JPS6253098B2 - - Google Patents

Info

Publication number
JPS6253098B2
JPS6253098B2 JP56009005A JP900581A JPS6253098B2 JP S6253098 B2 JPS6253098 B2 JP S6253098B2 JP 56009005 A JP56009005 A JP 56009005A JP 900581 A JP900581 A JP 900581A JP S6253098 B2 JPS6253098 B2 JP S6253098B2
Authority
JP
Japan
Prior art keywords
station
mobile station
transmission
timing
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56009005A
Other languages
Japanese (ja)
Other versions
JPS57131137A (en
Inventor
Kazu Moryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP56009005A priority Critical patent/JPS57131137A/en
Publication of JPS57131137A publication Critical patent/JPS57131137A/en
Publication of JPS6253098B2 publication Critical patent/JPS6253098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は固定局の通信管制室より遠方に配設し
てある送信所および受信所を用いて、広域に移動
する複数移動局とデイジタル符号伝送の送受信を
行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for transmitting and receiving digital code transmissions to and from a plurality of mobile stations moving over a wide area using a transmitting station and a receiving station located far from a communication control room of a fixed station. .

従来は伝送品質の悪い無線回線でデイジタル符
号伝送を行う場合には、従属同期方式のビツト同
期補正、すなわち受信側でビツト変換点を常に検
出して送信側とビツト同期およびフレーム同期を
行つていた。特にHF回路のように混信やフエー
ジングを伴う回線では、いつたん同期がとれても
ビツト同期ずれを生じるからフレーム同期ずれを
生じることがあり、これによつて受信符号誤りを
発生することが少なくなかつた。またいつたんビ
ツトおよびフレームの同期がとれた後は、受信側
で前記のようなビツト同期追従を行わずに局部発
振器の安定度を上げてビツト同期タイミングの位
相を記憶し、以後は独立同期の方式で検波する方
法もあるが、広い範囲を速い速度で移動するよう
な移動体では、受信信号によつてビツト同期タイ
ミングの位相補正を常に行わねばならないなど適
正な同期補正を要求されるので、通信の迅速性お
よび確実性に欠けることが欠点であつた。
Conventionally, when transmitting digital codes over a radio link with poor transmission quality, bit synchronization correction using the dependent synchronization method was used, in other words, the receiving side constantly detected bit conversion points and performed bit and frame synchronization with the transmitting side. Ta. Particularly in lines that are subject to interference and fading, such as HF circuits, even if synchronization is achieved, bit synchronization may occur, which can cause frame synchronization, and this can reduce the chance of receiving code errors. Nakatsuta. In addition, once the bits and frames have been synchronized, the receiving side does not follow the bit synchronization as described above, increases the stability of the local oscillator, memorizes the phase of the bit synchronization timing, and thereafter performs independent synchronization. There is also a method of detecting the signal using a digital signal, but in a moving object that moves over a wide area at high speed, appropriate synchronization correction is required, such as constantly having to perform phase correction of the bit synchronization timing based on the received signal. The disadvantage was that communication lacked speed and reliability.

本発明は、これらの欠点を解消するために、固
定局と移動局間の送受信タイミングが位相補正さ
れた状態で独立同期方式で設定可能な距離による
位相補正を行なう移動通信方法を提供するもので
ある。
In order to eliminate these drawbacks, the present invention provides a mobile communication method that performs phase correction based on a settable distance using an independent synchronization method while the transmission and reception timing between a fixed station and a mobile station is phase corrected. be.

この目的達成のために、本発明は固定局の通信
管制室より遠方に配設してある送信所および受信
所を用いて、広域に移動する複数移動局とデイジ
タル符号伝送の送受信を行う場合に、通信管制室
にて送信所および受信所までの専用回線の距離遅
延分をあらかじめ補正しておき、各移動局は固定
局から送信されるビツトおよびフレーム同期信号
によつて同期をとつた後は、その位置の変動に対
して固定受信所までの無線空間距離によつて距離
遅延補正を行うように構成される。
To achieve this objective, the present invention uses a transmitting station and a receiving station located far from the communication control room of a fixed station to transmit and receive digital code transmissions to and from multiple mobile stations moving over a wide area. The distance delay of the dedicated line to the transmitting station and receiving station is corrected in advance in the communication control room, and each mobile station synchronizes with the bit and frame synchronization signals transmitted from the fixed station. , and is configured to perform distance delay correction for variations in its position based on the radio spatial distance to the fixed receiving station.

本発明は特にHF帯デイジタル符号伝送を行う
場合に有効である。以下図面によつて本発明を詳
細に説明する。
The present invention is particularly effective when performing HF band digital code transmission. The present invention will be explained in detail below with reference to the drawings.

第1図は本発明を実施した移動通信系の構成例
図で、1は固定局の通信管制室、2は送信機Tx
とアンテナを含む送信所、3は受信機Rxとアン
テナを含む受信所である。4,5,6等は移動局
である。固定局の通信管制室1と送信所2間およ
び受信所3と管制室1間はマイクロ波回線あるい
は陸線などの専用回線で接続されている。D1
D2はそれぞれ専用回線1−2間、1−3間の距
離である。またd11,d12は移動局4と送信局2、
受信所3それぞれとの無線空間距離であり、同様
にd21,d22は移動局5,d31,d32は移動局6それ
ぞれの固定局送、受信所との無線空間距離とす
る。
FIG. 1 is a diagram showing an example of the configuration of a mobile communication system in which the present invention is implemented, in which 1 is a communication control room of a fixed station, 2 is a transmitter T x
3 is a transmitting station including a receiver R x and an antenna, and 3 is a receiving station including a receiver R x and an antenna. 4, 5, 6, etc. are mobile stations. The communication control room 1 of the fixed station and the transmitting station 2 and the receiving station 3 and the control room 1 are connected by a dedicated line such as a microwave line or a land line. D1 ,
D 2 is the distance between dedicated lines 1-2 and 1-3, respectively. Also, d 11 and d 12 are mobile station 4 and transmitting station 2,
It is assumed that d 21 and d 22 are the radio spatial distances with each of the receiving stations 3, and similarly, d 21 and d 22 are the radio spatial distances between the mobile station 5 and the fixed station transmission and receiving stations, respectively.

通信開始に先立つて固定局と移動局とのビツト
同期補正は次のように行う。まず通信管制室1の
変調器出力から送信アンテナ出力までの遅延時間
をt1(t1は距離D1の遅延分と送信機および送信ア
ンテナ2全体の遅延分の和になる)とし、受信ア
ンテナ入力から通信管制室の復調器入力までの遅
延時間をt6(t6は距離D2の遅延分と受信アンテナ
および受信機3全体の遅延分の和)とする。次に
無線空間の遅延補正の設定には第2図にその表示
例を示した距離補正用デイジタル切替スイツチ7
で行い、固定局は0000、移動局はその現在位置に
より例えば1150のようにそれぞれ設定する。固定
局の送信タイミングと受信タイミング間には前者
が後者よりt1+t6分だけ位相を進めておく(後記
の第3図13および第5図(1)、(2)参照)。
Prior to the start of communication, bit synchronization between the fixed station and the mobile station is corrected as follows. First, let the delay time from the modulator output in the communication control room 1 to the transmitting antenna output be t 1 (t 1 is the sum of the delay of distance D 1 and the delay of the transmitter and transmitting antenna 2 as a whole), and Let the delay time from the input to the demodulator input in the communication control room be t 6 (t 6 is the sum of the delay of distance D 2 and the delay of the receiving antenna and receiver 3 as a whole). Next, to set the wireless space delay correction, use the distance correction digital changeover switch 7, a display example of which is shown in Figure 2.
The fixed station is set to 0000, and the mobile station is set to, for example, 1150 depending on its current location. Between the transmission timing and reception timing of the fixed station, the former is advanced in phase by t 1 +t 6 minutes than the latter (see FIG. 3, 13, and FIGS. 5 (1) and (2), described later).

第3図は第1図の固定局または移動局の送受信
装置の構成例ブロツク図で、固定局の場合には通
信管制室に装備される装置を示している。8〜1
2は送信側で、8は端末装置であるリーダ、キー
ボードまたはコンピユータ等との入出力インター
フエース回路、9はバツフアメモリで端末装置と
送信出力との入出力タイムベース調整用である。
10は時分割出力回路で、タイミング発生回路1
3よりのクロツクに従つてバツフアメモリ9より
のデータを直列信号に変換して送出する。11は
プリアンブル信号発生回路で、受信側でビツト同
期補正を行わせるためのものである。12は変調
器で専用回線を経由して送信機に変調入力信号を
与える。変調器12には位相偏移式(PSK)また
は周波数偏移式(FSK)等の無線回線用の変調
器が採用される。15〜19は受信側である。ま
た送受双方に共通な13はタイミング発生回路
で、制御回路14に設けられた距離補正および専
用回線等の固定遅延時間補正のスイツチなどによ
つて送受信のクロツクタイミングが決定される。
また制御回路14は送受切替と距離補正設定とが
役目である。受信入力側の19は復調器で、受信
所3からの受信機復調信号をデイジタル信号に変
換する。この復調器19にはFSKまたはPSK等
の無線回線用の復調器が用いられる。18は受信
ビツト同期検出回路、17は波形整形回路で復調
器19よりのデイジタル信号入力で波形整形する
回路、16はバツフアメモリ回路で、受信入力信
号と受信端末装置(たとえばパンチヤー、プリン
タ、コンピユータ等)への出力とのタイムベース
の調整を行うために設けられる。15は受信端末
装置に対するインターフエース回路である。
FIG. 3 is a block diagram showing an example of the configuration of a transmitting/receiving device for a fixed station or a mobile station shown in FIG. 1, and in the case of a fixed station, it shows the device installed in a communication control room. 8-1
Reference numeral 2 denotes a transmitting side, 8 an input/output interface circuit with a terminal device such as a reader, a keyboard, or a computer, and 9 a buffer memory for adjusting the input/output time base between the terminal device and transmission output.
10 is a time division output circuit, and timing generation circuit 1
The data from the buffer memory 9 is converted into a serial signal and sent out according to the clock from the buffer memory 9. Reference numeral 11 denotes a preamble signal generation circuit for performing bit synchronization correction on the receiving side. A modulator 12 provides a modulated input signal to the transmitter via a dedicated line. The modulator 12 is a phase shift type (PSK) modulator, a frequency shift type (FSK) modulator, or the like for a wireless line. 15 to 19 are the receiving side. Reference numeral 13, which is common to both transmission and reception, is a timing generation circuit, and the clock timing for transmission and reception is determined by a switch provided in the control circuit 14 for distance correction and fixed delay time correction of a dedicated line, etc.
The control circuit 14 also has the role of switching transmission and reception and setting distance correction. A demodulator 19 on the receiving input side converts the receiver demodulated signal from the receiving station 3 into a digital signal. As the demodulator 19, a demodulator for a wireless line such as FSK or PSK is used. 18 is a reception bit synchronization detection circuit, 17 is a waveform shaping circuit that shapes the waveform based on the digital signal input from the demodulator 19, and 16 is a buffer memory circuit that handles the reception input signal and the reception terminal device (for example, puncher, printer, computer, etc.). It is provided to perform time base adjustment with the output to. 15 is an interface circuit for the receiving terminal device.

なお第4図は送、受信の符号構成例タイムチヤ
ートで、(1)は送信符号、(2)は受信符号、(3)はビツ
ト同期用符号でプリアンブル(preamble)信号
と呼ばれる。また第5図は位相補正を説明するた
めのタイムチヤートで、縦軸には信号別の番号
を、横軸にはすべて時間tをとつている。これら
の説明はつぎの第3図の動作説明中に行うことに
する。
FIG. 4 is a time chart showing an example of a code structure for transmission and reception, in which (1) is a transmission code, (2) is a reception code, and (3) is a bit synchronization code, which is called a preamble signal. FIG. 5 is a time chart for explaining phase correction, with numbers for each signal on the vertical axis and time t on the horizontal axis. These explanations will be made during the explanation of the operation shown in FIG. 3 below.

第3図の回路において固定局であれば前記固定
局内のt1+t6の固定遅延補正分はタイミング発生
回路13の入力すなわち制御回路14の出力にて
補正しておく。なお専用回線の固定遅延分は装置
の半固定スイツチであらかじめ補正しておく。第
5図の最上段(1)は固定局の受信検波入力のタイミ
ングを表わす。これを第3図でいえば復調器19
で検波されたタイミングである。すなわちビツト
変換点をのラインとすれば、任意のとその
のすぐ右隣りのとの間が1ビツトの時間長とな
る。固定用の変調部12からの出力タイミングは
上記のように制御回路14内部の固定遅延補正回
路により第5図(2)の送信タイミングになる。第5
図の(1)と(2)の比較から明らかなように(2)の送信タ
イミングはt1+t6分だけ受信タイミングより位相
が進んでいる。第5図(3)は固定局送信所のアンテ
ナ出力の位相タイミングで、前記のように(2)より
もt1だけ遅れて無線空間に発射される。このよう
に固定局が送、受位相のタイミングをとつた場合
に、各移動局が固定局に合わせて送、受信の位相
タイミング補正を行う場合には、固定局の第3図
プリアンブル信号発生回路11から第4図(3)に示
すようなプリアンブル信号を任意時間だけ送信す
る。移動局の受信部の構成が第3図の下半部のよ
うであるとすれば、移動局はこの信号を受信検波
後受信ビツト同期検出回路18でビツト同期追従
補正を行い、一定時間受信したらビツト追従を停
止し、この位相タイミングで記憶する。記憶され
たタイミング情報はタイミング発生回路13に送
られ、受信検波の1ビツトの積分時間および検波
後の受信ビツトサンプリング時間を決定する。第
5図(4)は移動局の受信アンテナ入力タイミングで
ある。たとえばこれは第1図の移動局4の受信ア
ンテナ入力のタイミングとすれば、d11の無線空
間遅延分がt2となり計算上ではd11=1000Kmで約
3.3msec程度の遅延になる。第5図(5)は復調回路
19の検波出力のタイミングである。(4)よりの遅
れt3は受信機および復調回路19における遅延分
である。
In the case of a fixed station in the circuit of FIG. 3, the fixed delay correction amount of t 1 +t 6 in the fixed station is corrected at the input of the timing generation circuit 13, that is, the output of the control circuit 14. Note that the fixed delay of the dedicated line is compensated in advance using a semi-fixed switch on the equipment. The top row (1) in FIG. 5 represents the timing of reception detection input to the fixed station. In Fig. 3, this can be expressed as the demodulator 19
This is the timing at which the wave was detected. That is, if the bit conversion point is a line, the time length between any one and its immediate right neighbor is one bit. The output timing from the fixed modulation unit 12 becomes the transmission timing shown in FIG. 5(2) due to the fixed delay correction circuit inside the control circuit 14 as described above. Fifth
As is clear from a comparison between (1) and (2) in the figure, the transmission timing in (2) is ahead of the reception timing by t 1 +t 6 in phase. FIG. 5 (3) shows the phase timing of the antenna output of the fixed station transmitting station, which is emitted into the radio space with a delay of t 1 from (2) as described above. In this way, when the fixed station adjusts the timing of transmission and reception phases, if each mobile station corrects the phase timing of transmission and reception according to the fixed station, the preamble signal generation circuit shown in Figure 3 of the fixed station is used. 11 to transmit a preamble signal as shown in FIG. 4(3) for an arbitrary period of time. Assuming that the configuration of the receiving section of the mobile station is as shown in the lower half of Fig. 3, the mobile station performs bit synchronization tracking correction on the received bit synchronization detection circuit 18 after receiving and detecting this signal, and after receiving the signal for a certain period of time, Stop bit tracking and store at this phase timing. The stored timing information is sent to the timing generation circuit 13, which determines the 1-bit integration time of reception detection and the reception bit sampling time after detection. FIG. 5(4) shows the receiving antenna input timing of the mobile station. For example, if this is the timing of input to the receiving antenna of mobile station 4 in Figure 1, the radio space delay of d 11 becomes t 2 , which is calculated as d 11 = 1000 km, which is approximately
The delay will be about 3.3msec. FIG. 5(5) shows the timing of the detection output of the demodulation circuit 19. The delay t 3 from (4) is the delay in the receiver and demodulation circuit 19.

こゝで移動局は自局の位置から固定局の受信所
位置までの距離を推定し、第3図の制御回路14
に含まれるデイジタル切替スイツチ(距離補正ス
イツチ、第2図)によつて距離を設定する。なお
第2図には例として1150Km分の補正を示してあ
る。距離補正設定によりたとえば2つの移動局の
送信アンテナ出力のタイミングは第5図(6)および
(7)の実線部(すなわち中央より右の部分)f2、g2
のタイミングになる。固定局と移動局とが同時に
発射されることは一般にないが、ビツトタイミン
グとの相対位相のみが重要であるから、位相タ
イミングの関係を理解し易く説明するため、(6)、
(7)の移動局のf2、g2のタイミングを左方の破線に
書換えて説明しよう。すなわち移動局の送信アン
テナの出力のタイミングは固定局の送信アンテナ
出力第5図の線よりもt4だけ進んだ位相で出力
させる。ここでt4=t2+t3である。t3は受信アンテ
ナと受信機および復調回路の遅延分で、これは移
動局の制御回路4の中であらかじめ設定してお
く。従つて距離補正スイツチ設定分とK(t3のに
相当する分で一定値)の和によつて1つの移動局
の送信タイミングが決定される。この移動局の送
信タイミングはその復調器出力に対してはt2+t3
+t4=2(t2+t3)進めたものとなる。同様にして
他の移動局(第5図7)もの線に対してt5分だ
け位相補正を行う。
At this point, the mobile station estimates the distance from its own location to the fixed station's receiving location, and controls the control circuit 14 in FIG.
The distance is set by a digital changeover switch (distance correction switch, Fig. 2) included in the camera. Note that FIG. 2 shows correction for 1150 km as an example. Depending on the distance correction settings, for example, the timing of the transmitting antenna output of two mobile stations will be as shown in Figure 5 (6) and
The solid line part of (7) (i.e. the part to the right of the center) f 2 , g 2
It's the timing. Although the fixed station and mobile station generally do not emit at the same time, only the relative phase with the bit timing is important, so to explain the relationship between phase timing in an easy-to-understand manner, (6)
Let us explain by rewriting the timings of f 2 and g 2 of the mobile station in (7) as the broken lines on the left. That is, the timing of the output of the transmitting antenna of the mobile station is made to be output at a phase that is t 4 ahead of the transmitting antenna output line of the fixed station in FIG. Here, t 4 = t 2 + t 3 . t3 is a delay between the receiving antenna, receiver, and demodulation circuit, and is set in advance in the control circuit 4 of the mobile station. Therefore, the transmission timing of one mobile station is determined by the sum of the distance correction switch setting and K (a constant value corresponding to t3 ). The transmission timing of this mobile station is t 2 + t 3 for its demodulator output.
+t 4 = 2 (t 2 +t 3 ). In the same way, the phase of the lines of other mobile stations (FIG. 5, 7) is corrected by t5 .

前記の距離の設定は、例えば、100Km当り0.33
msの空間伝送時間を割り当てることによりt2
値を設定することができる。また固定局の送信所
と移動局間と移動局と固定局の受信所間の伝送時
間差は、厳密には零ではないが通常は0.5〜1m
s程度以下である。さらに、実用上はマルチパス
に伴う伝送時間変動があり、これらの変動要因に
伴う位相変動部分を除いて通常は各ビツトの中央
部分でその2値データを検知しているので、各ビ
ツト長が20ms程度のデータ伝送を行う場合に
は、この差はほとんど無視することができる。
The above distance setting is, for example, 0.33 per 100Km.
The value of t 2 can be set by assigning a spatial transmission time of ms. In addition, the transmission time difference between the fixed station transmitting station and the mobile station, and between the mobile station and the fixed station receiving station is not strictly zero, but is usually 0.5 to 1 m.
It is about s or less. Furthermore, in practice, there are transmission time fluctuations due to multipath, and since the binary data is usually detected at the center of each bit, excluding the phase fluctuation part due to these fluctuation factors, the length of each bit is This difference can be almost ignored when data is transmitted for about 20 ms.

このような条件のもとで移動局が信号を出力す
ると、固定局の受信アンテナ入力および復調回路
の検波入力タイミングはそれぞれ第5図(8)、(9)の
h2、i2の位置になるが、理解し易くするため左の
破線のようにh1、i1の位置に移して説明する。h1
は固定局送信所の送信アンテナ出力タイミング第
5図(3)と同じになることが理解されよう。また固
定局の検波入力タイミングは第1図の回線D2
遅延分等を含めた時間t6だけh1より遅れた位相タ
イミングでi1の位置になるが、これは固定局の受
信ビツト変換点と一致し、−間のビツトを積
分することによつて固定局でも正しいビツト出力
が得られる。
When the mobile station outputs a signal under these conditions, the receiving antenna input timing of the fixed station and the detection input timing of the demodulation circuit are as shown in Figure 5 (8) and (9), respectively.
The positions are h 2 and i 2 , but to make it easier to understand, the explanation will be moved to the positions h 1 and i 1 as shown by the broken line on the left. h 1
It will be understood that is the same as the transmitting antenna output timing of the fixed station transmitting station in FIG. 5(3). Furthermore, the detection input timing of the fixed station is at the position i1 at a phase timing delayed from h1 by a time t6 including the delay of line D2 in Figure 1, but this is due to the reception bit conversion of the fixed station. Correct bit output can be obtained even at a fixed station by integrating the bits between and coincident with the points.

このようにして送受信間のビツト同期修正が正
しく得られれば、第4図(1)、(2)の符号構成に従つ
てフレーム同期をあわせて送受信を行う。前記の
ように(1)は送信信号、(2)は受信信号であるが、ま
ず送信側では最初プリアンブル信号Pを複数ビツ
ト送信した後フレーム同期修正のためのフレーム
同期信号A1,A2,A3,A4,A5を送信する。これ
らの信号は通常2n-1(nは1以上の整数)のM
系列符号で構成されている。受信側ではA5信号
受信後にフレーム同期判定を行い、続いて送信側
からはデータD1,D2,……Doが送信されること
は第4図(1)の通りである。第4図(2)は送信側の信
号(1)に対する受信側の受信信号で、P、A、D信
号はこれらが雑音や混信によつて誤字となつた
P′、A′等の信号が含れることがあるが、これは
タイミングには影響はなくその訂正は別の問題で
ある。
If the bit synchronization between transmission and reception is corrected in this manner, transmission and reception are performed with frame synchronization in accordance with the code structures shown in FIGS. 4(1) and (2). As mentioned above, (1) is a transmitted signal, and (2) is a received signal. First, on the transmitting side, the preamble signal P is first transmitted in multiple bits, and then frame synchronization signals A 1 , A 2 , Send A 3 , A 4 , A 5 . These signals usually have M of 2 n-1 (n is an integer greater than or equal to 1).
It consists of a series code. As shown in FIG. 4(1), the receiving side performs frame synchronization determination after receiving the A5 signal, and then the transmitting side transmits data D 1 , D 2 , . . . Do. Figure 4 (2) shows the received signal on the receiving side in response to the signal (1) on the transmitting side, and the P, A, and D signals are erroneous due to noise and interference.
Signals such as P' and A' may be included, but this does not affect the timing and their correction is a separate issue.

以上のように本発明方式では固定局はその送、
受信系のハードウエアおよび送、受信所と通信管
制室間の専用回線の固定遅延時間補正をあらかじ
め制御回路14中の距離補正スイツチと位相補正
回路によつて行つておき、移動局側では固定的補
正のほかにその位置による固定的受信所までの距
離による遅延補正を遂次行つてゆくことが特徴
で、これによつて固定局と移動局間の送受信タイ
ミングが独立同期方式で設定され、デジタル符号
伝送が容易に常時正しい符号検出として行われる
という利点がある。
As described above, in the method of the present invention, the fixed station transmits
Fixed delay time correction for the reception system hardware and transmission, dedicated line between the reception station and the communication control room is performed in advance by the distance correction switch and phase correction circuit in the control circuit 14, and fixed delay time correction is performed on the mobile station side. In addition to the correction, it is characterized by sequentially performing delay correction based on the distance to the fixed receiving station depending on the position, and as a result, the transmission and reception timing between the fixed station and the mobile station is set in an independent synchronization method, and the digital There is an advantage that code transmission is easily performed as always correct code detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した通信系の構成例図、
第2図は距離補正用のデイジタルスイツチの表示
例図、第3図は第1図の固定局または移動局の送
受信装置の構成例図、第4図は送、受信の符号構
成例タイムチヤート、第5図は位相補正を説明す
るタイムチヤートである。 1……通信管制室、2……固定局送信所、3…
…固定局受信所、4,5,6……移動局、d11
d21,d31……送信所2と移動局との距離、d12
d22,d32……受信所3と移動局との距離、7……
距離補正用デイジタルスイツチ、8,15……イ
ンターフエース回路、9,16……バツフアメモ
リ回路、10……時分割出力回路、11……プリ
アンブル信号発生回路、12……変調器、13…
…タイミング発生回路、14……制御回路、17
……整形回路、18……受信ビツト同期検出回
路、19……復調器。
FIG. 1 is a diagram showing an example of the configuration of a communication system implementing the present invention.
FIG. 2 is a display example of a digital switch for distance correction, FIG. 3 is a configuration example of a transmitting/receiving device of a fixed station or mobile station in FIG. FIG. 5 is a time chart explaining phase correction. 1... Communication control room, 2... Fixed station transmitting station, 3...
...Fixed station receiving station, 4,5,6...Mobile station, d 11 ,
d 21 , d 31 ... distance between transmitting station 2 and mobile station, d 12 ,
d 22 , d 32 ... Distance between receiving station 3 and mobile station, 7...
Distance correction digital switch, 8, 15...Interface circuit, 9, 16...Buffer memory circuit, 10...Time division output circuit, 11...Preamble signal generation circuit, 12...Modulator, 13...
...Timing generation circuit, 14...Control circuit, 17
... Shaping circuit, 18 ... Reception bit synchronization detection circuit, 19 ... Demodulator.

Claims (1)

【特許請求の範囲】 1 固定局通信管制室より遠く離れてそれぞれ設
置された送信所ならびに受信所を通じて広い地域
内に存在する移動局とデイジタル符号伝送の相互
送受信を行う場合に、通信管制室にはデイジタル
符号を変調して送信所に送りまた受信信号をデイ
ジタル符号に復調する送受装置を設けて移動局に
対しその変調器入力符号の位相を基準ビツト位相
より通信管制室の変調器入力から送信アンテナ出
力までの信号遅延分(t1)および受信アンテナ入
力より通信管制室の復調器出力までの信号遅延分
(t6)の和t1+t6だけ進めたタイミングにてビツト
およびフレーム同期信号を送出し、また各移動局
は固定局よりの上記信号にて同期を合わせた後固
定局送信所よりの距離によつてその送信タイミン
グを受信アンテナ入力より復調器出力までの信号
遅延分(t3、固定値)と固定局送信アンテナと移
動局受信アンテナ間の空間伝送時間分(t2、変化
値)の和の2倍〔2(t2+t3)〕だけ復調器出力よ
り進めて固定局と移動局間の同期送受信を行うこ
とを特徴とする距離による位相補正を行う移動通
信方法。
[Scope of Claims] 1. When performing mutual transmission and reception of digital code transmission with mobile stations existing in a wide area through transmitting stations and receiving stations installed far away from the fixed station communication control room, is equipped with a transceiver that modulates the digital code and sends it to the transmitting station, and also demodulates the received signal to the digital code, and transmits the phase of the modulator input code to the mobile station from the modulator input in the communication control room based on the reference bit phase. Bit and frame synchronization signals are generated at a timing advanced by the sum of the signal delay (t 1 ) to the antenna output and the signal delay (t 6 ) from the reception antenna input to the demodulator output in the communications control room, t 1 + t 6 . After each mobile station synchronizes with the above signal from the fixed station, the transmission timing is determined by the signal delay from the receiving antenna input to the demodulator output (t 3 , fixed value) and the spatial transmission time (t 2 , change value) between the fixed station transmitting antenna and the mobile station receiving antenna. A mobile communication method that performs phase correction based on distance, characterized by performing synchronous transmission and reception between a mobile station and a mobile station.
JP56009005A 1981-01-26 1981-01-26 Moving communication method for executing phase correction by distance Granted JPS57131137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56009005A JPS57131137A (en) 1981-01-26 1981-01-26 Moving communication method for executing phase correction by distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56009005A JPS57131137A (en) 1981-01-26 1981-01-26 Moving communication method for executing phase correction by distance

Publications (2)

Publication Number Publication Date
JPS57131137A JPS57131137A (en) 1982-08-13
JPS6253098B2 true JPS6253098B2 (en) 1987-11-09

Family

ID=11708536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56009005A Granted JPS57131137A (en) 1981-01-26 1981-01-26 Moving communication method for executing phase correction by distance

Country Status (1)

Country Link
JP (1) JPS57131137A (en)

Also Published As

Publication number Publication date
JPS57131137A (en) 1982-08-13

Similar Documents

Publication Publication Date Title
EP1201050B1 (en) Method and apparatus for sequentially synchronizing a radio network
US5428647A (en) Method and apparatus for synchronizing a received signal in a digital radio communication system
US4052670A (en) Space diversity system in pcm-tdma telecommunication system using stationary communication satellite
JP3250762B2 (en) Mobile communication system base station synchronization method
JP3858433B2 (en) Pilot signal detection method and receiver
EP0190771B1 (en) Method of initially establishing burst acquisition in tdma satellite communications system and arrangement therefor
AU722703B2 (en) Radio communication apparatus and radio communication method
EP0456625B1 (en) A method of transmitting different commands relating to the choice of transmitter antenna in a time multiplex radio communication system
US6516199B1 (en) Reducing interference in telecommunications systems
JPH0754991B2 (en) Digital mobile radio communication system
EP0240821A3 (en) Method for the transmission of digital signals in a mobile radio system
US20030122632A1 (en) Fast timing acquisition for multiple radio terminals
EP1241801B1 (en) Site diversity method, method for receiving digital satellite broadcast, and receiver for digital satellite broadcast
JPS6253098B2 (en)
US5838745A (en) Synchronization method, and associated circuitry, for improved synchronization of a receiver with a transmitter using nonlinear transformation metrics
JPH06268635A (en) Radio communications equipment and antenna diversity method for the same
JP3076308B2 (en) Mobile communication system
JPH057176A (en) Mobile station radio equipment
JPH08251654A (en) Communication synchronizing system among plural stations
JP2001268628A (en) Inter-base station synchronization system
JPH10145845A (en) Mobile communication system
JP2524613B2 (en) Time division mobile communication system
JPH11163779A (en) Radio equipment
JPH0618338B2 (en) Synchronous burst transmission phase control method for SS-TDMA satellite communication
JPH0575520A (en) Radio communication system