JPS6253578A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6253578A
JPS6253578A JP60194138A JP19413885A JPS6253578A JP S6253578 A JPS6253578 A JP S6253578A JP 60194138 A JP60194138 A JP 60194138A JP 19413885 A JP19413885 A JP 19413885A JP S6253578 A JPS6253578 A JP S6253578A
Authority
JP
Japan
Prior art keywords
optical member
light
solid
optical
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60194138A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60194138A priority Critical patent/JPS6253578A/en
Publication of JPS6253578A publication Critical patent/JPS6253578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To operate a device with low cost and low power consumption and without being equipped with a mechanical moving part and to reduce the effect of aberration remarkably by arranging a light deflector in the parallel light flux of an afocal image forming optical system between the focal plane of a photographing lens and a solid- state image pickup element. CONSTITUTION:An afocal image forming system is constituted between the image plane of the photographing lens and the solid-stage image pickup element and in its parallel optical path, the first optical member 1 consisting of a laminated structure in which a liquid crystal layer 11, a photoconductive film 16 and a dielectric mirror 14 are included is inserted. On the photoconductive film 16 of the first optical member 1, the distribution of the refractive index of the crystal layer 11 with in the first optical member 1 is constituted so that it can be changed linearly and spacially and also its inclination can be changed by the second optical member 2 which generates light intensity distribution having a linear inclination spacially and a means which can change the inclination of the light intensity distribution. The parallel light flux passing through the crystal layer, by the change of its advancing direction by the means and the change of its image forming position within an image forming plane, can generate the vibration of an image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテレビジョンカメラ等において使用される固体
撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device used in a television camera or the like.

〔従来の技術〕[Conventional technology]

テレビカメラ、VTR用カメラはもとより、電子スチル
カメラ、内視鏡、各種顕微鏡モニタ等極めて広範な分野
で固体撮像素子が用いられるようになった。しかもすべ
ての分野に於てより高質品な画像が求められており、七
のために固体撮像素子の高密度大素子数化が追求されて
いる。
Solid-state imaging devices have come to be used in a wide range of fields, including not only television cameras and VTR cameras, but also electronic still cameras, endoscopes, and various microscope monitors. Moreover, higher quality images are required in all fields, and higher density and larger number of solid-state image sensors are being pursued for this purpose.

しかし現状では固体撮像素子の大素子数化には、IC製
造技術の高度化や、歩留りの低下によるコストアップな
どによυ限界がある。
However, at present, there is a limit to increasing the number of elements in solid-state imaging devices due to the sophistication of IC manufacturing technology and cost increases due to lower yields.

そこで従来限られた素子数の固体撮像素子による高解像
度化の方法として (′D 固体撮像素子月身を像面内でI72ピッチ振動
させる ■ 撮像素子のn11方に平行平面板を配σ(t シ、
その傾きを変化させ、像を振動させる ■ 電気光学効果を有する素材からなる平行平面板を光
路中に傾けて配置し、素材に加える電圧を変えることに
より住じる屈折率変化を利用して像を振動させる 等、多数提案されている。
Therefore, as a conventional method for achieving high resolution using a solid-state image sensor with a limited number of elements, ('D) vibrate the lunar body of the solid-state image sensor with a pitch of I72 in the image plane. C,
By changing the inclination, the image is vibrated ■ A plane-parallel plate made of a material that has an electro-optic effect is placed tilted in the optical path, and the image is created by using the change in refractive index that occurs by changing the voltage applied to the material. Many proposals have been made, such as vibrating the

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来方法には■、■に於ては機械的可動部全必要と
、するため4f;Ir1A性に欠ける、■は高価な結晶
材料全必要とし、又、動作電圧が一般に高い、さらに結
像光路に傾いた媒質を挿入するため各種収差の影響によ
り画質が劣化する、などの欠点がある。
The conventional methods (1) and (2) require all mechanical movable parts, so they lack 4F;Ir1A properties, and (2) require all expensive crystal materials, and the operating voltage is generally high. There are drawbacks such as image quality deterioration due to various aberrations due to the insertion of a tilted medium into the optical path.

本発明は、機械的可動部を持たず、安価かつ低電力で動
作し、しかも収差の影響が極めて少ない方法によp高解
像度化全達成できる固体撮偉装置金提供するものである
The present invention provides a solid-state imaging device that does not have any mechanically movable parts, operates at low cost and with low power consumption, and can achieve high resolution using a method with extremely little influence of aberrations.

〔問題点を解決するための手段および作用〕本発明は一
般に、撮像レンズの像面と固体撮像素子の開にアフォー
カルな結像系を構成し、その平行光路内に、液晶層光等
!!膜、誘電体ミラーを含む多/i5構造からなる第1
の光学部材を挿入する。Oil記第1の光学部材の光導
電膜−EKs空間的KIili!形な傾きを持った光強
度分布を1成する第2の光学部材と前記光強度分布の傾
きを変化させ得る手段によシ、前記mlの光学部材中の
液晶層の屈折率の分布金、7間的に線形でかつその傾き
を変化し得るように構成する。
[Means and effects for solving the problems] The present invention generally comprises an afocal imaging system between the image plane of an imaging lens and a solid-state imaging device, and in its parallel optical path, liquid crystal layer light, etc. ! The first layer consists of a multi/i5 structure including a film and a dielectric mirror.
Insert the optical member. Photoconductive film of the first optical member-EKs spatial KIili! a second optical member forming a light intensity distribution with a regular slope, and a means capable of changing the slope of the light intensity distribution; 7. It is constructed so that it is linear over time and its slope can be changed.

がJ紀液晶膚全通過する平行光束は、nq記手段によp
その進行方向を変えられ結像面内に於けるその結像位置
が変化することにより、像の振動を生じはせることがで
きる。
The parallel light beam that passes through the J period liquid crystal skin can be expressed as p by nq means.
By changing its traveling direction and changing its imaging position within the imaging plane, it is possible to cause image vibration.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す図である。第1図
において1は液晶を含む第1の光学部材であり、2けフ
ィルタとしての第2の光学部材である。3は撮像レンズ
、4は同レンズの予定焦点面、5はアフォーカル結像系
の対物レンズ、et’i偏光板、2は結像レンズ、8は
上記レンズの焦平面上に設シiした固体撮像素子である
FIG. 1 is a diagram showing a first embodiment of the present invention. In FIG. 1, 1 is a first optical member containing liquid crystal, and a second optical member as a two-digit filter. 3 is an imaging lens, 4 is a planned focal plane of the same lens, 5 is an objective lens of an afocal imaging system, et'i polarizing plate, 2 is an imaging lens, and 8 is installed on the focal plane of the above lens. It is a solid-state image sensor.

第2図は、前記ff1lの光学部材lのM3造を示す断
面図である。第2図において1ノは液晶、12n、12
hVi、上記液晶の両側に配置された内部誘[体層、I
 、? a 、 13 h ij透明電極、14は誘電
体ミラー、15は光吸収層、16は光導m膜、17m、
17bはガラス板、18はスペーサ、19は透明電極r
sa、13bK’fH続されたAC電源である。つまり
液晶11が、12s、13m金積層した上部ガラス板1
7mと、12b、14,15,16.138’fc積層
した下部ガラス板17Mとの間に1スペーサ18全介在
させた領域内に封入されたものとなっている。
FIG. 2 is a sectional view showing the M3 structure of the optical member 1 of the ff1l. In Figure 2, 1 is a liquid crystal, 12n is 12
hVi, internal dielectric layer arranged on both sides of the liquid crystal, I
,? a, 13h ij transparent electrode, 14 is a dielectric mirror, 15 is a light absorption layer, 16 is a light guide m film, 17m,
17b is a glass plate, 18 is a spacer, 19 is a transparent electrode r
sa, 13bK'fH connected AC power supply. In other words, the liquid crystal 11 is 12s, 13m gold laminated on the upper glass plate 1.
7m and a lower glass plate 17M in which 12b, 14, 15, 16.138'fc are laminated. One spacer 18 is entirely enclosed in a region.

かくして制御光10が存在しないとき、光導*BA16
のダイオード効果と誘電体ミラー14のコンデンサ効果
により、液晶IIの両端に発生す己電位はAC電源の周
波数、電圧によらず実効的に零である。制御光Iθが一
定強度を持った場合、光導電$ 1 i’iけ低抵抗体
と等価になるため、液晶11の両端に1ノ位差が生じる
Thus, when the control light 10 is not present, the light guide *BA16
Due to the diode effect and the capacitor effect of the dielectric mirror 14, the self-potential generated across the liquid crystal II is effectively zero regardless of the frequency and voltage of the AC power source. When the control light Iθ has a constant intensity, it becomes equivalent to a photoconductor with a low resistance of $ 1 i'i, so that a 1-noise difference occurs between both ends of the liquid crystal 11.

液晶分子が第3図(alのようにガラス面および紙面に
平行に配IEJこれているとすると、外部電界Eが0の
とき、液晶分子の配向方向と同じ方向に偏光しでいる被
制御光20に対する液晶11の屈折率は、異常光に対す
る屈折率r16になる。
Assuming that the liquid crystal molecules are arranged parallel to the glass surface and the paper surface as shown in Figure 3 (al), when the external electric field E is 0, the controlled light that is polarized in the same direction as the alignment direction of the liquid crystal molecules. The refractive index of the liquid crystal 11 with respect to 20 is the refractive index r16 for extraordinary light.

外部電界Eが生じると、液晶分子の分極に外力が@き飽
和1Ft位E、に達すると第3図(C)のような状態と
なり、液晶の屈折率は常光線に対する屈折率n0に等し
くなる。中間の電位El、では第3iJ(b)の状態で
あり、その屈折率nIはn o < n 1 < n 
eの範囲で変化する。
When an external electric field E is generated, the external force polarizes the liquid crystal molecules and reaches saturation of about 1 Ft E, resulting in a state as shown in Figure 3 (C), and the refractive index of the liquid crystal becomes equal to the refractive index n0 for ordinary rays. . At an intermediate potential El, it is in the third iJ(b) state, and its refractive index nI is no < n 1 < n
It changes within the range of e.

W、4図(lIl (b)は、前記第2の光学部材2を
示す図である。第2の光学部材2は同囚(a) K示す
ようなものであシ、同tg(blに示すように買方向に
線形に変化する強度透過率分布をもったフィルタである
W, Figure 4 (lIl (b) is a diagram showing the second optical member 2. The second optical member 2 is as shown in the prisoner (a) K, and the same tg (bl). As shown, this is a filter with an intensity transmittance distribution that changes linearly in the buying direction.

このように構成された第1の実施例においては、図示し
ない光源から一様な明るさの照明光9がフィルタ2を通
過すると、制御光10の窒IV1強度分布は第5図の〔
a〕のようになり、光強度→外部電界→屈折率の変換プ
ロセスにより第1の光学部材lに含まれる液晶11の屈
折率分布は第6図(atの実線のようにX方向に対して
一定の傾きをもつ。このような媒質n(X)に第6図(
blに示すように、平行光線が入射すると、媒質中の光
線Iの光路A −A’−Δ″と、光線nの光路B  n
/−B11との間には、距離^−Bにほぼ正比例した光
路差が生じる。したがって出射光線はほぼ平行でかつ入
射先約より小ざな角度θ。
In the first embodiment configured in this way, when illumination light 9 of uniform brightness from a light source (not shown) passes through the filter 2, the nitrogen IV1 intensity distribution of the control light 10 is as shown in FIG.
a], and due to the conversion process of light intensity → external electric field → refractive index, the refractive index distribution of the liquid crystal 11 included in the first optical member l becomes as shown in FIG. It has a certain slope.For such a medium n(X), as shown in Figure 6 (
As shown in bl, when a parallel ray is incident, the optical path A -A'-Δ'' of the ray I in the medium and the optical path B n of the ray n
/-B11, an optical path difference approximately directly proportional to the distance ^-B occurs. Therefore, the outgoing rays are almost parallel and at a smaller angle θ than the incident ray.

で出射する。It emits light.

一様な照明光9の強度が増加すると、制御光IOの強度
分布は第5図の〔b〕のようになり、液晶の屈折率分布
は群6図(a)の点線のような傾きをもち、光線【と■
との液晶中の光路差が増加するため、θ。はさらに小さ
くなる。
When the intensity of the uniform illumination light 9 increases, the intensity distribution of the control light IO becomes as shown in FIG. Mochi, rays [and■
θ because the optical path difference in the liquid crystal increases. becomes even smaller.

以上の説明から明らかなように、第1図の撮像レンズ3
の像を、一様な照明光9の強度変化によって撮像素子面
8上で1←bのように移動させることが!−きる。
As is clear from the above explanation, the imaging lens 3 in FIG.
It is possible to move the image 1←b on the image sensor surface 8 by uniformly changing the intensity of the illumination light 9! -Kill.

?−ラライザ5の偏光ガロと液晶分子の無電界時の配向
方向がともに第1図におけるX方向であり電界による液
晶分子の回転がy−z平面内で伍起するものとすれば、
液晶11の入射光に対する屈折率分布は入射角には依存
しない。
? - If it is assumed that the orientation direction of the polarized light of the polarizer 5 and the liquid crystal molecules in the absence of an electric field are both the X direction in FIG. 1, and that the rotation of the liquid crystal molecules due to the electric field occurs within the yz plane,
The refractive index distribution of the liquid crystal 11 for incident light does not depend on the incident angle.

つぎに第2の実施例について説明する。Next, a second embodiment will be explained.

これまでの実施例では第2の光学部材の透過率分布はい
づれも、@1図に於けるX方向としたため光点の定食は
同図紙区内で行なうものであった。
In the previous embodiments, the transmittance distribution of the second optical member was set in the X direction in Figure @1, so that the fixed position of the light spot was performed within the area of the same figure.

第2の光学部材2の透過率分布が同図y1同に対して線
形であるとすれば、前述した原理から容昂に類推される
ようにビームの走査方向は紙画に垂直(y万同〕となる
If the transmittance distribution of the second optical member 2 is linear with respect to y1 in the same figure, the scanning direction of the beam is perpendicular to the paper image (y100 ].

そこで本実施例では第2の光学部材として第7図のごと
きものヲ樗える。すなわち21.22は第3図【示すと
同様なフィルタであるが、2Iは透過率分布が同図X方
向であシ、42はX方向(紙面に垂直)である。一様照
明光91゜92は、図示しない光源とフリメータレンズ
により独立に各フィルタに入射されている。ハーフミラ
−23により9ノと92は合成され、X−y平面に対し
て任意の強度勾配金持つ制御光10となり前述した第1
の光学部材1の光4i!I膜に照射される。
Therefore, in this embodiment, a second optical member as shown in FIG. 7 is used. That is, 21 and 22 are filters similar to those shown in FIG. 3, except that 2I has a transmittance distribution in the X direction in the figure, and 42 has a transmittance distribution in the X direction (perpendicular to the plane of the paper). Uniform illumination light 91.degree. 92 is incident on each filter independently by a light source and a frimeter lens (not shown). 9 and 92 are combined by the half mirror 23, and become the control light 10 having an arbitrary intensity gradient with respect to the X-y plane.
The light 4i of the optical member 1! The I film is irradiated.

従って本実施例では、一様照明光9ノと92の強度をそ
れぞれ制御することにより平面8上でビームを2次元的
に走査することができることになる。
Therefore, in this embodiment, by controlling the intensities of the uniform illumination lights 9 and 92, it is possible to scan the beam two-dimensionally on the plane 8.

また第7図の23を偏光ビームスプリンタとし、91と
92金それぞれ互いに直交した直線偏光とすれば照明光
の利用効率全同上させ得る。
Further, if 23 in FIG. 7 is a polarized beam splinter and 91 gold and 92 gold are linearly polarized lights that are orthogonal to each other, the utilization efficiency of illumination light can be improved.

以上の説明では第1の光学部材として液晶と光導成膜を
積層したデバイス金柑いたが、例えばB、8.0のよう
な光導電性と電気光学効果の両方の機能を持つ材料ま念
は両機能を同時に実現させ得るデバイスならばどのよう
なものでも適用可能である。
In the above explanation, a device with laminated liquid crystal and a light guiding film was used as the first optical member, but materials such as B, 8.0, which have both photoconductive and electro-optic effects, are also used. Any device can be applied as long as it can simultaneously realize the functions.

〔発明の効果〕〔Effect of the invention〕

本発明により限られた素子数の固体撮像素子を用いた撮
像装置の解像度全固体撮像素子の素子数以上に高めよう
とする際、町動部全持念ず安価かつ低電力で動作ししか
も収差の影響が極めて少ない系が実現できる。
According to the present invention, when trying to increase the resolution of an imaging device using a solid-state imaging device with a limited number of elements beyond the number of elements of an all-solid-state imaging device, it is possible to operate at low cost and with low power without worrying about all the town moving parts, and to avoid aberrations. It is possible to realize a system in which the influence of

さらに本発明は2次元への拡張が極めて容易にできる方
式である。
Furthermore, the present invention is a method that can be expanded to two dimensions extremely easily.

【図面の簡単な説明】[Brief explanation of drawings]

W1図〜第6図は本発明の第1の実施例?示す図で、第
1図は全体的構成を示す図、第2図は2glの光学部材
の構造を示すlfr面図、第3図(al〜(C)は同部
材の機能2示す図、第4図(at (b) iは第2の
光学部材を示す図、WJs図および′i′E6図(,1
) (b)は作用説明図である、第7図はそれぞn本発
明の他の実施例き示す図である。 1・・・第1の光学部材、2・・・第2の光学部材、8
・・・撮像素子。 第1図 20場 第2図 第7図 □、6Q、10.1FJ7  、。 特許庁長官  宇賀道nt  j役 1、事件の表示 特願超60−194138号 2、発明の名称 固体撮像装置 3、補正をする者 事件との関係 特許出願人 名称(037)  オリンパス光学二[業株式会r14
、代理人
Are Figures W1 to 6 the first embodiment of the present invention? 1 is a diagram showing the overall configuration, FIG. 2 is an lfr side view showing the structure of the 2gl optical member, FIG. 3 (al to (C) is a diagram showing the function 2 of the same member, Figure 4 (at (b) i is a diagram showing the second optical member, WJs diagram and 'i'E6 diagram (,1
) (b) is an explanatory diagram of the operation, and FIG. 7 is a diagram showing other embodiments of the present invention. 1... First optical member, 2... Second optical member, 8
...Image sensor. Figure 1 20th Figure 2 Figure 7 □, 6Q, 10.1FJ7,. Commissioner of the Japan Patent Office Uga Michi nt j Yaku1, Indication of the case Patent application No. 60-194138 2, Name of the invention Solid-state imaging device 3, Person making the amendment Relationship to the case Patent applicant name (037) Olympus Optical 2 [Industry] Co., Ltd. r14
, agent

Claims (2)

【特許請求の範囲】[Claims] (1)制御光の空間強度分布に従って、被制御光の少な
くとも1つの特定の方向に偏光した成分に対する屈折率
の空間的分布が変化する第1の光学部材と 前記第1の光学部材に対する前記制御光の空間強度分布
を空間的に線形となし得る第2の光学部材と前記第2の
光学部材による空間的に線形分布した光の強度の傾きを
変化させ得る手段とを有する光偏向器を、撮影レンズの
焦平面と固体撮像素子の間に構成されたアフォーカルな
結像光学系の平行光束中に配置したことを特徴とする固
体撮像装置。
(1) A first optical member whose spatial distribution of refractive index for a component polarized in at least one specific direction of the controlled light changes according to the spatial intensity distribution of the control light, and the control over the first optical member. An optical deflector having a second optical member capable of making the spatial intensity distribution of light spatially linear, and a means capable of changing the slope of the spatially linearly distributed light intensity by the second optical member, A solid-state imaging device characterized in that it is disposed in a parallel light beam of an afocal imaging optical system configured between a focal plane of a photographing lens and a solid-state imaging device.
(2)前記第2の光学部材が、互いに直交した方向の傾
きを有するフィルターの透過光束を合成する手段を有し
、その合成出力光を前記第1の光学部材の制御光とする
ように配置されたことを特徴とする特許請求の範囲第1
項記載の固体撮像装置。
(2) The second optical member is arranged to have a means for synthesizing the transmitted light beams of filters having inclinations perpendicular to each other, and to use the synthesized output light as control light for the first optical member. Claim 1 characterized in that
The solid-state imaging device described in .
JP60194138A 1985-09-03 1985-09-03 Solid-state image pickup device Pending JPS6253578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194138A JPS6253578A (en) 1985-09-03 1985-09-03 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194138A JPS6253578A (en) 1985-09-03 1985-09-03 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6253578A true JPS6253578A (en) 1987-03-09

Family

ID=16319539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194138A Pending JPS6253578A (en) 1985-09-03 1985-09-03 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6253578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764123A (en) * 1993-08-20 1995-03-10 Internatl Business Mach Corp <Ibm> Distributed-refractive-index type light deflector and method of optical deflection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764123A (en) * 1993-08-20 1995-03-10 Internatl Business Mach Corp <Ibm> Distributed-refractive-index type light deflector and method of optical deflection

Similar Documents

Publication Publication Date Title
US5777795A (en) Optical path extender for compact imaging display systems
US5694180A (en) Projection system for projecting a color video picture and transformation optical system for same
TW201202787A (en) Exposure method for liquid crystal alignment film and apparatus thereof
JP2556831B2 (en) Optical low pass filter and image pickup apparatus using the same
JPH03265819A (en) Optical device
JP2959202B2 (en) Image display device using liquid crystal panel and liquid crystal TV projector
JP2000081573A5 (en)
JPS6253578A (en) Solid-state image pickup device
JP3416941B2 (en) Two-dimensional array type confocal optical device
JP4429407B2 (en) Imaging device
JP3085961B2 (en) Optical device for observing long objects
JPH0827443B2 (en) Shuriren optical device
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
JPS61251819A (en) Optical system for image formation
JP3220783B2 (en) Liquid crystal display
JPH04115786A (en) Image shift type image pickup device
JP2541479B2 (en) Image forming optics
JP7430906B2 (en) Beam scanning wide angle system
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JP2536931B2 (en) Spatial light modulator
JPS6254234A (en) Light deflecting device
JP2776367B2 (en) Image forming optical system
JPH0220823A (en) Method and device for optical space phase modulation
KR20230108208A (en) Camera with tiltable optical field of view changing elements
Howell Patent Reviews: 4,834,508; 4,840,459; 4,840,462; 4,848,885; 4,859,042; 4,859,044; 4,861,145; 4,861,146; 4,861,148; 4,861,163; 4,861,164; 4,863,250; 4,863,251; 4,861,975; 4,861,981; 4,863,252; 4,864,137; 4,783,385; 4,864,869