JPS625192A - Ring type spect apparatus - Google Patents

Ring type spect apparatus

Info

Publication number
JPS625192A
JPS625192A JP14272885A JP14272885A JPS625192A JP S625192 A JPS625192 A JP S625192A JP 14272885 A JP14272885 A JP 14272885A JP 14272885 A JP14272885 A JP 14272885A JP S625192 A JPS625192 A JP S625192A
Authority
JP
Japan
Prior art keywords
wire
chamber
hexagonal
ring
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14272885A
Other languages
Japanese (ja)
Inventor
Junichi Oi
淳一 大井
Yoshibumi Azuma
東 義文
Ichiro Fujieda
一郎 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14272885A priority Critical patent/JPS625192A/en
Publication of JPS625192A publication Critical patent/JPS625192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To obtain a high natural spatial resolution and detection efficiency while achieving a reduction in the cost of the equipment as a whole, by using a charge split type SWPC. CONSTITUTION:A hexagonal SWPC1 has a hexagonal chamber 2 and an inert gas with a high atomic number and a quenching gas is sealed up thereinto at a high atmospheric pressure. One wire 3 is supported with an insulator strut 4 in the chamber 2 and a high voltage is applied to the wire 3 to turn outer walls 21 and 22 to a ground potential. Radiation from the RI in a person 6 to be inspected is made incident into the chamber 2 through a number of parallel slots of a hexagonal collimator 5 in the SWPC1 to obtain 1-dimensional positional information of the incident radiation along the length of the wire 3. Then, a subtractor 33, an adder 34 and a divider 35 are used to obtain a position signal and an energy signal thereby assuring an accurate discrimination of position.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、核医学診断装置に関し、特にリング形S 
P E CT (Single Photon Emi
ssionComputed Tomograph7)
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a nuclear medicine diagnostic device, and in particular to a ring type S
P E CT (Single Photon Emi
ssionComputed Tomograph7)
Regarding equipment.

従来の技術 従来のリング形SPECT装置では、多数のシンチレー
タが円周上にリング形に配置され、各シンチレータの発
光が各シンチレータ毎に光結合された光電子増倍管によ
って検出されるようになっている。そして回転するター
ボファン状のコリメータ等によって入射放射線の入射方
向が決定され、入射放射線のカウントについての投影デ
ータが収集され、この投影データに基づきコンピュータ
により、被検者に投与され特定の臓器に集積しているR
I(ラジオアイソトープ)の濃度分布を表わす画像が再
構成される。
BACKGROUND ART In a conventional ring-type SPECT device, a large number of scintillators are arranged in a ring shape around the circumference, and the light emission from each scintillator is detected by a photomultiplier tube optically coupled to each scintillator. There is. Then, the direction of incidence of the incident radiation is determined by a rotating turbofan-shaped collimator, etc., and projection data regarding the count of the incident radiation is collected.Based on this projection data, the computer administers the radiation to the subject and accumulates it in a specific organ. R doing
An image representing the concentration distribution of I (radioisotope) is reconstructed.

発明が解決しようとする問題点 従来のリング形SPECT装置では上記のように放射線
検出器としてシンチレータと光電子増倍管との組合せを
用いているので、その固有空間分解能は、シンチレータ
の大きさと光電子増倍管の口径により制限され、10m
mFWHM程度の空間分解能しか得られない、また、検
出器間のデッドスペースの分だけ感度が落ちるという問
題もある。さらに、多数のシンチレータと光電子増倍管
の組合せは高価であり、光電子増倍管の後に接続するシ
ングルチャネルアナライザ等の電子回路も多数個必要で
コストアップにつながる。
Problems to be Solved by the Invention Conventional ring-type SPECT devices use a combination of a scintillator and a photomultiplier tube as a radiation detector as described above, so their specific spatial resolution depends on the size of the scintillator and the photomultiplier tube. 10m limited by the diameter of the doubler tube
There is also the problem that only a spatial resolution of about mFWHM can be obtained, and that the sensitivity is reduced by the dead space between the detectors. Furthermore, the combination of a large number of scintillators and photomultiplier tubes is expensive, and a large number of electronic circuits such as single channel analyzers connected after the photomultiplier tubes are also required, leading to increased costs.

この発明は、固有分解能を向上させ、且つ感度を従来と
同程度に維持し、しかもコストダウンを図り、安定度も
高いリング形SPECT装置を提供することを目的とす
る。
It is an object of the present invention to provide a ring-type SPECT device that improves the inherent resolution, maintains sensitivity at the same level as conventional devices, reduces costs, and has high stability.

問題点を解決するための手段 この発明によるリング形SPECT装置では、円形また
は多角形などのリング形の電荷分割型シングルワイア位
置検出比例計数管(以下、5WPCと略す)が用いられ
る。このリング形の電荷分割型5WPCは、リング形チ
ェンバ内に原子番号の高い不活性ガスと少量のクエンチ
ングガスとを高圧封入し、該リング形チェンバ内に、該
リング形チェンバに沿って7ノードをなす1本のワイア
をリング形に配置して構成されている。
Means for Solving the Problems In the ring-type SPECT device according to the present invention, a ring-shaped charge-splitting type single-wire position detection proportional counter (hereinafter abbreviated as 5WPC) in a circular or polygonal shape is used. This ring-shaped charge splitting type 5WPC has an inert gas with a high atomic number and a small amount of quenching gas sealed at high pressure in a ring-shaped chamber, and 7 nodes are arranged along the ring-shaped chamber. It consists of a single wire arranged in a ring shape.

作    用 放射線がリング形チェンバ内に入射すると電離現象を生
じ、その電子がアノードをなす1本のワイアに収集され
る。この電子はワイアの両端に向けて流れるが、ワイア
は長さ方向に抵抗を有しているため、ワイアの両端の出
力は放射線の入射位置に対応する。そこでリング形のど
の位置に放射線が入射したかの1次元の位置情報を得る
ことができる。
When the working radiation enters the ring-shaped chamber, it causes an ionization phenomenon, and the electrons are collected in a single wire that forms the anode. These electrons flow toward both ends of the wire, but since the wire has resistance in the length direction, the output at both ends of the wire corresponds to the incident position of the radiation. Therefore, it is possible to obtain one-dimensional positional information on which position of the ring shape the radiation is incident on.

実施例 第1図および第2図において、六角形SWP C1は六
角形チェンバ2を有し、この六角形チェンバ2内には原
子番号の高い不活性ガス(たとえばXe等)とクエンチ
ングガスCCHa等)が高気圧に封入されている。そし
て、この六角形チェンバ2内には、1本のワイア3が絶
縁物支柱4により支持されて、この六角形チェンバ2に
沿って六角形に配置されている。このワイア3には高電
圧が印加され、他方、チェンバ2の六角形の外壁21、
内壁22は接地電位にされていて、ワイア3がアノード
として、チェンバ外壁21、内壁22がカソードとして
それぞれ機能するようにされている。
Embodiment In FIGS. 1 and 2, the hexagonal SWP C1 has a hexagonal chamber 2, and in this hexagonal chamber 2, an inert gas with a high atomic number (for example, Xe, etc.) and a quenching gas, such as CCHa, are contained. ) is enclosed in high pressure. Inside this hexagonal chamber 2, one wire 3 is supported by an insulator support 4 and is arranged in a hexagonal shape along this hexagonal chamber 2. A high voltage is applied to this wire 3, while the hexagonal outer wall 21 of the chamber 2,
The inner wall 22 is at ground potential, so that the wire 3 functions as an anode, and the chamber outer wall 21 and inner wall 22 function as a cathode.

この六角形swpctの内側には六角形コリメータ5が
置かれる。この六角形コリメニタ5は、各辺毎にその辺
に直角な方向の多数の平行孔を有しており、被検者6(
の頭部)内のRIからの放射線がこの孔を通ってチェン
バ2内に入射する。こうして入射角度のふるいにかけら
れた放射線がチェンバ2内に入射しXe原子を電離し、
電子とイオンの対を生成し、電子は7ノ一ド舎カソード
間の電界によりアノード方向にドリフトし、アノード付
近の強い電場の領域にまで来ると電子なだれを起こし、
アノードのワイア3に収集される。このときの電子はワ
イア3の両端A、 Bに向けて逆方向に流れる。このワ
イア3はその長さ方向に抵抗を持っているので、積分器
31.32を経た出力a、  bは、ワイア3の長さ方
向での入射放射線の1次元位置情報となる。そこで、出
力a、bをそれぞれ減算器33と加算器34とに導き、
(a−b)と(a十b)とを作り、さらにこれらを除算
器35に送って、(a−b)/(a+b)なる位置信号
を得ることができる。また、加算信号(a+b)は入射
放射線のエネルギに対応するエネルギ信号となる。この
両信号を適当に処理することによって正確な位置弁別を
行なうことが可能である。
A hexagonal collimator 5 is placed inside this hexagonal swpct. This hexagonal collimator 5 has a large number of parallel holes on each side in a direction perpendicular to that side.
Radiation from the RI in the head of the patient enters the chamber 2 through this hole. The radiation whose incident angle has been sieved in this way enters the chamber 2 and ionizes the Xe atoms.
Pairs of electrons and ions are generated, and the electrons drift toward the anode due to the electric field between the seven node cathodes, and when they reach the area of strong electric field near the anode, they cause an electron avalanche.
It is collected in wire 3 of the anode. At this time, the electrons flow in the opposite direction toward both ends A and B of the wire 3. Since this wire 3 has resistance in its length direction, the outputs a and b after passing through the integrators 31 and 32 become one-dimensional position information of the incident radiation in the length direction of the wire 3. Therefore, outputs a and b are led to a subtracter 33 and an adder 34, respectively,
By creating (a-b) and (a + b) and sending these to the divider 35, it is possible to obtain a position signal of (a-b)/(a+b). Further, the sum signal (a+b) becomes an energy signal corresponding to the energy of the incident radiation. By appropriately processing both signals, it is possible to perform accurate position discrimination.

この六角形5WPC1を使用する場合、六角形5WPC
1をコリメータ5とともに60°(=360’/6)だ
け回転させれば、被検者6の体軸に直角な平面内の各方
向での投影データが収集できる。
When using this hexagon 5WPC1, hexagon 5WPC
1 together with the collimator 5 by 60° (=360'/6), projection data in each direction within a plane perpendicular to the body axis of the subject 6 can be collected.

一般にガス検出器を放射線検出器として用いる場合、最
も問題となるのは検出効率であるが、原子番号の高い不
活性ガス(Xe等)を高気圧に封入することによって、
γ線が光電効果を起こす確率を向上させることにより改
善できる。すなわち、20℃、20atmにXeガスを
封入した場合、実用的な10cmの厚さくチェンバ外壁
21と内壁22との間の距II) テ”X e ノ80
 K e Vのγ線に対して従来のNaIシンチレータ
を用いたシステムと同程度の検出効率を達成できる。
Generally, when using a gas detector as a radiation detector, the most important issue is detection efficiency, but by sealing an inert gas with a high atomic number (such as Xe) into high pressure,
This can be improved by increasing the probability that γ-rays cause the photoelectric effect. That is, when Xe gas is sealed at 20° C. and 20 atm, the distance between the outer wall 21 and the inner wall 22 of the chamber is a practical thickness of 10 cm.
It is possible to achieve a detection efficiency comparable to that of a system using a conventional NaI scintillator for K e V gamma rays.

第3図は円形5WPC7を用いた他の実施例を示す。円
形チェンバ8内に、1本のワイア9がチェンバ外壁81
から絶縁物92を介した多数の支持ワイア91により張
られて、疑似円形に配置されている。このワイア9には
高電圧が印加され、他方、チェンバ8の円形の外壁81
.内壁82は接地電位にされていて、ワイア9がアノー
ドとして、チェンバ外壁81、内壁82がカソードとし
てそれぞれ機能するようにされている0円形チェンバ8
内には原子番号の高い不活性ガスとクエンチングガスが
高気圧に封入されている。そしてこの円形5WPC7の
内側には、ターボファン状コリメータlOが配置される
。このターボファン状コリメータ10は矢印のように回
転することによって、各位置へ入射する放射線の入射方
向が変化するようになっている。換言するとコリメータ
10の回転位置により入射方向が知れる。
FIG. 3 shows another embodiment using a circular 5WPC7. Inside the circular chamber 8, one wire 9 is connected to the outer wall 81 of the chamber.
They are stretched by a large number of support wires 91 via insulators 92, and are arranged in a pseudo-circle. A high voltage is applied to this wire 9 while the circular outer wall 81 of the chamber 8
.. The inner wall 82 is at ground potential, the wire 9 functions as an anode, and the chamber outer wall 81 and inner wall 82 function as a cathode.
Inside, an inert gas with a high atomic number and a quenching gas are sealed at high pressure. A turbofan-like collimator IO is arranged inside this circular 5WPC7. By rotating this turbofan-shaped collimator 10 as shown by the arrow, the direction of incidence of radiation incident on each position is changed. In other words, the direction of incidence can be determined by the rotational position of the collimator 10.

この第3図の場合、回転するのはコリメータlOだけで
よく、円形5WPC7等は機械的な動きを必要としない
点に利点がある。すなわち、コリメータ10が回転する
ことによって、被検者6の体軸に直角な平面内の各方向
での投影データを収集できる。
In the case of FIG. 3, only the collimator IO needs to be rotated, and the circular 5WPC7 and the like have the advantage that no mechanical movement is required. That is, by rotating the collimator 10, projection data in each direction within a plane perpendicular to the body axis of the subject 6 can be collected.

この第3図の円形5WPC7を、第4図のように被検者
6の体軸方向に何層にも積層させれば、被検者6の体軸
方向に異なる位置の多数のスライスの画像を同時に得る
ことができる。第1図および第2図の実施例の場合も、
図示しないが同様に六角形swpc tを重ねればよい
If the circular 5WPCs 7 in FIG. 3 are stacked in many layers in the axial direction of the subject 6 as shown in FIG. 4, images of many slices at different positions in the axial direction of the subject 6 can be obtained. can be obtained at the same time. Also in the case of the embodiments of FIGS. 1 and 2,
Although not shown, hexagons swpc t may be similarly overlapped.

なお上記のいくつかの実施例で、7ノードのワイアをリ
ング方向にいくつかに分割してそれらの各々で独立に位
置情報を求めるようにすれば、高計数率時に対応するこ
とができる。
In the several embodiments described above, if the 7-node wire is divided into several parts in the ring direction and position information is obtained independently from each part, it is possible to cope with high counting rates.

発明の効果 この発明によればリング形の電荷分割型5WPCを用い
ているので、高い固有空間分解能および従来と同程度の
検出効率を実現でき、しかも電荷分割型swpcのコス
トはシンチレータと光電子増倍管の組合わせよりも格段
に低く且つ電子回路も簡単でよいので、装置全体を大幅
にコストダウンできる。さらに被検者の体軸方向に異な
るスライスの数を増加することも、単にリング形の電荷
分割型swpcを重ねればよいだけなので、簡単である
。また、高圧ガス検出器を用いるので安定度も高い。
Effects of the Invention According to the present invention, since a ring-shaped charge-splitting type 5WPC is used, it is possible to achieve high intrinsic spatial resolution and detection efficiency comparable to conventional ones, and the cost of the charge-splitting type SWPC is reduced by a scintillator and a photoelectron multiplier. Since it is much cheaper than a combination of tubes and requires a simpler electronic circuit, the cost of the entire device can be significantly reduced. Furthermore, increasing the number of different slices in the direction of the subject's body axis is easy because it is only necessary to overlap ring-shaped charge splitting SWPCs. Furthermore, since a high-pressure gas detector is used, stability is also high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のブロック図、第2図は同
実施例の一部を切り欠いた斜視図、第3図は他の実施例
の断面図、第4図は体軸方向に重ねた場合の斜視図であ
る。 1・・・六角形5WPC2・・・六角形チェンバ3.9
・・・ワイア    4・・・絶縁物支柱5.10・・
・コリメータ 6・・・被検者7・・・円形5WPC8
・・・円形チェンバ寡20 手 糸売祁j正書(自発) 昭和61年 3月29日 1、事件の表示 昭和60年特許願第142728号 2、発明の名称 リング形SPECT装置 3、補正をする者 事件との関係  特許出願人 住所  京都市中京区河原町通二条下ルーツ船大町37
8番地名称  (199)  株式会社島津製作所代表
者  横 地 箇 男 4、代理人 住所  東京都渋谷区千駄ケ谷1−20−1バーク・ア
ベニュー・アパートメント504号/  \、。 6、補正の内容 (1)明細書第7頁第2行のrNaIシンチレータを用
い」を、rNaIシンチレータ(厚さ10mm以上)を
用い」と補正する。 以上
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a partially cutaway perspective view of the same embodiment, Fig. 3 is a sectional view of another embodiment, and Fig. 4 is a body axial direction. FIG. 1...Hexagonal 5WPC2...Hexagonal chamber 3.9
...Wire 4...Insulator support 5.10...
・Collimator 6... Subject 7... Circular 5WPC8
...Circular chamber holder 20 hand Itomori Keiji Seisho (self-proposal) March 29, 1985 1. Indication of the incident 1985 Patent Application No. 142728 2. Name of the invention Ring-type SPECT device 3. Amendment Relationship with the case of the person who filed the patent application Address of the patent applicant: 37 Roots Funa-Omachi, Nijo-shita, Kawaramachi-dori, Nakagyo-ku, Kyoto City
No. 8 Name (199) Shimadzu Corporation Representative: Yoko Jika 4, Agent address: 504 Burke Avenue Apartment, 1-20-1 Sendagaya, Shibuya-ku, Tokyo. 6. Contents of correction (1) "Using an rNaI scintillator" in the second line of page 7 of the specification is corrected to "Using an rNaI scintillator (thickness 10 mm or more)". that's all

Claims (1)

【特許請求の範囲】[Claims] (1)リング形チェンバ内に原子番号の高い不活性ガス
と少量のクエンチングガスとを高圧封入し、該リング形
チェンバ内に、該リング形チェンバに沿ってアノードを
なす1本のワイアをリング形に配置してなる電荷分割型
シングルワイア位置検出比例計数管を有するリング形S
PECT装置。
(1) An inert gas with a high atomic number and a small amount of quenching gas are sealed at high pressure in a ring-shaped chamber, and a single wire serving as an anode is placed along the ring-shaped chamber. Ring type S with a charge split type single wire position detection proportional counter arranged in the shape
PECT device.
JP14272885A 1985-06-30 1985-06-30 Ring type spect apparatus Pending JPS625192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14272885A JPS625192A (en) 1985-06-30 1985-06-30 Ring type spect apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14272885A JPS625192A (en) 1985-06-30 1985-06-30 Ring type spect apparatus

Publications (1)

Publication Number Publication Date
JPS625192A true JPS625192A (en) 1987-01-12

Family

ID=15322203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14272885A Pending JPS625192A (en) 1985-06-30 1985-06-30 Ring type spect apparatus

Country Status (1)

Country Link
JP (1) JPS625192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063008A2 (en) * 2009-11-18 2011-05-26 Saint-Gobain Ceramics & Plastics, Inc. System and method for ionizing radiation detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063008A2 (en) * 2009-11-18 2011-05-26 Saint-Gobain Ceramics & Plastics, Inc. System and method for ionizing radiation detection
WO2011063008A3 (en) * 2009-11-18 2011-09-01 Saint-Gobain Ceramics & Plastics, Inc. System and method for ionizing radiation detection
US8704189B2 (en) 2009-11-18 2014-04-22 Saint-Gobain Ceramics & Plastics, Inc. System and method for ionizing radiation detection

Similar Documents

Publication Publication Date Title
US6433335B1 (en) Geiger-Mueller triode for sensing the direction of incident ionizing gamma radiation
US6316773B1 (en) Multi-density and multi-atomic number detector media with gas electron multiplier for imaging applications
US3890506A (en) Fast response time image tube camera
US3683185A (en) Radiation imaging apparatus
JP2018508763A (en) Composite scintillation crystal, composite scintillation detector and radiation detector
JP7100549B2 (en) High energy ray detector and tomographic image acquisition device
US10254437B2 (en) Temperature performance of a scintillator-based radiation detector system
Ziock et al. A germanium-based coded aperture imager
Brownell et al. Recent developments in positron scintigraphy
JPS625192A (en) Ring type spect apparatus
CN113009548B (en) Detection equipment and radiation azimuth measurement method
KR101089812B1 (en) Radiation Camera
JPS6183985A (en) Scintillation detector
Pani et al. New devices for imaging in nuclear medicine
JPH0627857B2 (en) Radiation position detector
Hoan et al. An Efficient, Gaseous Detector with Good Low-energy Resolution for (≤ 50 keV) Imaging
JPS625191A (en) Ring type spect apparatus
JPS62203078A (en) Radiation position detector
Starič et al. A thin multiwire proportional chamber for imaging with UV light, X-rays and gamma rays
JPS6139977Y2 (en)
JP2653047B2 (en) Radiation detector
Driard et al. Large field image intensifier tube for scintillation cameras
US6452185B1 (en) Method to correct energy determination in pixellated scinillation detectors
Lansiart et al. Spark Chambers and Image Intensifies Used in the Scanning of Radioactive Objects
JPH01135331A (en) X-ray tomographic diagnostic apparatus