critical patent/JPS6254055A/en
Publication of JPS6254055A publication Critical patent/JPS6254055A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent sticking of chips to cutting edge as well as breaking of cutting edge and to improve drill life by forming the whole drill of sintered hard alloy consisting of WC, TiC, TiN, Mo or Mo2C, and iron group metals. CONSTITUTION:The whole twist drill is formed by use of a sintered hard alloy having a composition consisting of, by weight, 10-60% WC, 5-40% TiC, 3-20% TiN, 5-20% Mo or Mo2C and 5-20% of iron group metals such as Co, Ni, Fe, etc. If necessary, 5-30% TaC or TaN is incorporated to the above sintered alloy. On application of a drill having the above composition, the occurrences of breaking and chipping caused by sticking and separation of chips to and from cutting blade are prevented and accordingly drill life can be improved. Moreover, the expected drilling capacity can be maintained even after regrinding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属などを穴明は加工するツイストドリルの
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a twist drill for drilling holes in metal and the like.

〔従来技術〕[Prior art]

従来、特殊鋼製のツイストトリμによって金属などを穿
孔したとぎは、その切刃に摩損や欠損が多発して経済的
な穴明は加工ができない。
Conventionally, the sharpeners used to drill holes in metals and the like using twist trigs made of special steel often suffer wear and tear on their cutting edges, making it impossible to drill holes economically.

また超硬合金からなるツイストドリルは、穿孔時に生成
される切屑が切刃に圧着したり分離したりすることによ
りて該切刃シこチ・リビングが生じ易くドリル寿命が短
かくなる。
In addition, with a twist drill made of cemented carbide, chips generated during drilling are likely to compress or separate from the cutting blade, causing the cutting blade to crumple or slit, resulting in a shortened drill life.

そして、最近注目されだした窒化チタンまたは炭化チタ
ンなどの被膜を切刃に形成したコーティングトリμはド
134/寿命を高めることはできたが、該ドリルの切刃
の摩損tこよって再研削した後のトリ/I/′#命が大
きく低下するという不具合を有し、でいる。
Coating drills, which have recently started to attract attention, have a cutting edge coated with a coating of titanium nitride or titanium carbide, which can increase the lifespan of the drill, but the cutting edge wears out and requires re-grinding. The problem is that the life of the next bird /I/'# is greatly reduced.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点に鑑みなしたもので、切刃の
摩損や欠損が少なく、かつ生成、切屑を切刃に溶着する
ことを極力ふせいて切屑の排出性を高めて切刃への切屑
の圧着と分離から起る欠損やチシビングを防止してドリ
ル寿命をあげ、しかもトリμを再研削した後においても
常に所期の穿孔能力を維持できるツイストトリ〜を提供
することを目的とするものである。
The present invention has been developed in view of the above-mentioned problems, and reduces the wear and tear of the cutting edge, and also prevents the generation and welding of chips to the cutting edge as much as possible, thereby improving the evacuation of chips to the cutting edge. The purpose of the present invention is to provide a twist drill that can prevent chipping and chipping caused by crimping and separation of chips, extend the life of the drill, and maintain the desired drilling ability even after regrinding the drill μ. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記した問題点を下記する構成によって解決
したものである。
The present invention solves the above-mentioned problems with the following configuration.

すなわち、炭化タングステン10〜60チ、炭化チタン
5〜uo’s、窒化チタン5〜20チ、モリブデンまた
は炭化モリブデン5〜20%、コバ〃ト、ニッケ〃、鉄
などの鉄族金属5〜20%(以上重量%)からなる硬質
焼結合金からツイストドリルの全体を形成した硬質合金
製トリpを第1の要旨とし、上記組成に、さらにTac
またはTaNを重量比で5〜30係含有しせしめた硬質
合金製ドリルを第2の要旨とするものである。
That is, 10 to 60 inches of tungsten carbide, 5 to 20 inches of titanium carbide, 5 to 20 inches of titanium nitride, 5 to 20% of molybdenum or molybdenum carbide, and 5 to 20% of iron group metals such as cobalt, nickel, and iron. The first gist is a hard alloy tripod in which the entire twist drill is formed from a hard sintered alloy consisting of a hard sintered alloy consisting of a
Alternatively, the second aspect is a hard alloy drill containing TaN in a weight ratio of 5 to 30%.

〔発明の作用〕[Action of the invention]

本発明は、上記した構成により耐熱性が優れ、かつ抗折
力の大幅な低下を起させずに硬度が高められ、ドリル特
有の切削条件に適合させることができる。
The present invention has excellent heat resistance due to the above-described configuration, and hardness is increased without causing a significant decrease in transverse rupture strength, and can be adapted to cutting conditions specific to drills.

すなわち、鋼あるいは高級鋳鉄の切削では二番摩耗およ
びすくい面摩耗を軽減させる要素として炭化チタンが最
適である。
In other words, titanium carbide is the most suitable element for reducing secondary wear and rake face wear when cutting steel or high-grade cast iron.

したがって、出来る限り炭化チタンの比率を高める方が
摩耗に関する限り有利であるが、炭化チタンの熱伝導率
が非常に低いことに起因する種々の問題点が生じる危険
性があり、このため炭化チタンをi率よく使用するため
に炭化タングステン、炭化タンタル、炭化ニオブなどを
固溶させて用いることが考えられる。
Therefore, it is advantageous to increase the proportion of titanium carbide as much as possible as far as wear is concerned, but there is a risk that various problems will arise due to the extremely low thermal conductivity of titanium carbide, and for this reason, titanium carbide is In order to use it at a high i-rate, it is conceivable to use tungsten carbide, tantalum carbide, niobium carbide, etc. as a solid solution.

しかし、焼結時に炭化チタン含有の固溶体同志が接触し
た部分から互いに融合して大きな粒子に成長し易い。こ
の粒子の大Nさは切刃の摩耗の大きな影響因子であり、
如何なる場合でもチタン含有固溶体の粒度は小さい方が
望ましい。
However, during sintering, titanium carbide-containing solid solutions tend to fuse together and grow into large particles from the contact areas. The size of these particles is a major influencing factor for cutting edge wear.
In any case, it is desirable that the particle size of the titanium-containing solid solution is small.

しかして窒化チタンを適量添加すると、粒成長を防ぐこ
とができる。窒化チタンは炭化チタン基合金に特有な炭
化チタンを核に持つ有核組織を保ったまま、その炭化チ
タンに多くみられる固溶体粒子の粒成長を抑制し、結晶
粒を微細にすることができる。
However, grain growth can be prevented by adding an appropriate amount of titanium nitride. Titanium nitride can suppress the grain growth of solid solution particles often found in titanium carbide and make crystal grains finer, while maintaining the nucleated structure with titanium carbide as the core, which is unique to titanium carbide-based alloys.

また、窒化チタンは炭化チタンをこ比べ熱衝撃抵抗も大
きく、鋼との間の摩擦係数が小さいため発熱量自体も小
さくなり、耐熱衝撃性が改善される。このようをこ窒化
チタンの添加tこよって粒の微細化がおこなわれるため
tこ硬度が高く耐摩耗性が著しく向上するのと共をこ摩
擦係数も小であるためにトリA/g孔時に生成される切
屑は切刃に溶着することなくスムーズをこ排出され、従
来問題となっていた切刃シこ切屑が圧着したり分散した
りすることによって起きていた切刃の欠損やチーJピン
グを防止するのと同時に切刃のj!!!損も減じ得て所
期の穿孔能力を長期にわたつて維持するものとなる。
Furthermore, titanium nitride has higher thermal shock resistance than titanium carbide, and has a smaller coefficient of friction with steel, so the amount of heat generated is also lower, improving thermal shock resistance. In this way, the addition of titanium nitride makes the grains finer, so the hardness is high and the wear resistance is significantly improved.The friction coefficient is also small, so when the hole is The generated chips are smoothly ejected without welding to the cutting edge, eliminating the problem of chipping and chipping of the cutting edge that previously occurred due to crimping or dispersion of the cutting chips. At the same time as preventing the j of the cutting edge! ! ! Loss can also be reduced and the desired drilling capacity can be maintained over a long period of time.

なお、炭化チタンおよび窒化チタンの合金に占める含有
量は、それぞれ前々記した範囲が好ましく、それを越え
ると靭性が乏しくなり、また前々記の範囲以下では充分
な耐熱性や耐摩耗性が得られない。
It should be noted that the content of titanium carbide and titanium nitride in the alloy is preferably within the ranges described above; if it exceeds this, the toughness will be poor, and if it is below the above range, it will not have sufficient heat resistance or wear resistance. I can't get it.

炭化タンタルまたは窒化タンクμは炭化チタンを効率よ
く含有させるために用いられるものであるが、タンク〃
とニオブとの分離は製錬上困難であってタンク〃には多
くの場合ニオブが含有している。したがって、この固溶
体は単独のタンクMとの間tこぎわだった性能の差を示
さないのでタンクμの一部をニオブに置き換えて用いて
もよい。
Tantalum carbide or nitride tank μ is used to efficiently contain titanium carbide, but tank
It is difficult to separate niobium from niobium during smelting, and tanks often contain niobium. Therefore, since this solid solution does not show a significant difference in performance from the tank M alone, a portion of the tank μ may be replaced with niobium.

また、モリブデンまたは炭化モリブデンは炭化チタン含
有量の多い場合に粒成長抑制に効果的であることは周知
であるが、これを5〜20%添加すると合金の耐衝撃性
が向上I7、ドリル切刃へ切屑が衝突しても切刃の欠損
またはチ・リビングを減じさせる効果を有する。
In addition, it is well known that molybdenum or molybdenum carbide is effective in suppressing grain growth when the content of titanium carbide is high, but adding 5 to 20% of molybdenum improves the impact resistance of the alloy. It has the effect of reducing chipping or chipping of the cutting edge even if chips collide.

〔実施例〕〔Example〕

各原料を次表に示すような成分比に配合し、これをボー
ルミルに投入して約118時間混合した後、この粉末を
加圧成形して11100〜1u30℃にて焼結する二と
によってドリルに成形する硬質焼結合金を得た。
The raw materials are mixed in the component ratio shown in the table below, put into a ball mill, and mixed for about 118 hours. The powder is then pressure-molded and sintered at 11,100~1u30℃. A hard sintered alloy that can be formed into

〔発明の効果〕〔Effect of the invention〕

上記の硬質焼結合金を機械加工してツイストドリルに形
成した。この本発明によるドリルをこ下記する切削条件
を与えて試験した。
The above hard sintered alloy was machined to form a twist drill. The drill according to the present invention was tested under the following cutting conditions.

なお、比較のために従来の超硬合金からなるツイストド
リルにPvD法によりチタンの被膜を形成したものも合
せて本発明によるトリ〃と同条件により試験した。また
、本発明によるトリμと比較のためのトリμを切刃部分
を再研削した後の試験もおこなった。
For comparison, a conventional twist drill made of cemented carbide with a titanium coating formed by the PvD method was also tested under the same conditions as the present invention. In addition, tests were also conducted on the Tori μ according to the present invention and the Tori μ for comparison after re-grinding the cutting edge portions.

試験条件 (イ)被削材:330C(生材) (ロ) 切削速度:30!を− (ハ)    送        リ  :  α  
1  5  ”/revに)切込み:24=(止り穴) (ホ)   ド リ /L/ 径 :    8 寓冒
(へ)切削油:ホソイカ・ソトE’M(11〜5倍に希
釈して外部給油した) i上の試験結果は、本発明によるドリルおよび比較のた
めの被覆ドリルは共に400穴穿孔した時点においても
不具合はみられなかりた。
Test conditions (a) Work material: 330C (raw material) (b) Cutting speed: 30! - (c) sending ri: α
15"/rev) Depth of cut: 24 = (Blind hole) (E) Drill /L/Diameter: 8 Cutting oil: Hosoika Soto E'M (diluted 11 to 5 times and applied externally) The above test results showed that both the drill according to the present invention and the coated drill for comparison had no defects even after drilling 400 holes.

しかI7、ドリルの切刃を再研削した後の試験において
は、比較のために用いた上記被覆ドリルが良とするもの
で100穴の穿孔、なかには2う穴穿孔した時点で切刃
が大きく摩耗したり欠損したりして試験が不能になった
のに対し、本発明によるそれぞれのドy1vは所期の性
能を維持していた。
However, in a test after re-grinding the cutting edge of the drill, the coated drill used for comparison showed that the cutting edge was significantly worn after drilling 100 holes, and in some cases, drilling 2 holes. In contrast, each doy1v according to the present invention maintained the expected performance.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化タングステン10〜60%、炭化チタン5〜
10%、窒化チタン3〜20%、モリブデンまたは炭化
モリブデン5〜20%、コバルト、ニッケル、鉄などの
鉄族金属5〜20%(以上重量%)からなる硬質焼結合
金からツイストドリルの全体を形成したことを特徴とす
る硬質合金製ドリル。
(1) Tungsten carbide 10~60%, titanium carbide 5~
The entire twist drill is made from a hard sintered alloy consisting of 10% titanium nitride, 3 to 20% titanium nitride, 5 to 20% molybdenum or molybdenum carbide, and 5 to 20% iron group metals such as cobalt, nickel, and iron (by weight). A hard alloy drill characterized by a formed.
(2)上記した特許請求の範囲第1項において、TaC
またはTaNを重量比で5〜30%含有せしめた硬質焼
結合金からツイストドリルの全体を形成したことを特徴
とする硬質焼結合金製ドリル。
(2) In claim 1 above, TaC
Alternatively, a hard sintered metal drill characterized in that the entire twist drill is formed from a hard sintered metal containing 5 to 30% by weight of TaN.
JP19414385A 1985-09-02 1985-09-02 Drill made of hard alloy Pending JPS6254055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19414385A JPS6254055A (en) 1985-09-02 1985-09-02 Drill made of hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19414385A JPS6254055A (en) 1985-09-02 1985-09-02 Drill made of hard alloy

Publications (1)

Publication Number Publication Date
JPS6254055A true JPS6254055A (en) 1987-03-09

Family

ID=16319627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19414385A Pending JPS6254055A (en) 1985-09-02 1985-09-02 Drill made of hard alloy

Country Status (1)

Country Link
JP (1) JPS6254055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528186A (en) * 2007-05-21 2010-08-19 ケンナメタル インコーポレイテッド Cemented carbide with ultra-low thermal conductivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528186A (en) * 2007-05-21 2010-08-19 ケンナメタル インコーポレイテッド Cemented carbide with ultra-low thermal conductivity

Similar Documents

Publication Publication Date Title
CA1103042A (en) Sintered compact for use in a cutting tool and a method of producing the same
US4046517A (en) Cemented carbide material for cutting operation
JP2622131B2 (en) Alloys for cutting tools
KR920004669B1 (en) Cermet cutting tool
CN108570589B (en) Hard alloy cutter material and preparation method thereof
US4019874A (en) Cemented titanium carbide tool for intermittent cutting application
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP3331220B2 (en) Materials for shaft cutting tools
US2731710A (en) Sintered carbide compositions
US3723104A (en) Refractory metal alloy bonded carbides for cutting tool applications
JPS6254055A (en) Drill made of hard alloy
JPH0346538B2 (en)
JPS6256943B2 (en)
JPS6176645A (en) Tungsten carbide-base sintered hard alloy
JP3206972B2 (en) Fine-grain cemented carbide
JP2006144089A (en) Hard metal made of superfine particle
JPS6053098B2 (en) Wear-resistant Cu alloy with high strength and toughness
JPS602647A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JPS609850A (en) Sintered hard alloy for cutting
JPS61194148A (en) Sintered hard alloy of super fine grains
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JPH0343113A (en) End mill made of tungsten carbide group cemented carbide
JPS602646A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPS6053097B2 (en) Wear-resistant Cu alloy with high strength and toughness