JPS6251387B2 - - Google Patents

Info

Publication number
JPS6251387B2
JPS6251387B2 JP15662882A JP15662882A JPS6251387B2 JP S6251387 B2 JPS6251387 B2 JP S6251387B2 JP 15662882 A JP15662882 A JP 15662882A JP 15662882 A JP15662882 A JP 15662882A JP S6251387 B2 JPS6251387 B2 JP S6251387B2
Authority
JP
Japan
Prior art keywords
evaporator
subcooler
condenser
compressor
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15662882A
Other languages
Japanese (ja)
Other versions
JPS5849865A (en
Inventor
Kazuya Matsuo
Taketoshi Mochizuki
Kensaku Kokuni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15662882A priority Critical patent/JPS5849865A/en
Publication of JPS5849865A publication Critical patent/JPS5849865A/en
Publication of JPS6251387B2 publication Critical patent/JPS6251387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は圧縮機、凝縮器、減圧装置および蒸発
器からなる冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system comprising a compressor, a condenser, a pressure reducing device, and an evaporator.

従来のこの種冷凍装置では、減圧装置として一
般に温度式膨脹弁またはキヤピラリチユーブが使
用されている。前者の膨脹弁は蒸発器の広はんな
運転範囲においてスーパヒートの制御を確実に行
うことができる長所がある。その反面、キヤピラ
リチユーブに比べて高価であり、かつ多パス式蒸
発器ではデストリビユータによる冷媒分配が不均
一であるので、安定した冷凍運転をうるためには
スーパヒートを大きくする必要があるから、伝熱
面積を有効に使用できない短所がある。
In conventional refrigeration systems of this type, a thermostatic expansion valve or a capillary tube is generally used as a pressure reducing device. The former expansion valve has the advantage of being able to reliably control superheat over a wide operating range of the evaporator. On the other hand, it is more expensive than a capillary tube, and in a multi-pass evaporator, the refrigerant is distributed unevenly by the distributor, so it is necessary to increase the superheat in order to obtain stable refrigeration operation. The disadvantage is that the thermal area cannot be used effectively.

一方、キヤピラリチユーブは安価であり、かつ
多パス式蒸発器では各パスにキヤピラリチユーブ
を接続することにより、冷媒を良好に分布するこ
とができる長所がある。その反面、運転範囲が広
い場合には、蒸発器のスーパヒートが過大となり
または液バツクを生ずる。これを防止する手段と
して冷却器伝熱面とキヤピラリチユーブを選定す
るために、通常の運転条件では大幅にスーパヒー
トした状態で使用されるので、冷却器の伝熱面積
が有効に利用されない短所がある。
On the other hand, capillary tubes are inexpensive and have the advantage that refrigerant can be distributed well by connecting a capillary tube to each pass in a multi-pass evaporator. On the other hand, when the operating range is wide, the superheat of the evaporator becomes excessive or liquid backlash occurs. As a means to prevent this, the heat transfer surface and capillary tube of the cooler are selected, and under normal operating conditions, the cooler is used in a significantly superheated state, which has the disadvantage that the heat transfer area of the cooler is not effectively utilized. be.

本発明は上記にかんがみて発明されたもので、
キヤピラリチユーブを用い、広はんな運転範囲で
も蒸発器のスーパヒートを制御し、かつ多パス式
蒸発器における伝熱面積を有効に用いて小形化を
はかることを目的とするもので、圧縮機、凝縮
器、キヤピラリチユーブおよび蒸発器からなる冷
凍装置において、その凝縮器とキヤピラリチユー
ブの間にサブクーラを設け、このサブクーラの入
口部と凝縮器の出口側とを温度式膨脹弁を有する
バイパス管を介して連通すると共に、前記サブク
ーラの出口部と蒸発器の出口側配管とをバイパス
管を介して接続し、このバイパス管および蒸発器
の出口側配管の接続点と圧縮機との間の配管に前
記膨脹弁の感熱筒を装着したことを特徴とするも
のである。
The present invention was invented in view of the above,
The purpose is to use a capillary tube to control the superheat of the evaporator even over a wide operating range, and to effectively use the heat transfer area in a multi-pass evaporator to reduce the size of the compressor. In a refrigeration system consisting of a condenser, a capillary tube, and an evaporator, a subcooler is provided between the condenser and the capillary tube, and the inlet of the subcooler and the outlet of the condenser are connected by a bypass having a thermostatic expansion valve. The outlet of the subcooler and the outlet side piping of the evaporator are connected via a bypass pipe, and the connection point between the bypass pipe and the outlet side piping of the evaporator and the compressor are connected through a pipe. The present invention is characterized in that a heat-sensitive cylinder of the expansion valve is attached to the piping.

以下本発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は圧縮機、2は凝縮器、3
はキヤピラリチユーブ、4は蒸発器、5は凝縮器
2とキヤピラリチユーブ3の間に設けられたサブ
クーラ、6は温度式膨脹弁で、凝縮器2の出口側
とサブクーラ5の入口部を接続するバイパス管7
に設けられている。8はサブクーラ5の出口部と
蒸発器4の出口側配管11を連通するバイパス
管、9は前記配管11とバイパス管8の接続点、
10は温度式膨脹弁6の感温筒で、前記接続点9
と圧縮機1の間の配管11に装着されている。
In Fig. 1, 1 is a compressor, 2 is a condenser, and 3 is a compressor.
is a capillary tube, 4 is an evaporator, 5 is a subcooler provided between the condenser 2 and capillary tube 3, and 6 is a thermostatic expansion valve, which connects the outlet side of the condenser 2 and the inlet of the subcooler 5. bypass pipe 7
It is set in. 8 is a bypass pipe that communicates the outlet part of the subcooler 5 with the outlet side pipe 11 of the evaporator 4; 9 is a connection point between the pipe 11 and the bypass pipe 8;
10 is a temperature-sensitive cylinder of the temperature-type expansion valve 6, and the connection point 9
and the compressor 1.

次に上記のような構成からなる本実施例の作用
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

圧縮機1から吐出された冷媒ガスは凝縮器2に
より液化され、この液冷媒の一部は温度式膨脹弁
6を介して蒸発された後、バイパス管7を経てサ
ブクーラ5に導入されて冷却され、さらにバイパ
ス管8を経て蒸発器4より吐出された冷媒ガスと
合流する。
The refrigerant gas discharged from the compressor 1 is liquefied by the condenser 2, and a part of this liquid refrigerant is evaporated via the thermostatic expansion valve 6, and then introduced into the subcooler 5 via the bypass pipe 7 and cooled. , further passes through the bypass pipe 8 and joins with the refrigerant gas discharged from the evaporator 4.

一方、上記液冷媒の残部は直接にサブクーラ5
に導入されて冷却された後、キヤピラリチユーブ
3に導入されて減圧され、さらに蒸発器4に導入
され蒸発されて冷媒ガスとなる。この冷媒ガスは
バイパス管8を流通した冷媒と合流した後に圧縮
機1に吸入される。
On the other hand, the remainder of the liquid refrigerant is directly sent to the subcooler 5.
After being introduced into the capillary tube 3 and depressurized, the refrigerant is further introduced into the evaporator 4 and evaporated to become refrigerant gas. This refrigerant gas is sucked into the compressor 1 after joining with the refrigerant flowing through the bypass pipe 8 .

本実施例は上記のように冷凍サイクルを構成し
たので、主膨脹機構としてキヤピラリチユーブを
用いても、広はんな運転範囲で圧縮機1の入口に
おけるスーパヒートを一定に保つことができる。
その理由は下記のとおりである。
Since the refrigeration cycle of this embodiment is configured as described above, even if a capillary tube is used as the main expansion mechanism, the superheat at the inlet of the compressor 1 can be kept constant over a wide operating range.
The reason is as follows.

キヤピラリチユーブ3の流量特性は第2図に示
すとおりで、その冷媒量はキヤピラリチユーブ3
入口の過冷却度の増加に伴つて増加する。例えば
蒸発器4の熱負荷が増大すると、蒸発器4の出口
のスーパヒートも増加するから、感熱筒10部のス
ーパヒートも増加する。このため温度式膨脹弁6
を流通する冷媒流量は増加し、サブクーラ5の過
冷却度も増加するので、キヤピラリチユーブ3を
流通する冷媒流量は増加するから、感熱筒10の
スーパヒートを設定値にすることができる。した
がつて圧縮機1の入口におけるスーパヒートを一
定に保つことができる。
The flow rate characteristics of the capillary tube 3 are as shown in Figure 2, and the amount of refrigerant is
It increases with the increase in the degree of supercooling at the inlet. For example, when the heat load on the evaporator 4 increases, the superheat at the outlet of the evaporator 4 also increases, and therefore the superheat on the 10 parts of the heat-sensitive tube also increases. For this reason, the temperature-type expansion valve 6
Since the flow rate of refrigerant flowing through the capillary tube 3 increases and the degree of supercooling of the subcooler 5 also increases, the flow rate of refrigerant flowing through the capillary tube 3 increases, so that the superheat of the thermosensitive tube 10 can be set to the set value. Therefore, the superheat at the inlet of the compressor 1 can be kept constant.

以上説明したように、本発明によればサブクー
ラを介してキヤピラリチユーブ以前の冷媒の過冷
却度を調整することにより、圧縮機入口のスーパ
ヒートを一定にすることができる。したがつて安
価なキヤピラリチユーブを主膨脹機構として使用
することができるから経済的である。
As described above, according to the present invention, by adjusting the degree of supercooling of the refrigerant before the capillary tube via the subcooler, the superheat at the compressor inlet can be made constant. Therefore, it is economical because an inexpensive capillary tube can be used as the main expansion mechanism.

また本発明によれば多パス式蒸発器を使用した
際に、キヤピラリチユーブにより冷媒を良好に分
配することにより、伝熱面積を有効に用いて蒸発
器の小型化をはかることができる。
Further, according to the present invention, when a multi-pass evaporator is used, the refrigerant is favorably distributed by the capillary tube, so that the heat transfer area can be used effectively and the evaporator can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷凍装置の一実施例を示す冷
凍サイクル図、第2図は本発明に使用されるキヤ
ピラリチユーブの流量特性図である。 1……圧縮機、2……凝縮器、3……キヤピラ
リチユーブ、4……蒸発器、5……サブクーラ、
6……温度式膨脹弁、7,8……バイパス管、9
……接続点、10……感熱筒、11……配管。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the refrigeration system of the present invention, and FIG. 2 is a flow characteristic diagram of a capillary tube used in the present invention. 1... Compressor, 2... Condenser, 3... Capillary tube, 4... Evaporator, 5... Subcooler,
6... Temperature expansion valve, 7, 8... Bypass pipe, 9
... Connection point, 10 ... Heat-sensitive cylinder, 11 ... Piping.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、複数本の並設キヤピラリー
チユーブに接続される多パス式蒸発器を順次配管
接続してなる冷凍装置において、その凝縮器とキ
ヤピラリーチユーブの間にサブクーラを設け、こ
のサブクーラの入口部と凝縮器の出口側とを温度
式膨張弁を有するバイパス管を介して連通すると
共に、前記サブクーラの出口部と蒸発器の出口側
配管とをバイパス管を介して接続し、このバイパ
ス管と蒸発器の出口側配管との接続点と圧縮機と
の間の配管に前記膨張弁の感熱筒を装着したこと
を特徴とする冷凍装置。
1. In a refrigeration system in which a compressor, a condenser, and a multi-pass evaporator connected to multiple parallel capillary reach tubes are sequentially connected via piping, a subcooler is provided between the condenser and the capillary reach tube, and this The inlet of the subcooler and the outlet of the condenser are communicated via a bypass pipe having a thermostatic expansion valve, and the outlet of the subcooler and the outlet of the evaporator are connected via a bypass pipe. A refrigeration system characterized in that a heat-sensitive cylinder of the expansion valve is attached to a pipe between a connection point between a bypass pipe and an outlet side pipe of an evaporator and a compressor.
JP15662882A 1982-09-10 1982-09-10 Refrigerator Granted JPS5849865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15662882A JPS5849865A (en) 1982-09-10 1982-09-10 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15662882A JPS5849865A (en) 1982-09-10 1982-09-10 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5849865A JPS5849865A (en) 1983-03-24
JPS6251387B2 true JPS6251387B2 (en) 1987-10-29

Family

ID=15631848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15662882A Granted JPS5849865A (en) 1982-09-10 1982-09-10 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5849865A (en)

Also Published As

Publication number Publication date
JPS5849865A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US4083195A (en) Refrigerating and defrosting system with dual function liquid line
US2344215A (en) Refrigeration
US4266405A (en) Heat pump refrigerant circuit
US4903495A (en) Transport refrigeration system with secondary condenser and maximum operating pressure expansion valve
US2385667A (en) Refrigerating system
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
US4646539A (en) Transport refrigeration system with thermal storage sink
IE42343B1 (en) "improved refrigeration systems"
US3423954A (en) Refrigeration systems with accumulator means
US4240269A (en) Heat pump system
US4429552A (en) Refrigerant expansion device
JPS645227B2 (en)
US3332251A (en) Refrigeration defrosting system
US3024619A (en) Heat pump system
US4353221A (en) Transport refrigeration system
US4045977A (en) Self operating excess refrigerant storage system for a heat pump
US2344214A (en) Refrigeration
US5165254A (en) Counterflow air-to-refrigerant heat exchange system
US4412432A (en) Refrigeration system and a fluid flow control device therefor
JPS6251387B2 (en)
US3214929A (en) Refrigeration unit having superheated gas feedback
US2748571A (en) Defrosting system for refrigeration evaporators
JPH0765827B2 (en) Dual heat pump that can take out cold water and steam simultaneously
GB2077407A (en) Heat pump
US4276755A (en) Gas defrost system including heat exchange