JPS6253306A - Production of styrene based resin having good moldability - Google Patents

Production of styrene based resin having good moldability

Info

Publication number
JPS6253306A
JPS6253306A JP19287285A JP19287285A JPS6253306A JP S6253306 A JPS6253306 A JP S6253306A JP 19287285 A JP19287285 A JP 19287285A JP 19287285 A JP19287285 A JP 19287285A JP S6253306 A JPS6253306 A JP S6253306A
Authority
JP
Japan
Prior art keywords
monomer
polymerization
molecular weight
styrene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19287285A
Other languages
Japanese (ja)
Inventor
Masao Nagata
永田 巨雄
Hiromitsu Tachibana
立花 博光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP19287285A priority Critical patent/JPS6253306A/en
Publication of JPS6253306A publication Critical patent/JPS6253306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a styrene based resin having good injection and extrusion moldability and a wide molecular weight distribution, by adding another copolymerizable monomer to a process for polymerizing a styrene based monomer to complete the polymerization. CONSTITUTION:A styrene based monomer in an amount of 70-95pts.wt., based on 100pts.wt. total monomer to be used is bulk or suspension polymerized. In the process, 30-5pts.wt. monomer copolymerizable with the above-mentioned monomer, e.g. styrene based monomer, is added thereto when the polymerization conversion is >=70% to complete the polymerization and afford the aimed resin. EFFECT:The resin having preferably >=5.0 molecular weight distribution value expressed by MW/MN (MW is the weight-average molecular weight; MN is the number-average molecular weight) can be readily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加工成形性の優れたスチレン系樹脂を得る為
の製造法に関するものである。詳しくはインジェクショ
ン、押し出し成形性の良好なスチレン系樹脂、更に詳し
くは分子量分布の広いスチレン系樹脂の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a manufacturing method for obtaining a styrenic resin with excellent processing and moldability. More specifically, it relates to a method for producing styrenic resins with good injection and extrusion moldability, and more specifically, styrenic resins with a wide molecular weight distribution.

〔従来の技術・とその問題点〕[Conventional technology and its problems]

インジェクション、押し出し成形性の優れたスチレン系
樹脂を得るためには、従来より滑剤、可塑剤、オリゴマ
ーなとの添加法と、最近に於ては広分子量分布化が行な
われてきた。しかし前者の添加法では、耐熱性、引張り
強度、透明性の低下が生じる欠点があった。又後者では
、低分子量樹脂と高分子量樹脂の混合法とか、低温分解
型の開始剤と高温分解型の開始剤の組合せによる重合法
が既知であるが、これらはいずれも広分子量分布化に対
する効果は不十分で、かつ目的とする加工成形性の改良
効果も不十分であった。また低分子量と高分子量の混合
法では混合工程が必要となり、コスト高になる欠点もあ
る。また開始剤の組合せ法は、市販開始剤の種類1重合
部度0重合転化率の見地から工業的には制限が強く有利
な方法とは言えない。
In order to obtain styrenic resins with excellent injection and extrusion moldability, conventional methods have been to add lubricants, plasticizers, oligomers, etc., and more recently, to widen the molecular weight distribution. However, the former method of addition has the drawback of deteriorating heat resistance, tensile strength, and transparency. For the latter, methods of mixing low-molecular-weight resins and high-molecular-weight resins, and polymerization methods using a combination of low-temperature decomposition type initiators and high-temperature decomposition type initiators are known, but these methods have no effect on widening the molecular weight distribution. was insufficient, and the desired effect of improving processability was also insufficient. Furthermore, the method of mixing low molecular weight and high molecular weight materials requires a mixing step, which has the disadvantage of increasing costs. In addition, the method of combining initiators is industrially highly restricted and cannot be said to be an advantageous method from the viewpoint of the type of commercially available initiator, 1 degree of polymerization, 0 degree of polymerization, and 0 polymerization conversion rate.

ちなみに市販ポリスチレンの分子量分布(Mw/MN、
但しMyは重量平均分子量、MNは数平均分子量を示す
)は塊状重合量で2.3〜2.8、懸濁重合品で2.7
〜3.5である。
By the way, the molecular weight distribution (Mw/MN,
However, My is the weight average molecular weight and MN is the number average molecular weight) is 2.3 to 2.8 for bulk polymerization and 2.7 for suspension polymerization.
~3.5.

本発明はかかる欠点を鑑み、広分子量分布を有し、且つ
成形性の良いスチレン系樹脂を製造する方法を提供する
ものである。
In view of these drawbacks, the present invention provides a method for producing a styrenic resin having a wide molecular weight distribution and good moldability.

〔問題点を解決するための手段及び作用効果〕本発明は
、スチレン系モノマー070〜95重量部(但し、全使
用モノマー量を100重量部とし、以下、部とのみ記す
)を塊状又は懸濁重合する際に、重合転化率が70%以
上、望ましくは80部以との時点でこれらモノマーと共
重合可能なモノマー■、例えばスチレン系モノマー30
〜5部を追加し、重合を完結させることを特徴とする製
造方法を要旨とするものであり、本発明は前述の問題点
を解決し得るものである。つまり分子量分布を広くする
には重合しようとするモノマーを分割して重合系に追加
することで達成されることを見出したのである。本発明
の方法を採用することにより、分子量分布の値として従
来の重合技術では得られなかった値、Mw 7M Nの
値で示せば4.0以と、特に5.0以上のものが容易に
得られるのである。
[Means and effects for solving the problem] The present invention provides 070 to 95 parts by weight of styrene monomer (however, the total amount of monomer used is 100 parts by weight, hereinafter referred to as parts only) in bulk or suspended form. During polymerization, when the polymerization conversion rate is 70% or more, preferably 80 parts or less, a monomer (2) copolymerizable with these monomers, such as a styrene monomer 30
The gist of the present invention is a production method characterized by adding ~5 parts to complete the polymerization, and the present invention can solve the above-mentioned problems. In other words, they discovered that widening the molecular weight distribution can be achieved by dividing the monomer to be polymerized and adding it to the polymerization system. By adopting the method of the present invention, values of molecular weight distribution that could not be obtained with conventional polymerization techniques, in terms of Mw 7M N values of 4.0 or higher, especially those of 5.0 or higher, can be easily obtained. You can get it.

モノマー分割追加法が分子量分布を広くするのに有効な
方法となる理由は明確ではないが、次の様Iこ考えられ
る。一般に高分子重合に於ては、重合の初期に低分子量
物が生成し、重合末期に高分子量物が生成するが、本発
明の方法に於ては重合の初期に比較的低分子量の樹脂を
つくり、重合転化率が70%以J:(好ましくは80%
以J:>になり高分子量物が生成し始める時点でモノマ
ーを追加することにより、この領域をより長くして、高
分子量物の生成を助長せしめることによると考えられる
。ここでモノマーを分割追加することlこJる効果とし
ては2つの大きな効果がある。1つは同じ開始剤量を使
用する場合には、分割追加しない場合に比較して分子量
が高くなり、高分子量物を得るのに有利な方法であるこ
と、また別の効果としては本発明の目的とする分子量分
布の広い樹脂が得られることである。分子量及び分子量
分布には開始剤量及び追加モノマー量及び追加時の重合
転化率が重要であり、これらの量を調整することにより
分子量及び分子量分布をコントロール出来る。
The reason why the monomer division addition method is an effective method for widening the molecular weight distribution is not clear, but the following reasons can be considered. Generally, in polymer polymerization, a low molecular weight product is produced at the beginning of the polymerization, and a high molecular weight product is produced at the end of the polymerization, but in the method of the present invention, a relatively low molecular weight resin is produced at the beginning of the polymerization. The polymerization conversion rate is 70% or more (preferably 80%).
This is thought to be due to the fact that by adding a monomer at the point where J:> is reached and a high molecular weight product starts to be produced, this region is made longer and the production of a high molecular weight product is promoted. Here, dividing and adding the monomer has two major effects. One is that when the same amount of initiator is used, the molecular weight is higher than when it is not added separately, which is an advantageous method for obtaining a high molecular weight product. Another effect is that the present invention The objective is to obtain a resin with a wide molecular weight distribution. The amount of initiator, the amount of additional monomer, and the polymerization conversion rate during addition are important for molecular weight and molecular weight distribution, and by adjusting these amounts, molecular weight and molecular weight distribution can be controlled.

モノマー■の追加時の重合転化率は重要なファクターで
あり、分子量及び分子量分布に大きく影響する。つまり
追加時の転化率が70%未満では分子量及び分子量分布
を広げるには効果がほとんどない。好ましい転化率とし
ては70部以と、望ましくは80部以と、更に望ましく
は90部以との値である。これは本発明の技術が、高分
子の重合に於て、高分子量重合体が生成するのは重合末
期であり、転化率が十分に上がった段階であることを利
用して高分子量重合体をつくろうとする技術である為、
モノマー追加時の転化率が十分高くなければモノマー追
加により重合反応系内の重合体の濃度が低下して、高分
子量重合体を作り得なくなるからである。
The polymerization conversion rate when monomer (2) is added is an important factor and greatly affects the molecular weight and molecular weight distribution. In other words, if the conversion rate at the time of addition is less than 70%, there is little effect on broadening the molecular weight and molecular weight distribution. The preferred conversion rate is 70 parts or more, preferably 80 parts or more, and more preferably 90 parts or more. This is because the technology of the present invention takes advantage of the fact that in polymerization, high molecular weight polymers are produced at the final stage of polymerization, when the conversion rate has sufficiently increased. Because this is the technology we are trying to create,
This is because if the conversion rate at the time of adding the monomer is not sufficiently high, the concentration of the polymer in the polymerization reaction system will decrease due to the addition of the monomer, making it impossible to produce a high molecular weight polymer.

次に追加モノマー■の量としては30〜5部、好ましく
は25〜10部が適当である。30部を越えると、モノ
マー追加時に重合系の重合体濃度が低くなり、高分子量
物が生成しlζくいこと、又5部未満では追加量として
不足であり、全体の分子量及び分子量分布をアップする
迄に至らないからである。
Next, the appropriate amount of the additional monomer (2) is 30 to 5 parts, preferably 25 to 10 parts. If it exceeds 30 parts, the polymer concentration in the polymerization system will be low when monomer is added, and high molecular weight products will not be produced.If it is less than 5 parts, the additional amount will be insufficient and the overall molecular weight and molecular weight distribution will increase. This is because it does not reach that point.

開始剤量については、得られる樹脂の平均分子量から設
定すべきであり、例えばポリスチレンの場合にはη5p
=1.0〜2.0になる様に設定すべきである。但し、
ここでηspとはトルエンを溶媒として1%濃度のポリ
マー溶液をつくり、30°Cで測定した比粘度のことで
ある。ちなみに開始剤量はモノマー■に対して0.05
〜1.0重量%の範囲で設定されるのがよい。また開始
剤としては特殊なものを使用する必要はなく、例えばポ
リスチレンを得ようとする場合にはポリスチレンの重合
に使用される一般的な開始剤の使用が可能である。
The amount of initiator should be determined based on the average molecular weight of the resulting resin; for example, in the case of polystyrene, η5p
= 1.0 to 2.0. however,
Here, ηsp is the specific viscosity measured at 30°C after preparing a 1% polymer solution using toluene as a solvent. By the way, the amount of initiator is 0.05 per monomer ■
It is preferable to set it in a range of 1.0% by weight. Further, it is not necessary to use a special initiator; for example, when polystyrene is to be obtained, a general initiator used for polymerization of polystyrene can be used.

その様な開始剤の例を挙げれば、ベンゾイルパーオキサ
イド、ジクミルパーオキサイド、ラウロイルパーオキサ
イド、等の通常使用される開始剤の他(こ、アソヒスイ
ソブチロニトリル、ジメチル−2,2−アゾビスイソブ
チレー1−,1.1’−アゾビスシクロヘキサン−1−
カーボニトリル9等のアゾ系開始剤の使用も可能である
。また勿論、2官能性過酸化物としてジ−t−ブチルパ
ーオキシヘキサンハイドロテレフタレート、2,5−ジ
メチル−2,5ビス(2−エチルヘキサノイルパーオキ
シ)ヘキサン、t、i’−ジ−t−ブチルパーオキシ−
3゜3.5−トリメチルシクロヘキサン等の開始剤も本
発明に使用できる。これら開始剤の添加は、モノマー■
に添加しておき、モノマー■には添加しない事が追加モ
ノマーがより均一に重合系に分散するので好ましい。し
かし残存モノマーを減少せしめる為に、追加モノマー■
にも少量の開始剤を添加することは何ら支障はない。
Examples of such initiators include commonly used initiators such as benzoyl peroxide, dicumyl peroxide, lauroyl peroxide, etc. Bisisobutylene 1-,1.1'-azobiscyclohexane-1-
It is also possible to use azo initiators such as carbonitrile 9. Of course, difunctional peroxides include di-t-butylperoxyhexane hydroterephthalate, 2,5-dimethyl-2,5bis(2-ethylhexanoylperoxy)hexane, t,i'-di-t -Butyl peroxy-
Initiators such as 3°3.5-trimethylcyclohexane can also be used in the present invention. The addition of these initiators
It is preferable to add the additional monomer to the monomer (2) and not to the monomer (2) because the additional monomer is more uniformly dispersed in the polymerization system. However, in order to reduce the remaining monomer, additional monomer ■
There is no problem in adding a small amount of initiator.

次に重合温度について考えてみると、分子量分布を広く
する為に、重合中に温度変更を行なうことは何ら支障は
ない。例えば重合の前半を比較的高温で重合し、高分子
量物が生成する重合後半では比較的低温で重合する方法
等がある。
Next, considering the polymerization temperature, there is no problem in changing the temperature during polymerization in order to widen the molecular weight distribution. For example, there is a method in which the first half of the polymerization is carried out at a relatively high temperature, and the second half of the polymerization, in which a high molecular weight product is produced, is carried out at a relatively low temperature.

本発明で言うスチレン系モノマーのとはスチレンを50
重量%以上含有するモノマー系のことであり、スチレン
単独のモノマー系以外にスチレンと各種モノマーとの混
合系も含まれる。スチレン以外のモノマーとしてはスチ
レンと反応するものであればよく、例えばパラメチルス
チレン、パラ−t−ブチルスチレン等の核アルキル置換
スチレン;パラクロルスチレン、オルト・パラ−ジクロ
ルスチレン等の核ハロゲン置換スチレン;α−メチルス
チレン等のα位置換スチレン等のスチレン誘導体の他、
アクリロニトリル、メタアクリロニトリル、メチルメタ
クリレート、エチルメタクリレート等が挙げられる。
In the present invention, the styrenic monomer refers to styrene.
It refers to a monomer system containing styrene in an amount of % or more by weight, and includes not only a monomer system containing styrene alone but also a mixture system of styrene and various monomers. Monomers other than styrene may be monomers that react with styrene, such as nuclear alkyl-substituted styrenes such as para-methylstyrene and para-t-butylstyrene; nuclear halogen-substituted styrenes such as para-chlorostyrene and ortho-para-dichlorostyrene. Styrene: In addition to styrene derivatives such as α-substituted styrene such as α-methylstyrene,
Examples include acrylonitrile, methacrylonitrile, methyl methacrylate, and ethyl methacrylate.

スチレン系モノマーのと共重合可能なモノマー■として
はスチレン系モノマー■と共重合可能なものであればよ
く、上記スチレン系モノマーの池、一般に公知のモノマ
ーがアル。
The monomer (2) that can be copolymerized with the styrene monomer may be any monomer that can be copolymerized with the styrene monomer (2).

また本発明で言うスチレン系樹脂とは、樹脂組成として
スチレン構造単位を50重量%以と含有する樹脂のこと
である。
Furthermore, the styrene resin referred to in the present invention refers to a resin containing 50% by weight or more of styrene structural units as a resin composition.

本発明に於て分子量調整等のため連鎖移動剤を使用する
ことは何ら差し支えない。
In the present invention, there is no problem in using a chain transfer agent for purposes such as molecular weight adjustment.

本発明における重合法として懸濁重合法を採用する場合
には、公知の分散剤を用いることができる。その様な分
散剤としては部分鹸化ポリ酢酸ビニル、ポリビニルピロ
リドン、メチルセルローズ等の有機分散剤の他、第3燐
酸カルシュウム、燐酸マグネシウム、ケイ酸ソーダ、酸
化面沿、炭酸マグネシウム等の無機分散剤も使用可能で
あり、その場合にはドデシルベンゼンスルホン酸ソーダ
When employing suspension polymerization as the polymerization method in the present invention, known dispersants can be used. Examples of such dispersants include organic dispersants such as partially saponified polyvinyl acetate, polyvinylpyrrolidone, and methyl cellulose, as well as inorganic dispersants such as tertiary calcium phosphate, magnesium phosphate, sodium silicate, oxidized polyvinyl phosphate, and magnesium carbonate. Can be used, in which case sodium dodecylbenzenesulfonate.

α−オレフィン−スルホン酸ソーダ等のアニオン界面活
性剤を併用すると分散効果は著しくよくなる。又、本発
明に於ては種々の成形性改善効果を有する既知の滑剤の
使用が可能であり、その場合には極少量の使用量で充分
である。また耐衝撃性を改良する為にエラストマーの存
在下に本発明の重合法を採用することも可能である。
When an anionic surfactant such as α-olefin sodium sulfonate is used in combination, the dispersion effect is significantly improved. Further, in the present invention, it is possible to use known lubricants having various effects of improving moldability, and in that case, a very small amount is sufficient. It is also possible to employ the polymerization method of the present invention in the presence of an elastomer to improve impact resistance.

本発明によれば分子量分布の広い、加工成形性に優れた
スチレン系樹脂を工業的に有利に製造することができる
According to the present invention, a styrenic resin having a wide molecular weight distribution and excellent processability can be advantageously produced industrially.

〔実施例〕〔Example〕

以下、具体例を用いて説明するが、重合転化率はガスク
ロマトグラフィーで残存モノマー量を測定することによ
、り算出した。ηsp値は前述の方法で求め、また本発
明が狙いとする分子量分布についてはGPC測定による
Mw/MNでその指標とした。又、インジェクション成
形評価については、ノズル温度を220°Cにし、金型
はバターケース状金型を用いて連続成形可能ショツト数
で判定した。つまり成形体離型時のサンプルの折れ、樹
脂供給ゲート部の詰り、ランナ一部の折れ等が発生すれ
ば運転を停止させねばならないが、その様なことがなく
て連続して成形できるショツト数で成形性の指標とした
As will be explained below using a specific example, the polymerization conversion rate was calculated by measuring the amount of residual monomer using gas chromatography. The ηsp value was determined by the method described above, and Mw/MN measured by GPC was used as an index for the molecular weight distribution targeted by the present invention. Regarding injection molding evaluation, the nozzle temperature was set to 220°C, a butter case-shaped mold was used, and the number of shots that could be continuously molded was evaluated. In other words, if the sample breaks during mold release, the resin supply gate gets clogged, or part of the runner breaks, etc., the operation must be stopped, but the number of shots that can be molded continuously without such problems was used as an index of formability.

実施例1〜3 撹拌機付きオートクレーブに水110部、第3燐酸カル
シュウムo、ao部、ドデシルベンゼンスルフオン酸ソ
ーダ0.005部、塩化ナトリウム0.3部を入れ、次
に撹拌下でベンゾイルパーオキサイド0.28部、ジ−
t−ブチルパーオキシ−3゜3.5−1−ジメチルシク
ロヘキサン0.15部、スチレン75部よりなる系を導
入し、98°Cに昇温しで3時間30分の重合を行なっ
た。この時点の重合転化率は83%であった。この系に
スチレン25部を導入し、更に2時間の重合を行ない、
更に115°Cに昇温しで4時間の熱処理を行なって後
、冷却、脱水、乾燥して樹脂Aを得た。また98°Cで
3時間30分の重合を行なう代りに、4時間30分、5
時間30分の重合を行なった後にスチレンを追加する以
外は樹脂Aと同様にして樹脂B、0を得た。この場合、
追加時の転化率は各々90%。
Examples 1 to 3 110 parts of water, parts of tertiary calcium phosphate o, ao, 0.005 parts of sodium dodecylbenzenesulfonate, and 0.3 parts of sodium chloride were placed in an autoclave equipped with a stirrer, and then benzoyl peroxide was added under stirring. 0.28 parts of oxide, di-
A system consisting of 0.15 parts of t-butylperoxy-3.5-1-dimethylcyclohexane and 75 parts of styrene was introduced, the temperature was raised to 98°C, and polymerization was carried out for 3 hours and 30 minutes. The polymerization conversion rate at this point was 83%. 25 parts of styrene was introduced into this system, and polymerization was further carried out for 2 hours.
Further, the temperature was raised to 115°C and a heat treatment was performed for 4 hours, followed by cooling, dehydration, and drying to obtain Resin A. Also, instead of performing polymerization at 98°C for 3 hours and 30 minutes, polymerization was performed for 4 hours and 30 minutes, 5
Resin B, 0 was obtained in the same manner as Resin A except that styrene was added after 30 minutes of polymerization. in this case,
The conversion rate upon addition was 90% for each.

95%であった。得られた樹脂の物性及び成形性は表−
1に示す通りである。
It was 95%. The physical properties and moldability of the obtained resin are shown in Table-
As shown in 1.

実施例4〜6 実施例1〜3に於て、スチレン80部を初期に仕込み、
98℃で4時間、5時間、及び6時間の重合を行ない、
スチレン20部を追加する以外は同様に処理して樹脂り
、E、Fを得た。スチレン追加時の転化率は各々88%
、93%、96%であった。結果を表−1に示す。
Examples 4 to 6 In Examples 1 to 3, 80 parts of styrene was initially charged,
Polymerization was carried out at 98° C. for 4 hours, 5 hours, and 6 hours,
Resins E and F were obtained by the same treatment except that 20 parts of styrene was added. The conversion rate when adding styrene was 88% in each case.
, 93% and 96%. The results are shown in Table-1.

実施例7〜8 実施例1〜3に準じてベンゾイルパーオキサイド使用量
として0.23部を使用し、スチレン90部を初期に仕
込み98°Cで4時間30分及び5時間30分の重合を
行なった。この時点の重合転化率は各々89%及び95
%であった。この系にスチレン10部を追加して更に2
時間の重合を行ない、引続き115℃に昇温しで同様に
処理して樹脂G、)Iを得た。結果は表−1に示す。
Examples 7 to 8 According to Examples 1 to 3, 0.23 parts of benzoyl peroxide was used, 90 parts of styrene was initially added, and polymerization was carried out at 98°C for 4 hours and 30 minutes and 5 hours and 30 minutes. I did it. The polymerization conversion rates at this point were 89% and 95%, respectively.
%Met. Add 10 parts of styrene to this system and
Polymerization was carried out for a period of time, followed by raising the temperature to 115° C. and treating in the same manner to obtain resins G and )I. The results are shown in Table-1.

比較例−1 実施例1〜3でスチレン75部の代すに100部を使用
し、98°Cで4時間の重合を行なって、スチレン追加
をせずに115°Cに昇温しで重合を完結し、比較樹脂
Aとした。このものの物性及び成形性を表−1に示した
Comparative Example-1 In Examples 1 to 3, 100 parts of styrene was used instead of 75 parts, polymerization was carried out at 98°C for 4 hours, and polymerization was carried out by raising the temperature to 115°C without adding styrene. was completed and designated as comparative resin A. The physical properties and moldability of this product are shown in Table 1.

比較例−2 比較例−1でベンゾイルパーオキサイド0.28部使用
する代りに0゜16部を使用し、且つ98°Cで4時間
重合する代りに98°Cで4時間30分の重合を行う以
外は全く同様にして比較樹脂Bを得た。このものについ
ての物性及び成形性を表−1に示した。
Comparative Example-2 In Comparative Example-1, 0.16 parts of benzoyl peroxide was used instead of 0.28 parts, and instead of polymerizing at 98°C for 4 hours, polymerization was performed at 98°C for 4 hours and 30 minutes. Comparative resin B was obtained in exactly the same manner except for the following procedure. The physical properties and moldability of this product are shown in Table 1.

比較例−3 樹脂Aを得るところで、98°Cで3時間30分の重合
を行なう代りに2時間の重合を行なった。
Comparative Example 3 To obtain Resin A, polymerization was carried out for 2 hours instead of 3 hours and 30 minutes at 98°C.

この時点の重合転化率は65%であった。以下スチレン
25部を添加して2時間の重合を行ない、後熱処理を行
ない重合を完結して比較樹脂Cを得た。このものの物性
及び成形性を表−1に示した。
The polymerization conversion rate at this point was 65%. Thereafter, 25 parts of styrene was added and polymerization was carried out for 2 hours, followed by a post-heat treatment to complete the polymerization to obtain comparative resin C. The physical properties and moldability of this product are shown in Table 1.

比較例−4 実施例4〜6に於て、初期スチレン80部の代りに96
部を使用し、且つベンゾイルパーオキサイド0.28部
の代りに0.18部を使用して98°Cで4時間30分
の重合を行なった。この時点の転化率は85%であった
。この系にスチレン4部を追加して同様の処理を行ない
、得られた樹脂を比較樹脂りとした。結果は表−1に示
す。
Comparative Example-4 In Examples 4 to 6, 96 parts of styrene was used instead of 80 parts of the initial styrene.
Polymerization was carried out at 98° C. for 4 hours and 30 minutes using 0.18 parts of benzoyl peroxide instead of 0.28 parts. The conversion rate at this point was 85%. This system was treated in the same manner with 4 parts of styrene added, and the resulting resin was used as a comparative resin. The results are shown in Table-1.

比殻例−1,2はモノマー追加しない例であり・Mv/
MN値が低く成形性も悪い。比較例−3ではスチレン追
加時の転化率が低いためηSp、MW/MN共に上らず
、且つ成形性も悪い。比較例−4では追加スチレン量が
少なく 、Mw1MN値が上らず、且つ成形性も悪い。
Ratio shell examples-1 and 2 are examples in which monomer is not added.・Mv/
The MN value is low and the moldability is also poor. In Comparative Example 3, since the conversion rate when adding styrene was low, neither ηSp nor MW/MN increased, and the moldability was also poor. In Comparative Example 4, the amount of additional styrene was small, the Mw1MN value did not increase, and the moldability was poor.

Claims (3)

【特許請求の範囲】[Claims] (1)スチレン系モノマー(A)70〜95重量部を塊
状又は懸濁重合する際に、重合転化率が70%以上の時
点でこれらモノマーと共重合可能なモノマー(B)30
〜5重量部を追加し、重合を完結させることを特徴とす
るスチレン系樹脂の製造方法(但し全使用モノマー量を
100重量部とする)。
(1) When carrying out bulk or suspension polymerization of 70 to 95 parts by weight of the styrene monomer (A), 30% of the monomer (B) that can be copolymerized with these monomers when the polymerization conversion rate is 70% or more.
A method for producing a styrenic resin, characterized by adding ~5 parts by weight to complete the polymerization (provided that the total amount of monomers used is 100 parts by weight).
(2)モノマー(B)がスチレン系モノマーである特許
請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the monomer (B) is a styrene monomer.
(3)スチレン系モノマー(A)及びこれと共重合可能
なモノマー(B)がスチレンである特許請求の範囲第1
項記載の製造方法。
(3) Claim 1, wherein the styrenic monomer (A) and the monomer copolymerizable therewith (B) are styrene.
Manufacturing method described in section.
JP19287285A 1985-08-30 1985-08-30 Production of styrene based resin having good moldability Pending JPS6253306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19287285A JPS6253306A (en) 1985-08-30 1985-08-30 Production of styrene based resin having good moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19287285A JPS6253306A (en) 1985-08-30 1985-08-30 Production of styrene based resin having good moldability

Publications (1)

Publication Number Publication Date
JPS6253306A true JPS6253306A (en) 1987-03-09

Family

ID=16298375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19287285A Pending JPS6253306A (en) 1985-08-30 1985-08-30 Production of styrene based resin having good moldability

Country Status (1)

Country Link
JP (1) JPS6253306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087308C (en) * 1995-03-31 2002-07-10 住友化学工业株式会社 Process for producing styrenic polymer
JP2008260795A (en) * 2007-04-10 2008-10-30 Kaneka Corp Method for producing foamable polystyrene-based resin particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087308C (en) * 1995-03-31 2002-07-10 住友化学工业株式会社 Process for producing styrenic polymer
JP2008260795A (en) * 2007-04-10 2008-10-30 Kaneka Corp Method for producing foamable polystyrene-based resin particle

Similar Documents

Publication Publication Date Title
JPS60229911A (en) Impact-resistant plastic resin composition
KR102146370B1 (en) Method for preparing copolymer
US3817965A (en) Polymerization of vinyl compounds in suspension
US4308354A (en) Making impact resistant polymers
US3428712A (en) Process for obtaining polybutadiene-modified styrene resins
US3839308A (en) Styrene-methacrylic acid copolymers and their preparation
US3676527A (en) Process for preparation of high impact polystyrene
CA1322071C (en) Process for producing a heat resistant resin composition
JPS6227449A (en) Styrenic polymer resin having improved flowing characteristics
US3629211A (en) Copolymers of styrene and process for preparation thereof
JPS6253306A (en) Production of styrene based resin having good moldability
JPS5858369B2 (en) Method for manufacturing acrylic foam
JPS60203612A (en) Preparation of copolymer
JPS6128698B2 (en)
KR100528779B1 (en) Thermoplastic Resin Composition Having Excellent Heat Resistance and Low Gloss
KR100187551B1 (en) The preparation of thermoplastic resin composition having high impact strength
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
JP3344201B2 (en) Method for producing styrenic polymer
JPS59155410A (en) Thermoplastic resin and its production
US3100198A (en) Blend of an alpha-methylstyrene/acrylonitrile copolymer with a copolymer of alpha-methylstyrene and a diolefin having styrene and acrylonitrile grafted thereon
JPS61185512A (en) Production of heat-sensitive thermoplastic copolymer having excellent moldability and colorability
KR20000018421A (en) Manufacturing method of thermoplastic resin having excellent whiteness and impact resistance
JPH0684409B2 (en) Method for producing heat-resistant thermoplastic resin
KR100370895B1 (en) Rubber containing graft copolymer composition having improved powder properties
JPS6253307A (en) Styrene baded resin having improved moldability