JPS6251523B2 - - Google Patents

Info

Publication number
JPS6251523B2
JPS6251523B2 JP55067367A JP6736780A JPS6251523B2 JP S6251523 B2 JPS6251523 B2 JP S6251523B2 JP 55067367 A JP55067367 A JP 55067367A JP 6736780 A JP6736780 A JP 6736780A JP S6251523 B2 JPS6251523 B2 JP S6251523B2
Authority
JP
Japan
Prior art keywords
frequency
mechanical vibrator
mechanical
section
conveyance path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55067367A
Other languages
Japanese (ja)
Other versions
JPS56164612A (en
Inventor
Toshio Suzuki
Masashi Mochizuki
Katsuzo Kitamoto
Yoshihiro Masuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6736780A priority Critical patent/JPS56164612A/en
Publication of JPS56164612A publication Critical patent/JPS56164612A/en
Publication of JPS6251523B2 publication Critical patent/JPS6251523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/013Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は機械振動子の共振周波数を高効率かつ
高精度に、自動化した調整装置により調整する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the resonant frequency of a mechanical vibrator with high efficiency and precision using an automated adjustment device.

機械振動子は一般に棒状あるいは片状の金属体
より構成され、その固有振動数(共振周波数)が
極めて安定なことから圧電磁器のような電気−機
械変換素子と組み合わせて用いることにより、発
振子としてあるいは同調選択素子として広く通信
伝送部品分野において利用されている。例えば前
記発振子の機能は安定な低周波発振器に、また前
記同調選択素子の機能は機械波器(メカニカル
フイルタ)にそれぞれ広く利用されている。
Mechanical resonators are generally composed of rod-shaped or piece-shaped metal bodies, and because their natural frequencies (resonance frequencies) are extremely stable, they can be used as oscillators when used in combination with electromechanical transducers such as piezoelectric ceramics. Alternatively, it is widely used as a tuning selection element in the field of communication transmission components. For example, the function of the oscillator is widely used in stable low-frequency oscillators, and the function of the tuning selection element is widely used in mechanical wave devices (mechanical filters).

機械振動子は前記電気−機械変換子を介して入
力信号によつて機械的に励振されるが、その励振
状態では該機械振動子表面に生ずる複数個の振動
節間において屈曲振動或いはねじり振動等の振動
姿態で振動が行なわれている。これらの振動の振
動数が即ち機械振動子の共振周波数を表わす。従
つて前記振動の振動数(周波数)を決定する要
因、つまり機械振動子の物的特性を僅かずつ変化
させれば前記共振周波数を所望の周波数に限りな
く近付けることができる。共振周波数が目的とす
る所望周波数に正確に一致すれば、それだけ正確
な発振器或いは波器が得られることはいうまで
もない。
The mechanical vibrator is mechanically excited by an input signal via the electro-mechanical transducer, and in the excited state, bending vibration, torsional vibration, etc. occur between the plurality of vibration nodes generated on the surface of the mechanical vibrator. Vibration is performed in the vibration state of . The frequency of these vibrations represents the resonant frequency of the mechanical vibrator. Therefore, by slightly changing the factors that determine the frequency of vibration, that is, the physical characteristics of the mechanical vibrator, it is possible to bring the resonance frequency as close as possible to the desired frequency. It goes without saying that the more accurately the resonant frequency matches the desired frequency, the more accurate an oscillator or wave generator can be obtained.

機械振動子の前記物理特性とは具体的に該機械
振動子の比重、ヤング率、剛性、形状(長さ、太
さ)等を指しているが、前三者については実際に
その特性を変化させることは困難であり、しかも
微細に変化させることはほとんど不可能であるた
め一般にはその形状、とくに長さを変化させる方
法が行なわれている。
The above-mentioned physical properties of a mechanical oscillator specifically refer to the specific gravity, Young's modulus, rigidity, shape (length, thickness), etc. of the mechanical oscillator, but the former three are actually changed in their properties. However, since it is difficult to change the shape, and it is almost impossible to change the shape minutely, a method is generally used in which the shape, especially the length, is changed.

従来機械振動子の長さを微調整して共振周波数
を所望周波数にする場合、切削、研摩等により機
械振動子の機械加工を行なうのが一般的であり、
このような方法では相当の誤差を伴ない高精度の
機械振動子が得られないうえ量産する場合に加工
時間の増大、共振周波数の検査測定などに手間や
時間を要し甚だ非能率な欠点があつた。そこでこ
のような欠点を除去した加工法として機械加工に
替えてパルス状のレーザ光を用い、該レーザ光の
蒸発破壊作用によつて機械振動子の等価的な長さ
を調整し、さらに前記レーザ光による加工状態の
ままで該機械振動子の共振周波数を測定可能にし
たものである。このような方法は特開昭50−
45593号公報に述べられている。また、共振周波
数の調整をするため第1のステツプで研削するこ
とにより粗調整し、次いで第2のステツプで機械
共振子をサンドブラストにより処理するかまたは
レーザビームで加工することにより微調整(最終
調整)することが、ドイツ連邦共和国特許第
1929994号明細書に記載されている。
Conventionally, when fine-tuning the length of a mechanical vibrator to make the resonant frequency a desired frequency, it is common to machine the mechanical vibrator by cutting, polishing, etc.
With this method, a high-precision mechanical vibrator cannot be obtained due to considerable errors, and when mass-producing it, processing time increases, and inspection and measurement of the resonance frequency requires time and effort, resulting in severe inefficiency. It was hot. Therefore, as a processing method that eliminates such defects, a pulsed laser beam is used instead of machining, and the equivalent length of the mechanical vibrator is adjusted by the evaporative destruction effect of the laser beam. This makes it possible to measure the resonant frequency of the mechanical vibrator while it is being processed by light. This method was published in Japanese Patent Application Publication No. 1973-
It is stated in Publication No. 45593. In order to adjust the resonant frequency, the first step is to make a rough adjustment by grinding, and then the second step is to sandblast the mechanical resonator or process it with a laser beam to make a fine adjustment (final adjustment). ) is granted by the Federal Republic of Germany Patent No.
It is described in the specification of No. 1929994.

さらにこの明細書に記載されている機械共振子
の共振周波数の実際値を所定目標周波数に自動調
整する方法における本来の調整以外に機械共振周
波数が所定の周波数誤差範囲外にある場合等の選
別作業等を必要とし、このための装置を必要とす
るなどの問題点を解消すべく、機械共振子の調整
に必要な作業をすべて一つの装置にまとめ、調整
すべき機械共振子を連続的に配置された工程ステ
ーシヨンに自動的に供給・調整・測定等行なうよ
うにしたものが特開昭51−92191号公報にてそれ
ぞれ公知である。
Furthermore, in addition to the original adjustment in the method of automatically adjusting the actual value of the resonant frequency of a mechanical resonator to a predetermined target frequency described in this specification, selection work is performed when the mechanical resonant frequency is outside the predetermined frequency error range. In order to solve problems such as the need for a device for this purpose, all the work necessary for adjusting mechanical resonators is combined into one device, and the mechanical resonators to be adjusted are arranged continuously. Japanese Patent Laid-Open No. 51-92191 discloses a system that automatically supplies, adjusts, measures, etc.

しかして機械振動子(機械共振子)の性能は前
述の如くその共振周波数が所望周波数に至近ない
しは一致しているか否かに大きく依存するもの
で、共振周波数を所望周波数となるように粗調整
と微調整の2段階の調整・加工によつて行なわれ
る。ところでこの際上述の従来の公知方法による
加工では粗調整が終了した機械振動子(圧電振動
子のものも含み)はそれ自身の温度が上昇してい
るため密度・形状等が使用状態の温度(常温)に
おけるとは異なり、この温度状態での共振周波数
と使用状態での共振周波数との差にもとずく周波
数差が誤差となり高精度な機械振動子が得られな
かつた。このことは従来の連続した調整工程を具
える自動周波数調整装置による調整方法では機械
振動子の温度が常温に安定となつた状態の後微調
整を行なわないと正確な所望共振周波数にするこ
とができない。従つて粗調整を行なつた機械振動
子は一旦調整装置から取り外し、温度が安定した
後再び調整装置に載置装着して測定し微調整を行
なわねばならない。以上のようなことから高精度
な機械振動子を得るためには全自動化した高能率
な調整装置として調整することが困難で、調整装
置の経済的運用、メカニカルフイルタ等の高能率
な製造が行なえないという問題点があつた。
However, as mentioned above, the performance of a mechanical oscillator (mechanical resonator) largely depends on whether its resonant frequency is close to or coincides with the desired frequency. This is done through two stages of fine adjustment and processing. By the way, when processing using the above-mentioned conventional known method, the temperature of the mechanical vibrator (including piezoelectric vibrator) after rough adjustment has increased, so the density, shape, etc. of Unlike at normal temperature), a frequency difference based on the difference between the resonant frequency at this temperature and the resonant frequency under use results in an error, making it impossible to obtain a highly accurate mechanical vibrator. This means that in the conventional adjustment method using an automatic frequency adjustment device that has a continuous adjustment process, it is impossible to achieve the desired resonant frequency unless fine adjustment is performed after the temperature of the mechanical resonator has stabilized at room temperature. Can not. Therefore, the mechanical vibrator that has been roughly adjusted must be removed from the adjustment device, and after the temperature has stabilized, it must be placed on the adjustment device again, measured, and finely adjusted. For the above reasons, in order to obtain a high-precision mechanical vibrator, it is difficult to perform adjustment using a fully automated and highly efficient adjusting device, and it is difficult to operate the adjusting device economically and manufacture mechanical filters etc. with high efficiency. There was a problem that there was no.

本発明は上記問題点に鑑みなされたもので、そ
の目的は上記従来の問題点を解消し、短時間でか
つ高能率に、しかも全自動的に途中で人手を要す
ることなく高精度に所望共振周波数に機械振動子
を調整加工することのできる周波数調整方法を提
供することにある。そうしてこのような本発明方
法の要旨は機械振動子を逐次送出供給する手段を
備える機械振動子収容部と、該機械振動子収容部
から送出供給される前記機械振動子を搭載して所
定の搬送ステツプで搬送する搬送路と、該搬送路
の途中ステツプ位置において前記搬送される機械
振動子の共振周波数を測定し実質的に該機械振動
子の長さ寸法を短縮するように加工して所望の共
振周波数となるようにする測定加工部と、該機械
振動子の排出部と、前記機械振動子収容部と搬送
路と測定加工部および排出部を制御する制御装置
を具え、前記搬送される機械振動子を測定加工部
で共振周波数を測定し所定の周波数範囲内のもの
については所望の共振周波数となるように加工し
て排出し、所定の周波数範囲外のものについては
測定加工部で所定の周波数範囲内となるように加
工し前記搬送路をさらに一周させて前記測定加工
部で再び共振周波数を測定し所望の共振周波数と
なるよう制御して調整するようにしたことにあ
る。このようにして本発明方法によれば粗調整時
の温度上昇に起因する常温安定状態時との周波数
誤差が収束するタイミング期間を設けた結果、全
自動で高精度の周波数調整を可能とした特微を示
す。以下に本発明方法の実施例につき添付図面を
参照して説明する。
The present invention has been made in view of the above-mentioned problems, and its purpose is to solve the above-mentioned conventional problems, and to achieve the desired resonance in a short time, with high efficiency, and fully automatically, without requiring any manual intervention. An object of the present invention is to provide a frequency adjustment method capable of adjusting the frequency of a mechanical vibrator. The gist of the method of the present invention is as follows: a mechanical vibrator accommodating section equipped with a means for sequentially delivering and supplying mechanical vibrators; The resonant frequency of the mechanical vibrator to be conveyed is measured on the conveyance path through which the mechanical vibrator is conveyed in the conveyance step, and the resonant frequency of the mechanical vibrator to be conveyed is measured at a step position in the middle of the conveyance path, and the mechanical vibrator is processed to substantially shorten the length dimension. A measurement processing section for achieving a desired resonance frequency, a discharge section for the mechanical vibrator, and a control device for controlling the mechanical vibrator storage section, the conveyance path, the measurement processing section, and the discharge section, The resonant frequency of the mechanical vibrator is measured in the measuring and processing section, and those within a predetermined frequency range are processed to the desired resonance frequency and discharged, while those outside the predetermined frequency range are processed at the measurement and processing section. The resonant frequency is processed so as to fall within a predetermined frequency range, the conveyance path is made to go around one more time, the resonant frequency is measured again in the measuring and processing section, and the resonant frequency is controlled and adjusted to a desired resonant frequency. In this way, according to the method of the present invention, a timing period is provided during which the frequency error from the normal temperature stable state due to the temperature rise during rough adjustment converges. Indicates slight. Embodiments of the method of the present invention will be described below with reference to the accompanying drawings.

図は本発明方法を適用した調整装置の一実施例
を系統的に示したもので、所望の共振周波数に調
整されていない未調整の機械振動子(図示せず)
を多数個収容する収容部1と、この収容部1に例
えば周知の振動整列供給手段を具え、これにより
上記未調整の機械振動子を逐次1個ずつ搬送路2
のワークホルダ3に送出供給する。搬送路2は循
環形式に構成されており、例えばターンテーブル
或いはベルト式コンベア等で実施できる。ホルダ
3は上記未調整の機械振動子を保持して搬送路2
の搬送ステツプに従つて搬送される。
The figure systematically shows an example of an adjustment device to which the method of the present invention is applied, and shows an unadjusted mechanical vibrator (not shown) that is not adjusted to the desired resonance frequency.
A storage section 1 for accommodating a large number of oscillators, and a well-known vibration aligning and supplying means are provided in this accommodating section 1, whereby the unadjusted mechanical oscillators are sequentially transferred one by one to the conveyance path 2.
It is delivered and supplied to the work holder 3 of. The conveyance path 2 is constructed in a circulating manner and can be implemented, for example, by a turntable or a belt conveyor. The holder 3 holds the unadjusted mechanical vibrator and moves it to the conveyance path 2.
It is transported according to the transport steps of

上記機械振動子が調整加工に先だつて共振周波
数が測定されるわけであるが、この方法は磁力振
動によつて行なわれる場合には着磁部4が搬送路
2に沿つて設置されており、ここを通過する上記
機械振動子を着磁する。次のステツプで搬送路2
に沿つて設けられている機械振動子の共振周波数
を測定し加工する測定加工部5で磁力によつて上
記機械振動子に振動が励起される。この励振され
た振動はその機械振動子の固有の共振振動数であ
るから、この共振周波数を測定加工部5に設けら
れているマイクロホンで収拾するとともに増幅し
記憶装置に記憶させる。上記共振周波数の測定法
は公知であり、例えばTokin Technical Review
第7巻第1号(昭和49年5月発行)の第105頁な
いし109頁に記載の論文「メカニカルフイルタ用
ねじりモード共振子の測定法」の測定原理を用い
ることも可能である。
The resonant frequency of the mechanical vibrator is measured prior to adjustment processing, and when this method is performed using magnetic vibration, the magnetized section 4 is installed along the conveyance path 2, The mechanical vibrator passing through this point is magnetized. In the next step, transport path 2
In the measuring and processing section 5 which measures and processes the resonant frequency of the mechanical vibrator provided along the magnetic field, the mechanical vibrator is excited to vibrate by magnetic force. Since this excited vibration is a unique resonance frequency of the mechanical vibrator, this resonance frequency is collected by a microphone provided in the measurement processing section 5, amplified, and stored in a storage device. The above-mentioned method for measuring the resonant frequency is known, for example, Tokin Technical Review
It is also possible to use the measurement principle of the paper "Measurement method of torsion mode resonator for mechanical filter" described on pages 105 to 109 of Volume 7, No. 1 (published May 1970).

上記測定された共振周波数をもとに該機械振動
子の質量を減じて、その共振周波数を遂次上昇さ
せる過程で所望の共振周波数値とすることがで
き、このようにして所望機械振動子として調整し
得る。この調整方法については先に述べたように
実質的に機械振動子の長さを短かくするよう該機
械振動子の端部面をレーザ光或いはサンドブラス
ト等により加工して実施される。以上のことから
次のステツプとして同一個所において振動周波数
の測定と加工とを微小時間に切替えて繰り返し実
施することのできる測定加工部5において搬送さ
れてきた未調整の機械振動子を加工するが、測定
された共振周波数が所望とする調整目標周波
数よりも粗調整可能な限界量に相当する周波数
だけ低い周波数すなわち−より高く、
また目標周波数よりも微調整し得る限界量に相
当する周波数だけ低い周波数すなわち−
より低いとき、つまり−<−
の場合、目標周波数よりも許容誤差△だけ
低い周波数すなわち−△より高くなるまで、
つまり>−の関係となるまで粗調整加
工を行なう。
The desired resonance frequency value can be achieved by reducing the mass of the mechanical vibrator based on the measured resonance frequency and gradually increasing the resonance frequency, and in this way, the desired resonance frequency can be achieved. Can be adjusted. As described above, this adjustment method is carried out by processing the end face of the mechanical vibrator using a laser beam, sandblasting, etc. so as to substantially shorten the length of the mechanical vibrator. Based on the above, the next step is to process the unadjusted mechanical vibrator that has been transported to the measurement and processing section 5, which is capable of repeating vibration frequency measurement and processing at the same location by switching over and repeating them at minute intervals. Frequency where the measured resonance frequency 0 corresponds to a coarser adjustment limit amount than the desired adjustment target frequency
2 lower frequency i.e. higher than −2 ,
Also, the frequency is lower than the target frequency by the frequency 1 corresponding to the limit amount that can be finely adjusted, that is, −
When it is lower than 1 , that is, −2 < 0 < −
In the case of 1 , the frequency is lower than the target frequency by the tolerance △, that is, until it becomes higher than -△.
In other words, rough adjustment processing is performed until a relationship of 0 > -1 is established.

また−<−△の場合には
>−△が満足されるまで同様に微調整加工を
行なう。
Also, if −1 < 0 < −△, then 0
Fine adjustment processing is performed in the same manner until >-△ is satisfied.

以上のようにして搬送路2の移動に従つて順次
搬送されるに伴ない微調整或いは粗調整並びに微
調整を終えた機械振動子は、その共振周波数が
−△<<+△のものが良品として、
>+△および<−のものが不良
品として排出部6でそれぞれ選別されて排出され
る。上記過程において粗調整されたものについて
は排出されることなく搬送路2に搭載されたまま
搬送路2を一巡し再び共振周波数が測定され、そ
の共振周波数にもとづいて所望周波数となるよう
にレーザ加工され良品とされる。上記粗調整後搬
送路2を一巡することは前述の如く粗調整加工に
よつて機械振動子の温度が上昇しこのため直後に
共振周波数を測定して所望の共振周波数とする微
調整の加工過程を設けたのでは機械振動子の使用
される常温での共振周波数との誤差を生じること
から、搬送路2を一巡させる間に冷却させるのが
目的である。なお要すれば一巡する途中過程にお
いて適宜段数の送気手段8を設けて強制的に常温
となるよう冷却を促進させれば一層の効果があが
り全体のスピードアツプと能率化が計れる。この
ようなことは微調整後一巡させ再度測定し共振周
波数の確認乃至はさらに微調整して所望周波数に
一致乃至極く至近とすることにも実施可能であ
る。
The mechanical vibrators that have undergone fine adjustment, coarse adjustment, and fine adjustment as they are sequentially transported along the transport path 2 as described above have resonance frequencies of -△< 0 <+△. As a good product,
Those with 0 >+Δ and 0 < -2 are sorted out as defective products by the discharge section 6 and discharged. Items that have been roughly adjusted in the above process are not discharged, but remain mounted on the conveyance path 2, go around the conveyance path 2, have their resonance frequency measured again, and then laser process them to the desired frequency based on the resonance frequency. It is considered to be of good quality. Going around the conveyance path 2 after the above-mentioned rough adjustment is a process of fine adjustment in which the temperature of the mechanical vibrator increases due to the rough adjustment process, and therefore the resonant frequency is measured immediately after and the desired resonant frequency is set. The purpose of this arrangement is to cool the conveyance path 2 while it makes one round, since this would cause an error with the resonant frequency of the mechanical vibrator at room temperature. If necessary, an appropriate number of stages of air supply means 8 may be provided in the middle of one cycle to forcibly promote cooling to room temperature, which will further enhance the effect and increase overall speed and efficiency. This can also be carried out by performing a round of fine adjustment and measuring again to confirm the resonant frequency, or by further fine-tuning it so that it matches or is very close to the desired frequency.

上記微調整加工のためのパルスレーザ光による
加工は前記せる特開昭50−45593号公報に詳述の
如く工業用レーザとしてのガスレーザ、固体レー
ザ等で、パルス数は微調整すべき周波数に応じた
調整量を除去するよう予め設定し、制御装置での
比較制御指令で制御するとともにレーザ光を1個
所に集中させず分布させて行なうことで実現され
る。
Processing using pulsed laser light for the above-mentioned fine adjustment processing is performed using an industrial laser such as a gas laser or a solid laser, as detailed in the above-mentioned Japanese Patent Application Laid-Open No. 50-45593, and the number of pulses depends on the frequency to be finely adjusted. This is achieved by setting in advance to remove the adjusted amount, controlling by a comparison control command in the control device, and distributing the laser light without concentrating it on one location.

上記搬送路2のワークホルダ3への未調整の機
械振動子の供給、搬送路2の搬送、着磁部4での
着磁、測定加工部5での共振周波数の測定、記憶
された共振周波数に基く比較制御による粗調整加
工或いは微調整加工、良否の判定排出6、さらに
は粗調整加工後の搬送路の一巡、再加工等の制
御・記憶等は全べて制御装置(CPU)7によつ
て行なわれる。従つて本発明方法によれば機械振
動子の共振周波数粗調整、微調整が一式の装置で
連続して全自動的に行なえるから装置の経済的運
用機拡振動子の効率的な製造に極めて効果が大き
い。このようなことは、一巡する間に自動的に常
温に復元することから何ら人手や特別な装置等を
要せず、その間に新しい機械振動子の装着調整並
びに調整された機械振動子の選別排出が行なえる
ことから並行処理によつて時間の無駄が無くな
り、当然のことながら、以上のような工程時間を
利用して冷却が行なえ、効率は顕著である。もち
ろん上述の粗調整後における機械振動子の搬送路
をさらに一巡する過程において、該機械振動子を
載置せるワークホルダの機械振動子収容部通過時
にはCPUの制御によつて新規な機械振動子が供
給されることはない。
Supply of the unadjusted mechanical vibrator to the work holder 3 on the conveyance path 2, conveyance on the conveyance path 2, magnetization in the magnetization section 4, measurement of the resonance frequency in the measurement processing section 5, memorized resonance frequency Rough adjustment processing or fine adjustment processing based on comparative control based on comparison control, pass/fail judgment discharge 6, furthermore, control and storage of the conveyance path round after rough adjustment processing, reprocessing, etc. are all controlled by the control device (CPU) 7. It is done by twisting. Therefore, according to the method of the present invention, coarse adjustment and fine adjustment of the resonant frequency of a mechanical vibrator can be carried out continuously and fully automatically using a single set of equipment, which is extremely effective for the economical operation of the equipment and the efficient manufacture of amplifying vibrators. Great effect. Since the temperature is automatically restored to room temperature during one cycle, no manual labor or special equipment is required. Since this can be carried out in parallel, there is no time wastage due to parallel processing, and as a matter of course, cooling can be carried out using the above-mentioned process time, resulting in remarkable efficiency. Of course, in the process of the mechanical vibrator going around the conveyance path after the rough adjustment described above, a new mechanical vibrator is inserted under the control of the CPU when the work holder on which the mechanical vibrator is placed passes through the mechanical vibrator accommodating section. It will never be supplied.

以上のように本発明方法によればレーザ光、サ
ンドプラスト法等による加工手段を用いた機械振
動子の共振周波数の調整を、短時間で高精度・高
能率かつ全自動的に行なわせることが可能であつ
て機械波器用共振子・圧電振動子等としての機
械振動子を大量に精度よく調整加工する要求に対
して大いに寄与し得る。
As described above, according to the method of the present invention, the resonant frequency of a mechanical vibrator can be adjusted in a short time, with high precision, with high efficiency, and fully automatically using processing methods such as laser light and sand blasting. It is possible to do so, and it can greatly contribute to the demand for adjusting and processing mechanical vibrators as resonators for mechanical wave devices, piezoelectric vibrators, etc. in large quantities with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法を説明するための調整加工装置
の一実施例を系統的に示す。 図において1は収容供給部、2は搬送路、3は
ワークホルダ、4は着磁部、5は測定加工部、6
は排出部、7は制御装置、8は送気手段である。
The figure systematically shows an embodiment of an adjustment processing apparatus for explaining the method of the present invention. In the figure, 1 is an accommodation supply section, 2 is a conveyance path, 3 is a work holder, 4 is a magnetization section, 5 is a measurement processing section, and 6
7 is a control device, and 8 is an air supply means.

Claims (1)

【特許請求の範囲】[Claims] 1 機械振動子を遂次送出供給する手段を備える
機械振動子収容部と、該機械振動子収容部から送
出供給される前記機械振動子を搭載して所定の搬
送ステツプで搬送する搬送路と、該搬送路の途中
ステツプ位置において前記搬送される機械振動子
の共振周波数を測定し実質的に該機械振動子の長
さ寸法を短縮するように加工して所望の共振周波
数となるようにする測定加工部と、該機械振動子
の排出部と、前記機械振動子収容部と搬送路と測
定加工部および排出部を制御する制御装置を具
え、前記搬送される機械振動子を測定加工部で共
振周波数を測定し所定の周波数範囲内のものにつ
いては所望の共振周波数となるように加工して排
出し所定の周波数範囲外のものについては測定加
工部で所定の周波数範囲内となるように加工し前
記搬送路をさらに一周させて前記測定加工部で再
び共振周波数を測定し所望の共振周波数とする機
械振動子の振動周波数調整方法。
1. A mechanical vibrator accommodating section provided with means for successively delivering and supplying mechanical vibrators; a conveyance path on which the mechanical vibrators delivered and supplied from the mechanical vibrator accommodating section are loaded and conveyed in predetermined conveyance steps; Measuring the resonant frequency of the mechanical vibrator to be conveyed at a step position midway through the conveyance path, and processing the mechanical vibrator to substantially shorten its length so that it has a desired resonant frequency. A processing section, a discharge section for the mechanical vibrator, and a control device for controlling the mechanical vibrator housing section, the conveyance path, the measurement processing section, and the discharge section, the mechanical vibrator being conveyed resonates in the measurement processing section. The frequency is measured, and those within a predetermined frequency range are processed to have the desired resonance frequency and discharged, and those outside the predetermined frequency range are processed by the measurement processing section to be within the predetermined frequency range. A method for adjusting the vibration frequency of a mechanical vibrator, in which the conveyance path is made to go around one more time, and the resonance frequency is again measured in the measurement processing section to obtain a desired resonance frequency.
JP6736780A 1980-05-21 1980-05-21 Oscillating frequency adjusting method for mechanical oscillator Granted JPS56164612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6736780A JPS56164612A (en) 1980-05-21 1980-05-21 Oscillating frequency adjusting method for mechanical oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6736780A JPS56164612A (en) 1980-05-21 1980-05-21 Oscillating frequency adjusting method for mechanical oscillator

Publications (2)

Publication Number Publication Date
JPS56164612A JPS56164612A (en) 1981-12-17
JPS6251523B2 true JPS6251523B2 (en) 1987-10-30

Family

ID=13342964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6736780A Granted JPS56164612A (en) 1980-05-21 1980-05-21 Oscillating frequency adjusting method for mechanical oscillator

Country Status (1)

Country Link
JP (1) JPS56164612A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192191A (en) * 1975-12-19 1976-08-12 Kikaikyoshinshino kyoshinshuhasujidochoseihoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192191A (en) * 1975-12-19 1976-08-12 Kikaikyoshinshino kyoshinshuhasujidochoseihoho

Also Published As

Publication number Publication date
JPS56164612A (en) 1981-12-17

Similar Documents

Publication Publication Date Title
US4484382A (en) Method of adjusting resonant frequency of a coupling resonator
US4021898A (en) Method of adjusting the frequency of vibration of piezoelectric resonators
US20070139140A1 (en) Frequency tuning of film bulk acoustic resonators (FBAR)
GB2098395A (en) Gt-cut piezo-electric resonators
US20030146810A1 (en) Surface acoustic wave device and communications apparatus using the same
Hsu et al. Frequency trimming for MEMS resonator oscillators
JP3123560B2 (en) Horn and its manufacturing method
JPS6251523B2 (en)
JPS6360563B2 (en)
JP2001313537A (en) Piezoelectric element and its manufacturing method
US5022130A (en) Method of manufacturing crystal resonators having low acceleration sensitivity
JP4733550B2 (en) Ultrasonic cleaning equipment
WO2003014667A1 (en) Method and device for trimming sensors with oscillating structures
JP4551297B2 (en) Manufacturing method of crystal unit
US4837475A (en) Crystal resonator with low acceleration sensitivity and method of manufacture thereof
JP2008078869A (en) Method for manufacturing oscillator
JP3701994B2 (en) Piezoelectric element, piezoelectric vibrator, manufacturing method thereof, and processing apparatus
US5168191A (en) Crystal resonator with low acceleration sensitivity and method of manufacture thereof
US2845697A (en) Method of manufacturing a longitudinal mode mechanical vibrator
JP2002171008A (en) Piezoelectric element piece and manufacturing method of piezoelectric device
US4190937A (en) Method of manufacturing electroacoustic transducer elements which operate in the vicinity of resonance
US5445708A (en) Method for preparing ultrathin piezoelectric resonator plates
JP4482203B2 (en) Quartz wafer and quartz crystal manufacturing method
US3823470A (en) Method and apparatus for trimming mechanical filters
CA1042510A (en) Apparatus for measuring resonance frequency of mechanical resonators