JPS6251654B2 - - Google Patents

Info

Publication number
JPS6251654B2
JPS6251654B2 JP19635984A JP19635984A JPS6251654B2 JP S6251654 B2 JPS6251654 B2 JP S6251654B2 JP 19635984 A JP19635984 A JP 19635984A JP 19635984 A JP19635984 A JP 19635984A JP S6251654 B2 JPS6251654 B2 JP S6251654B2
Authority
JP
Japan
Prior art keywords
copolymer
product
ester
amino alcohol
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19635984A
Other languages
Japanese (ja)
Other versions
JPS6174644A (en
Inventor
Osamu Itabashi
Tomio Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19635984A priority Critical patent/JPS6174644A/en
Publication of JPS6174644A publication Critical patent/JPS6174644A/en
Publication of JPS6251654B2 publication Critical patent/JPS6251654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規な複合吸着剤、さらに詳しくいえ
ば、各種金属イオン、有機物、窒素化合物などに
対して優れた捕捉効果を示し、かつ機械的強度、
耐膨張収縮性、耐久性などにも優れ、その上安価
に製造しうる複合吸着剤に関するものである。 金属製品製造業や化学工業などから排出される
産業廃水には、金属イオン類、有機物、窒素化合
物などが含まれており、これらは人体に種々の影
響を及ぼすことから、排出に先だつて、ほぼ完全
に除去することが要求されている。 従来の技術 従来、これらを除去する手段として、例えばイ
オン交換樹脂や活性炭などを用いる吸着処理法が
知られている。しかしながら、このイオン交換樹
脂や活性炭などの市販吸着剤は廃水の高度処理剤
として用いられてはいるものの、いずれも吸着す
る物質の種類に限りがあり、その上高価であるた
め、高濃度で多種の汚染物質を含有している廃水
の処理には不適当である。したがつて、廃水処理
においては、各種の金属イオン、有機物、窒素化
合物などの汚染物質を同時に捕捉しうる安価な吸
着剤の開発が要望されていた。 さらに、従来の吸着剤は機械的強度、耐膨張収
縮性、耐久性などについても、必ずしも満足しう
るものではなく、これらの改善が望まれていた。 発明が解決しようとする問題点 本発明の目的は、このような要望にこたえ、各
種金属イオン、有機物、窒素化合物などに対して
優れた捕捉効果を示し、かつ機械的強度、耐膨張
収縮性、耐久性などにも優れ、その上安価に製造
しうる複合吸着剤を提供することにある。 問題点を解決するための手段 本発明者らは種々研究を重ねた結果、微粉状固
体物質表面に特定の共重合体を被覆し、次いでこ
の共重合体にアミノアルコール分子を結合させる
ことにより、前記の目的を達成しうることを見出
し、この知見に基づいて本発明を完成するに至つ
た。 すなわち、本発明は、微粉状固体物質表面に、
α,β―不飽和カルボン酸又はそのエステルと架
橋性ジビニル単量体との共重合体を被覆させ、こ
れにアミノアルコールを結合させて成る複合吸着
剤を提供するものである。 本発明の複合吸着剤に用いられる微粉状固体物
質は表面積の大きな無機質又は有機質の固体物質
であり、このようなものとしては、例えばシリカ
ゲル、合成ゼオライト、天然ゼオライト、モレキ
ユラシーブス、アルミナ、カーボンブラツク、活
性炭、セルロースなどが挙げられる。これらはそ
れぞれ単独で用いてもよいし、2種以上組み合わ
せて用いてもよい。 また、該複合吸着剤における共重合体を形成さ
せるために用いられるα,β―不飽和カルボン酸
又はそのエステルとしては、例えばアクリル酸、
メタクリル酸、クロトン酸など、又はこれらのメ
チルエステル、エチルエステル、プロピルエステ
ル、ブチルエステルなどのアルキルエステル、例
えばアクリル酸メチル、アクリル酸エチル、アク
リル酸プロピル、メタクリル酸メチル、メタクリ
ル酸エチルなどを挙げることができる。これらは
それぞれ単独で用いてもよいし、2種以上組み合
わせて用いてもよい。 一方、このようなα,β―不飽和カルボン酸又
はそのエステルと共重合させるための架橋性ジビ
ニル単量体としては、例えばジビニルベンゼン、
ジビニルトルエン、ジビニルナフタレンなどの芳
香族ジビニル化合物、ジアクリル酸エチレングリ
コールエステル、ジメタクリル酸エチレングリコ
ールエステルなどの脂肪族ジビニル化合物が挙げ
られる。これらの架橋性ジビニル単量体は、前記
のα,β―不飽和カルボン酸又はそのエステルが
重合して形成されるポリマーを架橋させ、物性を
向上させることが主目的であつて、その使用量は
所望の架橋度に応じて選択される。 本発明の複合吸着剤を製造するためには、ま
ず、前記の微粉状固体物質表面に、α,β―不飽
和カルボン酸又はそのエステルと架橋性ジビニル
単量体との共重合体を被覆させる。この被覆方法
としては、例えばこれら単量体と重合開始剤を含
む溶液中に、該微粉状固体物質を懸濁させて共重
合する方法、あるいは該微粉状固体物質に、これ
ら単量体と重合開始剤とを吸着させて、非媒質中
で共重合を行わせる方法などが好適である。 次いで、このようにして微粉状固体物質表面に
被覆された共重合体に、アミノアルコールを結合
する。このアミノアルコールとしては、例えばエ
タノールアミン、ジエタノールアミン、2―アミ
ノプロパン―1―オール、1―アミノプロパン―
2,3―ジオール、2―アミノ―1,3ジオキシ
ブタン、トリス(オキシメチル)メチルアミン、
1,3―ジアミノプロパン―2―オール、1,3
ジアミノプロパン―3―オール、(2―オキシエ
チル)エチレンジアミンなどが用いられる。この
ようなアミノアルコールを該共重合体に導入する
方法としては、例えば、該共重合体に含まれる
α,β―不飽和カルボン酸単位又はそのエステル
単位の総モル量に対して、アミノアルコールを
0.1〜100倍、好ましくは1〜10倍の範囲で使用
し、該共重合体と反応させる方法が用いられる。
この際、反応を効果的に行うために、該共重合体
の膨潤剤となり、かつ該アミノアルコールを溶解
しうる有機溶媒を用いてもよい。このような有機
溶媒としては、例えばジオキサン、アセトン、メ
チルエチルケトン、ベンゼン、トルエン、N,N
―ジメチルホルムアミドなどが挙げられる。 このようにして、微粉状固体物質表面に被覆さ
れた共重合体のカルボキシル基又はエステル基と
該アミノアルコールのアミノ基とが反応し、酸ア
ミドを形成するか或はエステル交換反応を行うこ
とによりアミノアルコールが該共重合体に導入さ
れ、本発明の複合吸着剤が得られる。 発明の効果 本発明の複合吸着剤は、樹脂が微粉状固体物質
表面に強く付着して、機械的強度、耐膨張収縮
性、耐久性などに優れており、その上該微粉状固
体物質の吸着性能と樹脂の吸着性能とをあわせも
つことから、各種金属イオン、有機物、窒素化合
物などに対して優れた捕捉効果を示し、しかも安
価に製造しうるので、実用的価値の高い新規な吸
着剤である。 したがつて、本発明の吸着剤は、各種金属イオ
ン、有機物、窒素化合物などを含む産業廃水など
の浄化に好適に使用しうる。 実施例 次に実施例によつて本発明をさらに詳細に説明
する。 実施例 1 60〜100メツシユに整粒したシリカゲルに、次
表に示すようなα,β―不飽和カルボン酸又はそ
のエステルとジビニルベンゼンとの混合モノマー
及び重合開始剤のアゾビスイソブチロニトリルを
吸着させたのち、80℃で5時間共重合させた。こ
の反応により得られた共重合体被覆シリカゲル10
gに、該表に示すようなアミノアルコールを所定
量加え、場合により溶媒を用いて所定温度で所定
時間反応させた。反応生成物はIN塩酸で洗浄後
水洗を行つたのち、メタノールでソツクスレー抽
出して精製した。結果をまとめて該表に示す。 これらの生成物の赤外反射反射吸収スペクトル
は、1650cm-1付近に新しい酸アミドのピークが出
現し、また示差熱天秤分析によると、450〜50℃
付近に新しい発熱ピークとこれに伴う重量減少が
認められた。これらのことから、生成物の重量増
加は、アミノアルコールの反応によるものである
ことが分つた。 これらの生成物はいずれも六価クロム、銅、ニ
ツケル、亜鉛、鉛を速やかに吸着した。 その1例として、該表の実験番号1で得られた
生成物の銅の吸着実験の結果を第1図にカーブA
で示した。 この吸着実験では、銅濃度10mg/の溶液50ml
に、生成物100mgを添加し、室温でかきまぜなが
ら液のPHを調整して、3日間請置後、1日間振り
まぜたのち、溶液の平衡PHを測定してから、溶液
中の銅の残留濃度を求めた。なお、溶液のPH調整
は希塩酸と希水酸化ナトリウム水溶液で行い、注
加容量から濃度補正した この生成物は銅とキレートを生成し、第1図か
ら分るように、生成物はPH6〜7.5に於て85%〜
99.8%の銅を除去することができた。
Industrial Application Fields The present invention is a novel composite adsorbent, more specifically, it exhibits excellent trapping effects on various metal ions, organic substances, nitrogen compounds, etc., and has mechanical strength and
This invention relates to a composite adsorbent that has excellent resistance to expansion and contraction, durability, etc., and can be manufactured at low cost. Industrial wastewater discharged from metal product manufacturing industries, chemical industries, etc. contains metal ions, organic substances, nitrogen compounds, etc., and since these have various effects on the human body, most of them are treated before being discharged. Complete removal is required. BACKGROUND ART Conventionally, as a means for removing these substances, adsorption treatment methods using, for example, ion exchange resins or activated carbon are known. However, although commercially available adsorbents such as ion-exchange resins and activated carbon are used as advanced treatment agents for wastewater, they are limited in the types of substances they can adsorb and are also expensive, so they can be used in high concentrations and in many types. It is unsuitable for treating wastewater containing pollutants. Therefore, in wastewater treatment, there has been a demand for the development of an inexpensive adsorbent that can simultaneously trap various pollutants such as metal ions, organic substances, and nitrogen compounds. Furthermore, conventional adsorbents are not necessarily satisfactory in terms of mechanical strength, resistance to expansion and contraction, durability, etc., and improvements in these have been desired. Problems to be Solved by the Invention The purpose of the present invention is to meet these demands, to exhibit excellent trapping effects on various metal ions, organic substances, nitrogen compounds, etc., and to have mechanical strength, expansion and contraction resistance, The object of the present invention is to provide a composite adsorbent that has excellent durability and can be manufactured at low cost. Means for Solving the Problems As a result of various studies, the present inventors found that by coating the surface of a finely powdered solid substance with a specific copolymer and then bonding amino alcohol molecules to this copolymer, We have discovered that the above object can be achieved, and based on this knowledge, we have completed the present invention. That is, in the present invention, on the surface of a finely powdered solid substance,
The present invention provides a composite adsorbent coated with a copolymer of an α,β-unsaturated carboxylic acid or its ester and a crosslinkable divinyl monomer, and bound to an amino alcohol. The fine powder solid substance used in the composite adsorbent of the present invention is an inorganic or organic solid substance with a large surface area, such as silica gel, synthetic zeolite, natural zeolite, molecular sieves, alumina, carbon black, etc. , activated carbon, cellulose, etc. These may be used alone or in combination of two or more. In addition, examples of the α,β-unsaturated carboxylic acid or its ester used to form the copolymer in the composite adsorbent include acrylic acid,
Methacrylic acid, crotonic acid, etc., or alkyl esters thereof such as methyl ester, ethyl ester, propyl ester, butyl ester, such as methyl acrylate, ethyl acrylate, propyl acrylate, methyl methacrylate, ethyl methacrylate, etc. Can be done. These may be used alone or in combination of two or more. On the other hand, examples of the crosslinkable divinyl monomer to be copolymerized with such α,β-unsaturated carboxylic acid or its ester include divinylbenzene,
Examples include aromatic divinyl compounds such as divinyltoluene and divinylnaphthalene, and aliphatic divinyl compounds such as ethylene glycol diacrylate and ethylene glycol dimethacrylate. The main purpose of these crosslinkable divinyl monomers is to crosslink the polymer formed by polymerizing the α,β-unsaturated carboxylic acid or its ester and improve its physical properties. is selected depending on the desired degree of crosslinking. In order to produce the composite adsorbent of the present invention, first, the surface of the fine powder solid substance is coated with a copolymer of an α,β-unsaturated carboxylic acid or its ester and a crosslinkable divinyl monomer. . This coating method includes, for example, a method in which the fine powder solid substance is suspended in a solution containing these monomers and a polymerization initiator and then copolymerized, or a method in which the fine powder solid substance is copolymerized with these monomers. Preferred is a method in which copolymerization is carried out in a non-medium by adsorbing an initiator. Next, amino alcohol is bonded to the copolymer thus coated on the surface of the finely powdered solid material. Examples of the amino alcohol include ethanolamine, diethanolamine, 2-aminopropan-1-ol, 1-aminopropan-
2,3-diol, 2-amino-1,3 dioxybutane, tris(oxymethyl)methylamine,
1,3-diaminopropan-2-ol, 1,3
Diaminopropan-3-ol, (2-oxyethyl)ethylenediamine, etc. are used. As a method for introducing such an amino alcohol into the copolymer, for example, amino alcohol is added to the total molar amount of α,β-unsaturated carboxylic acid units or ester units thereof contained in the copolymer.
A method is used in which the amount is used in a range of 0.1 to 100 times, preferably 1 to 10 times, and reacted with the copolymer.
At this time, in order to carry out the reaction effectively, an organic solvent which acts as a swelling agent for the copolymer and can dissolve the amino alcohol may be used. Examples of such organic solvents include dioxane, acetone, methyl ethyl ketone, benzene, toluene, N,N
-Dimethylformamide, etc. In this way, the carboxyl group or ester group of the copolymer coated on the surface of the fine powder solid material reacts with the amino group of the amino alcohol to form an acid amide or by performing a transesterification reaction. Amino alcohol is introduced into the copolymer to obtain the composite adsorbent of the present invention. Effects of the Invention The composite adsorbent of the present invention has a resin that strongly adheres to the surface of a finely powdered solid material, and has excellent mechanical strength, resistance to expansion and contraction, and durability. It is a new adsorbent with high practical value because it has both the adsorption ability of resin and has an excellent trapping effect on various metal ions, organic substances, nitrogen compounds, etc., and can be manufactured at low cost. be. Therefore, the adsorbent of the present invention can be suitably used for purifying industrial wastewater containing various metal ions, organic substances, nitrogen compounds, and the like. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Example 1 A mixed monomer of α,β-unsaturated carboxylic acid or its ester and divinylbenzene as shown in the following table and azobisisobutyronitrile as a polymerization initiator were added to silica gel sized into 60 to 100 meshes. After adsorption, copolymerization was carried out at 80°C for 5 hours. Copolymer-coated silica gel 10 obtained by this reaction
A predetermined amount of amino alcohol as shown in the table was added to g, and the mixture was reacted at a predetermined temperature for a predetermined time using a solvent if necessary. The reaction product was washed with IN hydrochloric acid and water, and then purified by Soxhlet extraction with methanol. The results are summarized in the table. In the infrared reflection/reflection absorption spectra of these products, a new acid amide peak appears around 1650 cm -1 , and according to differential calorimetry analysis, the temperature is between 450 and 50°C.
A new exothermic peak and associated weight loss were observed in the vicinity. From these results, it was found that the increase in weight of the product was due to the reaction of the amino alcohol. All of these products rapidly adsorbed hexavalent chromium, copper, nickel, zinc, and lead. As an example, the results of the copper adsorption experiment of the product obtained in experiment number 1 in the table are shown in Figure 1 with curve A.
It was shown in In this adsorption experiment, 50ml of a solution with a copper concentration of 10mg/
Add 100 mg of the product to the solution, adjust the pH of the solution by stirring at room temperature, let it stand for 3 days, stir for 1 day, measure the equilibrium pH of the solution, and check the remaining copper in the solution. The concentration was determined. The pH of the solution was adjusted using dilute hydrochloric acid and dilute aqueous sodium hydroxide solution, and the concentration was corrected based on the volume added. This product forms a chelate with copper, and as can be seen from Figure 1, the product has a pH of 6 to 7.5. 85%~
99.8% of copper could be removed.

【表】 実施例 2 60〜100メツシユに整粒した天然ゼオライト
に、メタクリル酸メチルとジビニルベンゼンとの
混合モノマー(重量比100:1)及びアゾビスイ
ソブチロニトリルを吸着させたのち、80℃で5時
間反応させた。この反応によつて共重合体含量
25.2重量%の共重合体被覆天然ゼオライトが得ら
れた。このもの10gをN,N―ジメチルホルムア
ミド50ml中に加え、室温でかきまぜながら該共重
合体を膨潤させたのち、1,3ジアミノプロパン
―2―オール19.2gを加えて、175℃で10時間反
応させた。反応終了後、実施例1と同様に精製し
て、10.5gの反応生成物が得られた。 この生成物はNH 、Zn2+、Cr6+を速やかに吸着
し、その吸着容量はそれぞれ1.44meq/g、
0.32mmol/g、0.28mmol/gを示した。 また、メツキ前処理剤を含有した溶液(COD
値150mg/)50mlに生成物200mgを加え、実施例
1と同様にして吸着実験を行い、上澄溶液の
COD値を測定し、その結果を第2図にカーブB
で示した。また、比較のため、天然ゼオライトを
用いた場合をカーブCで示した。 第2図から分るように、生成物は広いPH領域で
約45%のCOD成分除去率を示したが、原料の天
然ゼオライトはCOD成分の吸着性能が低くて、
COD成分はほとんど除去されなかつた。 実施例 3 10〜20メツシユに整粒した活性炭に、メタクリ
ル酸メチルとジビニルベンゼンとの混合モノマー
(重量比100:5)及びベンゾイルパーオキシドを
吸着させたのち、100℃で5時間反応させた。こ
の反応によつて、共重合体含量15.0重量%の共重
合体被覆活性炭が得られた。このもの10gをN,
N―ジメチルホルムアミド50mlに添加し、室温で
かきまぜながら該共重合体を膨潤させた後2―
(2―アミノエチルアミノ)エタノールを加えて
175℃で7時間反応させたのち、実施例1と同様
にして精製し、10.7gの反応生成物を得た。 この生成物を200mgを用い、Cu2+、Pb2+及び
Cr6+がそれぞれ10mg/含まれ、COD値が150
mg/のメツキ前処理溶液50mlの吸着処理をPH
7.0で行つた。その結果、それぞれの除去率は、
Cu2+が95.4%、Pb2+が93.2%、Cr6+が90.6%、
COD成分が48.6%であり、該生成物を用いた吸
着処理より、COD成分及び金属イオンの同時除
去が可能であつた。
[Table] Example 2 A mixed monomer of methyl methacrylate and divinylbenzene (weight ratio 100:1) and azobisisobutyronitrile were adsorbed onto natural zeolite sized into 60 to 100 meshes, and then heated at 80°C. The reaction was carried out for 5 hours. This reaction reduces the copolymer content
A 25.2% by weight copolymer coated natural zeolite was obtained. Add 10 g of this product to 50 ml of N,N-dimethylformamide and swell the copolymer while stirring at room temperature, then add 19.2 g of 1,3 diaminopropan-2-ol and react at 175°C for 10 hours. I let it happen. After the reaction was completed, the product was purified in the same manner as in Example 1 to obtain 10.5 g of a reaction product. This product quickly adsorbs NH + 4 , Zn 2+ , and Cr 6+ , and its adsorption capacity is 1.44 meq/g, respectively.
It showed 0.32 mmol/g and 0.28 mmol/g. In addition, a solution containing a pretreatment agent (COD
200 mg of the product was added to 50 ml of 150 mg/) and an adsorption experiment was carried out in the same manner as in Example 1.
Measure the COD value and show the results as curve B in Figure 2.
It was shown in For comparison, curve C shows the case where natural zeolite was used. As can be seen from Figure 2, the product showed a COD component removal rate of about 45% over a wide pH range, but the natural zeolite used as a raw material had low adsorption performance for COD components.
Almost no COD components were removed. Example 3 A mixed monomer of methyl methacrylate and divinylbenzene (weight ratio 100:5) and benzoyl peroxide were adsorbed onto activated carbon sized into 10 to 20 meshes, and then reacted at 100°C for 5 hours. This reaction yielded copolymer-coated activated carbon with a copolymer content of 15.0% by weight. 10g of this stuff is N,
After adding it to 50 ml of N-dimethylformamide and stirring at room temperature to swell the copolymer, 2-
(2-Aminoethylamino) Add ethanol
After reacting at 175°C for 7 hours, it was purified in the same manner as in Example 1 to obtain 10.7 g of a reaction product. Using 200 mg of this product, Cu 2+ , Pb 2+ and
Contains 10mg/each of Cr 6+ , COD value 150
Adsorption treatment of 50ml of Metsuki pretreatment solution of mg/PH
I went with 7.0. As a result, each removal rate is
Cu 2+ 95.4%, Pb 2+ 93.2%, Cr 6+ 90.6%,
The COD component was 48.6%, and it was possible to simultaneously remove the COD component and metal ions through adsorption treatment using this product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は銅含有溶液に本発明の複合吸着剤を加
えたときの溶液の平衡PHと銅の除去率との関係を
示すグラフであり、第2図はメツキ前処理溶液に
本発明の複合吸着剤及び天然ゼオライトをそれぞ
れ加えたときの溶液の平衡PHとCOD成分の除去
率との関係を示すグラフである。 グラフにおいて、カーブA及びカーブBは本発
明の複合吸着剤、カーブCは天然ゼオライトにつ
いてのものである。
FIG. 1 is a graph showing the relationship between the equilibrium pH of the solution and the copper removal rate when the composite adsorbent of the present invention is added to a copper-containing solution, and FIG. It is a graph showing the relationship between the equilibrium pH of the solution and the removal rate of COD components when an adsorbent and natural zeolite are respectively added. In the graph, curve A and curve B are for the composite adsorbent of the present invention, and curve C is for natural zeolite.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉状固体物質表面に、α,β―不飽和カル
ボン酸又はそのエステルと架橋性ジビニル単量体
との共重合体を被覆させ、これにアミノアルコー
ルを結合させて成る複合吸着剤。
1. A composite adsorbent in which the surface of a finely powdered solid substance is coated with a copolymer of α,β-unsaturated carboxylic acid or its ester and a crosslinkable divinyl monomer, and an amino alcohol is bonded to the copolymer.
JP19635984A 1984-09-19 1984-09-19 Composite adsorbent Granted JPS6174644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19635984A JPS6174644A (en) 1984-09-19 1984-09-19 Composite adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19635984A JPS6174644A (en) 1984-09-19 1984-09-19 Composite adsorbent

Publications (2)

Publication Number Publication Date
JPS6174644A JPS6174644A (en) 1986-04-16
JPS6251654B2 true JPS6251654B2 (en) 1987-10-30

Family

ID=16356529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19635984A Granted JPS6174644A (en) 1984-09-19 1984-09-19 Composite adsorbent

Country Status (1)

Country Link
JP (1) JPS6174644A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445732A (en) * 1992-06-19 1995-08-29 Sepracor Inc. Passivated porous polymer supports and methods for the preparation and use of same
US5470463A (en) * 1992-06-19 1995-11-28 Sepracor Inc. Passivated porous supports and methods for the preparation and use of same
US5268097A (en) * 1992-06-19 1993-12-07 Sepracor Inc. Passivated and stabilized porous mineral oxide supports and method for the preparation and use of same
US5906734A (en) * 1992-06-19 1999-05-25 Biosepra Inc. Passivated porous polymer supports and methods for the preparation and use of same
US5906747A (en) * 1995-11-13 1999-05-25 Biosepra Inc. Separation of molecules from dilute solutions using composite chromatography media having high dynamic sorptive capacity at high flow rates

Also Published As

Publication number Publication date
JPS6174644A (en) 1986-04-16

Similar Documents

Publication Publication Date Title
Abdel-Halim Preparation of starch/poly (N, N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions
Patrulea et al. Optimization of the removal of copper (II) ions from aqueous solution on chitosan and cross-linked chitosan beads
Uğuzdoğan et al. The use of polyethyleneglycolmethacrylate-co-vinylimidazole (PEGMA-co-VI) microspheres for the removal of nickel (II) and chromium (VI) ions
Zhou et al. Adsorption behavior of Cd2+, Pb2+, and Ni2+ from aqueous solutions on cellulose-based hydrogels
US4439545A (en) Acrylic copolymers of N-acryloylpolymethyleneimines or N-acryloyldialkylamides, N,N'-acryloyldiaminoalcanes and N-acryloylaminoacids (or esters) their preparation and use as cation exchangers
WO2012081727A1 (en) Temperature-responsive adsorbent having strong cation exchange group, and method for producing same
JPS58132004A (en) Manufacture of amphoteric ion exchanger having hydrophilic polymer matrix
US9579629B2 (en) Production process of film and column for cation chromatography
US4576973A (en) Copolymer, process for its preparation and its use as a sorbent
US4678844A (en) Chelate, crosslinked polyethyleneimine resin having 2-hydroxy benzoyl group
US7001963B2 (en) Cobalt imprinted polymer composition for selective removal of cobalt, process for preparation thereof, and process for removal of cobalt
CN101053823A (en) Poly (m-phenylene diamine) used as mercury ion adsorbent
JPS6251654B2 (en)
Wu et al. Adsorption of bilirubin by amine-containing polyacrylamide resins
JPS6251653B2 (en)
JPH04118048A (en) Granular lithium adsorbent, its manufacture and method for concentrating lithium
JP2987949B2 (en) Porous resin and method for producing the same
JPS6090040A (en) Synthetic adsorbent and preparation thereof
RU2439089C1 (en) Method of producing cellular polymer sorbent for selective sorption of endotoxin from blood plasma
JPS6065004A (en) Chelating resin and its production
JPH01207141A (en) Compound adsorbent and its production
Nastasović et al. Amino-functionalized glycidyl methacrylate based macroporous copolymers as metal ion sorbents
Prasad et al. Synthesis of crosslinked methacrylic acid-co-N, N'-methylene bis acrylamide sorbents for recovery of heavy metal ions from dilute solutions
CN114989359B (en) Cation exchange chromatography medium and preparation method thereof
JPS62227446A (en) Adsorbent for affinity chromatography

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term