JPS6251949B2 - - Google Patents

Info

Publication number
JPS6251949B2
JPS6251949B2 JP61249568A JP24956886A JPS6251949B2 JP S6251949 B2 JPS6251949 B2 JP S6251949B2 JP 61249568 A JP61249568 A JP 61249568A JP 24956886 A JP24956886 A JP 24956886A JP S6251949 B2 JPS6251949 B2 JP S6251949B2
Authority
JP
Japan
Prior art keywords
activated carbon
indole
catalyst
reaction
ethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61249568A
Other languages
Japanese (ja)
Other versions
JPS62142152A (en
Inventor
Fujio Matsuda
Kozo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61249568A priority Critical patent/JPS62142152A/en
Publication of JPS62142152A publication Critical patent/JPS62142152A/en
Publication of JPS6251949B2 publication Critical patent/JPS6251949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はインドールまたはインドール誘導体の
新規製造法に関する。さらに詳しくは、水素とニ
トロベンゼン類とエチレングリコールとを第8族
金属および/または活性炭含有触媒の存在下に反
応させることにより、インドールまたはインドー
ル誘導体を製造する方法にに関するものである。 インドールは、化学工業原料として知られ、特
に近年、香料やアミノ酸合成原料として重要な物
質となつてきている。 従来の技術および発明が解決しようとする問題点 従来、インドールを合成しようという試みはい
くつかあつたが、いずれも副生物が多いものや、
原料的にみて高価なものが多く、また、インドー
ルに至るまでの工程が長く、操作が繁雑なものが
多い。 本発明の目的は安価な原料を用い、かつ一段の
工程でインドールまたはインドール誘導体を選択
率良く製造することにある。 問題点を解決するための手段 本発明者らは、この目的を達成すべく鋭意検討
した結果、従来、知られていなかつた全く新規な
反応にもとづく方法、すなわち、水素とニトロベ
ンゼン類とエチレングリコールとを第8族金属お
よび/または活性炭含有触媒に接触反応させるこ
とにより、目的物であるインドールまたはインド
ール誘導体を選択率良く製造できることを見出し
本発明の方法を完成した。 すなわち、本発明の方法によれば、たとえば、
水素とニトロベンゼンとエチレングリコールとを
反応させることによりインドールを、水素とパラ
ーニトロルエチレングリコールとを反応させるこ
とにより5―メチルインドールを得ることができ
る。 本発明の方法に用いる触媒、元素周期律表の第
8族金属および/または活性炭を含有する触媒で
ある。すなわち、第8族金属または活性炭のそれ
ぞれ単独、あるいは2種以上の混合、さらにこれ
らのそれぞれに他の化合物を含有するものであ
る。 たとえば、粉末状、粒状、塊状、鱗片状、成形
品等の鉄、コバルト、ニツケル、ルテニウム、ロ
ジウム、パラジウム、オスミウム、イリジウム、
白金、活性炭、また、但体に周期律表の第8族金
属および/または活性炭、あるいは第8族金属お
よび/または活性炭とその他の化合物との混合物
を担持させて成る第8族金属および/または活性
炭含有触媒である。 第8族金属および/または活性炭と併用される
その他の化合物としてはリチウム、ナトリウム、
カリウム、マグネシウム、カルシウム、ストロン
チウム、バリウム、銅、銀、水銀、アルミニウ
ム、錫、鉄、コバルト、ニツケル、クロム、マン
ガン、鉛、モリブデン等のハロゲン化物、硝酸
塩、硫酸塩、炭酸塩、有機酸塩、酸化物、水酸化
物または金属等である。前記触媒物質(以下、元
素周期律表の第8金属および活性炭を示す)また
は、前記触媒物質とその他の化合物を担持させる
担体としては、一般に担持触媒の担体として使用
されているものが、いずれも使用できるが、通
常、ケイソウ土、軽石、チタニア、シリカーアル
ミナ、アルミナ、マグネシア、シリカゲル、活性
炭、活性白土、石綿等が用いられる。 これらの担体に前記触媒物質を常法により担持
させて担持触媒を調製する。浸漬法によれば、た
とえば、活性炭またはアルミナ等の担体に水溶性
の第8族の金属塩を水に溶かして浸漬し、乾燥、
熱分解、還元の操作を行うことにより製造する。
あるいは沈澱法によれば、たとえば、1種または
2種以上の第8族金属の硝酸塩の水溶液に活性炭
またはシリカゲル等の担体を加え、攪拌しならが
らアルカリ物質を加えて、沈澱を生成させる。そ
の沈澱を濾別、洗浄、乾燥、焼成および還元する
ことにより調製する。その他、種々の触媒調製法
があり、触媒の調製法に限定はない。また、前記
触媒物質の担体に対する担持量にはとくに制限は
なく、通常、担体に応じて適当量、たとえば、
0.01〜50%の前記触媒物質を担持させてよい。 本発明において、触媒として活性炭単独でも使
用可能であるが、活性炭に元素周期律表の第8族
金属を担持させると、その触媒活性が増大する。
本発明において使用する活性炭は各種の活性炭を
含む。たとえば、ヤシ殻、木材、おがくず、リグ
ニン、石炭、血炭、骨炭、石油系カーボン等から
製造した活性炭を含む。活性炭として市販されて
いるものは、通常、粉末炭、破砕炭、球形あるい
は円筒形等に成形された成形炭であり、本発明で
は使用活性炭の形状に、特に限定はない。 本発明に用いられるニトロベンゼン類はニトロ
ベンゼンおよびオルト―ニトロトルエン、メタ―
ニトロルエン、パラ―ニトロルエン、オルト―ニ
トロフエノール、メタ―ニトロフエノール、パラ
―ニトロフエノール、オルト―ニトロアニソー
ル、メタ―ニトロアニソール、パラ―ニトロアニ
ソール等のニトロベンゼンの核置換誘導体を含
む。 本発明の方法は、気相、液相または気液混相で
反応を実施することができるが、通常、気相で実
施する。気相で実施する場合、固定層、流動層ま
たは移動層反応器のいずれでも実施でき、ニトロ
ベンゼン類とエチレングリコールと水素ガスの混
合気体を第8族金属および/または活性炭含有触
媒の存在下に加熱することにより実施される。こ
の際、原料の希釈剤として、種々の不活性ガス状
物質を共存させることとができる。このような不
活性ガス状物質として、例えば、窒素ガス、炭酸
ガス、水蒸気および本反応に不活性な化合物の蒸
気があげられる。また、前記希釈剤として、水素
ガスまたは水素含有ガスを使用してもよい。 本反応において反応器に装入するニトロベンゼ
ン類とエチレングリコールは、ニトロベンゼン類
1モルに対してエチレングリコール0.05〜5モル
割合で、触媒に対する液空間速度が0.01〜5/
―触媒/hrとなるように、予め蒸気状とする
か、または液状で直接反応器に装入する。 また、ニトロベンゼン類やエチレングリコール
と混合する水素ガスはニトロベンゼン類1モルに
対して0.1〜100モル、好ましくは1〜30モルの割
合で反応器に装入する。 反応温度は200〜500℃の範囲、好ましくは、
250〜400℃の範囲である。200℃以下では反応が
ほとんど進行せず、400℃以上では副生物の生成
が多くなり好ましくない。また、反応圧力は加
圧、常圧、減圧のいずれでもよい。 これらの種々の方法において反応生成物から、
インドールまたはインドール誘導体は、適当な方
法、例えば蒸留のような常法によつて容易に分離
精製できる。 効 果 本発明の方法の利点は次のようである。第1に
原料がニトロベンゼンのように非常に安価であ
る。第2に原料からインドールまたはインドール
誘導体が一段で製造される。第3に副生物が非常
に少なく、選択率が非常に良く、したがつて、高
純度のインドールを得ることができる。 実施例 以下、実施例をあげて、本発明の方法を詳述す
る。 実施例 1 円筒状のパラジウム―炭素触媒(pd含量0.5
%)50mlを25mmのパイツクスガラス製流通型反
応器に充填した。この反応器の前部は原料挿入管
およびガス導入管に連結され、原料気化部を構成
し、後部は空冷部を経て受器と連結されている。
反応部はこの反応器の内温を325℃に保ち、反応
器に水素ガスを通じ約1時間触媒を還元した後、
液空間速度0.1/―触媒/hrで、ニトロベン
ゼン123g(1モル)とエチレングリコール6.2g
(0.1モル)との混合液を原料挿入管より挿入し、
これと同時に原料ニトロベンゼンに対し10倍モル
の水素を常圧下で通じた。反応器を通り凝縮した
反応生成物をガスクロマトグフにて分析すると
8.5gのインドールが生成し、エチレングリコー
ルを基準にした転化率88.3%、選択率82.6%でイ
ンドールが得られ、副生物は非常に少なかつた。 実施例 2〜10 実施例1において、触媒をpd―C触媒のかわ
りに表―1に示すものを使用して、実施例1と同
様の反応装置で、実施例1と同様の方法で反応を
行つた。その結果を表―1に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a novel method for producing indole or indole derivatives. More specifically, the present invention relates to a method for producing indole or an indole derivative by reacting hydrogen, nitrobenzenes, and ethylene glycol in the presence of a Group 8 metal and/or an activated carbon-containing catalyst. Indole is known as a raw material for the chemical industry, and has become an important substance particularly in recent years as a raw material for perfumery and amino acid synthesis. Conventional techniques and problems to be solved by the invention There have been several attempts to synthesize indole in the past, but all of them produced many by-products,
Many of them are expensive in terms of raw materials, and the process to reach indole is long and the operations are complicated. An object of the present invention is to produce indole or indole derivatives with high selectivity in a single step using inexpensive raw materials. Means for Solving the Problems As a result of intensive studies to achieve this objective, the present inventors have developed a method based on a completely new reaction that was previously unknown, that is, a method based on a completely new reaction between hydrogen, nitrobenzenes, and ethylene glycol. The inventors have discovered that the desired product, indole or indole derivative, can be produced with high selectivity by catalytically reacting the compound with a Group 8 metal and/or activated carbon-containing catalyst, and have completed the method of the present invention. That is, according to the method of the present invention, for example,
Indole can be obtained by reacting hydrogen, nitrobenzene, and ethylene glycol, and 5-methylindole can be obtained by reacting hydrogen and paranitrolethylene glycol. The catalyst used in the method of the present invention is a catalyst containing a Group 8 metal of the Periodic Table of Elements and/or activated carbon. That is, it contains a Group 8 metal or activated carbon, each alone, or a mixture of two or more, and each of these contains another compound. For example, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, etc.
Platinum, activated carbon, or a Group 8 metal and/or activated carbon in the periodic table, or a mixture of a Group 8 metal and/or activated carbon and other compounds. It is an activated carbon-containing catalyst. Other compounds used in combination with Group 8 metals and/or activated carbon include lithium, sodium,
Potassium, magnesium, calcium, strontium, barium, copper, silver, mercury, aluminum, tin, iron, cobalt, nickel, chromium, manganese, lead, molybdenum, halides, nitrates, sulfates, carbonates, organic acid salts, These include oxides, hydroxides, and metals. As the carrier for supporting the catalytic material (hereinafter referred to as the 8th metal of the periodic table of elements and activated carbon) or the catalytic material and other compounds, any of those commonly used as a carrier for supported catalysts may be used. Generally, diatomaceous earth, pumice, titania, silica alumina, alumina, magnesia, silica gel, activated carbon, activated clay, asbestos, etc. are used. A supported catalyst is prepared by supporting the catalyst substance on these carriers by a conventional method. According to the immersion method, for example, a water-soluble Group 8 metal salt is dissolved in water and immersed in a carrier such as activated carbon or alumina, then dried,
Manufactured by thermal decomposition and reduction operations.
Alternatively, according to a precipitation method, for example, a carrier such as activated carbon or silica gel is added to an aqueous solution of nitrate of one or more Group 8 metals, and an alkaline substance is added while stirring to form a precipitate. It is prepared by filtering, washing, drying, calcining and reducing the precipitate. In addition, there are various catalyst preparation methods, and the method for preparing the catalyst is not limited. Further, there is no particular restriction on the amount of the catalyst substance supported on the carrier, and usually an appropriate amount depending on the carrier, for example,
0.01-50% of said catalyst material may be supported. In the present invention, activated carbon alone can be used as a catalyst, but when the activated carbon supports a group 8 metal of the periodic table of elements, its catalytic activity increases.
The activated carbon used in the present invention includes various activated carbons. Examples include activated carbon made from coconut shells, wood, sawdust, lignin, coal, blood char, bone char, petroleum carbon, and the like. Commercially available activated carbon is usually powdered carbon, crushed carbon, or molded carbon shaped into a spherical or cylindrical shape, and the shape of the activated carbon used in the present invention is not particularly limited. The nitrobenzenes used in the present invention include nitrobenzene, ortho-nitrotoluene, meta-
Includes nuclear substituted derivatives of nitrobenzene such as nitroluene, para-nitroluene, ortho-nitrophenol, meta-nitrophenol, para-nitrophenol, ortho-nitroanisole, meta-nitroanisole, and para-nitroanisole. In the method of the present invention, the reaction can be carried out in a gas phase, a liquid phase, or a gas-liquid mixed phase, but it is usually carried out in a gas phase. When carried out in the gas phase, it can be carried out in fixed bed, fluidized bed or moving bed reactors, in which a gas mixture of nitrobenzenes, ethylene glycol and hydrogen gas is heated in the presence of a group 8 metal and/or activated carbon containing catalyst. It is implemented by At this time, various inert gaseous substances may be present as diluents for the raw materials. Examples of such inert gaseous substances include nitrogen gas, carbon dioxide, water vapor, and vapors of compounds inert to this reaction. Furthermore, hydrogen gas or hydrogen-containing gas may be used as the diluent. In this reaction, the nitrobenzenes and ethylene glycol charged into the reactor are at a ratio of 0.05 to 5 moles of ethylene glycol per mole of nitrobenzene, and the liquid hourly space velocity relative to the catalyst is 0.01 to 5/.
-Catalyst/hr, either in vapor form or directly charged to the reactor in liquid form. Further, hydrogen gas to be mixed with nitrobenzenes and ethylene glycol is charged into the reactor at a ratio of 0.1 to 100 moles, preferably 1 to 30 moles, per mole of nitrobenzenes. The reaction temperature is in the range of 200-500°C, preferably
It is in the range of 250-400℃. If the temperature is below 200°C, the reaction will hardly proceed, and if it is above 400°C, a large amount of by-products will be produced, which is not preferable. Further, the reaction pressure may be increased pressure, normal pressure, or reduced pressure. From the reaction products in these various methods,
Indole or an indole derivative can be easily separated and purified by a suitable method, for example, a conventional method such as distillation. Effects The advantages of the method of the present invention are as follows. First, the raw materials are very cheap, such as nitrobenzene. Second, indole or an indole derivative is produced from the raw materials in one step. Thirdly, there are very few by-products, the selectivity is very good, and therefore highly pure indole can be obtained. Examples Hereinafter, the method of the present invention will be explained in detail with reference to Examples. Example 1 Cylindrical palladium-carbon catalyst (PD content 0.5
%) was filled into a 25 mm Pitx glass flow-through reactor. The front part of this reactor is connected to a raw material insertion pipe and a gas introduction pipe to constitute a raw material vaporization part, and the rear part is connected to a receiver via an air cooling part.
In the reaction section, the internal temperature of the reactor was maintained at 325°C, and hydrogen gas was passed into the reactor to reduce the catalyst for about 1 hour.
123 g (1 mole) of nitrobenzene and 6.2 g of ethylene glycol at a liquid hourly space velocity of 0.1/-catalyst/hr.
(0.1 mol) is inserted through the raw material insertion tube,
At the same time, 10 times the molar amount of hydrogen relative to the raw material nitrobenzene was passed under normal pressure. When the reaction products condensed through the reactor are analyzed using a gas chromatograph,
8.5 g of indole was produced, with a conversion rate of 88.3% and a selectivity of 82.6% based on ethylene glycol, with very little by-products. Examples 2 to 10 In Example 1, the reaction was carried out in the same manner as in Example 1 in the same reaction apparatus as in Example 1, using the catalysts shown in Table 1 instead of the PD-C catalyst. I went. The results are shown in Table-1.

【表】【table】

【表】 実施例 11 実施例1において、触媒をpd―C触媒のかわ
りに粒状活性炭を用いて、反応温度375℃とし、
実施例1と同様の反応装置で、実施例1と同様の
方法で反応を行つた。その結果3.1gのインドー
ルを得た。エチレングリコールを基準にした転化
率31.6%、選択率82.5%であつた。 実施例 12 実施例1において、ニトロベンゼンのかわりに
パラ―ニトロトルエン137g(1モル)を用い
て、実施例1と同様に反応を行つた。その結果
1.7gの5―メチルインドールを得た。エチレン
グリコールを基準にした転化率25.1%、選択率
50.2%であつた。 実施例 13 実施例1において、ニトロベンゼンのかわりに
パラ―ニトロアニソール153g(1モル)を用い
て、実施例1と同様に反応を行つた。その結果
1.8gの5―メトキシインドールを得た。エチレ
ングリコールを基準にした転化率23.8%、選択率
51.3%であつた。
[Table] Example 11 In Example 1, granular activated carbon was used instead of the PD-C catalyst, and the reaction temperature was 375°C.
The reaction was carried out in the same manner as in Example 1 using the same reaction apparatus as in Example 1. As a result, 3.1 g of indole was obtained. The conversion rate was 31.6% and the selectivity was 82.5% based on ethylene glycol. Example 12 In Example 1, a reaction was carried out in the same manner as in Example 1, except that 137 g (1 mol) of para-nitrotoluene was used in place of nitrobenzene. the result
1.7 g of 5-methylindole was obtained. Conversion rate 25.1%, selectivity based on ethylene glycol
It was 50.2%. Example 13 A reaction was carried out in the same manner as in Example 1 except that 153 g (1 mol) of para-nitroanisole was used in place of nitrobenzene. the result
1.8 g of 5-methoxyindole was obtained. Conversion rate 23.8%, selectivity based on ethylene glycol
It was 51.3%.

Claims (1)

【特許請求の範囲】[Claims] 1 第8族金属および/または活性炭含有触媒の
存在下に、水素とニトロベンゼン類とエチレング
リコールとを気相反応させることを特徴とするイ
ンドールまたはインドール誘導体の製造方法。
1. A method for producing indole or an indole derivative, which comprises subjecting hydrogen, nitrobenzenes, and ethylene glycol to a gas phase reaction in the presence of a Group 8 metal and/or activated carbon-containing catalyst.
JP61249568A 1986-10-22 1986-10-22 Production of indole or derivative thereof Granted JPS62142152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249568A JPS62142152A (en) 1986-10-22 1986-10-22 Production of indole or derivative thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249568A JPS62142152A (en) 1986-10-22 1986-10-22 Production of indole or derivative thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13868879A Division JPS5663958A (en) 1979-10-29 1979-10-29 Preparation of indole or its derivative

Publications (2)

Publication Number Publication Date
JPS62142152A JPS62142152A (en) 1987-06-25
JPS6251949B2 true JPS6251949B2 (en) 1987-11-02

Family

ID=17194936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249568A Granted JPS62142152A (en) 1986-10-22 1986-10-22 Production of indole or derivative thereof

Country Status (1)

Country Link
JP (1) JPS62142152A (en)

Also Published As

Publication number Publication date
JPS62142152A (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JPS63255253A (en) Production of amines
JPS6251269B2 (en)
JPS5923306B2 (en) Method for producing indole or indole derivatives
JPS6320224B2 (en)
JP5152895B2 (en) Method for producing cyclic alkyleneimine
JPS6362525B2 (en)
JPH0248543B2 (en)
JPS6251949B2 (en)
JPS6256870B2 (en)
JPS6210985B2 (en)
JPH05995A (en) Production of acetic acid
JPS6210984B2 (en)
JPS6210983B2 (en)
JPS6251267B2 (en)
US4727161A (en) Process for the preparation of indoles
JPH0551577B2 (en)
JPS6210986B2 (en)
JPS6150943B2 (en)
JPS6210982B2 (en)
JPS6251268B2 (en)
JPS63295528A (en) Production of glyoxylic acids
JPS6150944B2 (en)
JPH05201940A (en) Production of serine or its derivative
JPS6210504B2 (en)
KR100710543B1 (en) Continuous Process for the Production of Optically Pure S- ?-hydroxy- ?-butyrolactone