JPS6251380A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS6251380A
JPS6251380A JP60189719A JP18971985A JPS6251380A JP S6251380 A JPS6251380 A JP S6251380A JP 60189719 A JP60189719 A JP 60189719A JP 18971985 A JP18971985 A JP 18971985A JP S6251380 A JPS6251380 A JP S6251380A
Authority
JP
Japan
Prior art keywords
light
fluorescent
optical fiber
optical
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189719A
Other languages
Japanese (ja)
Inventor
Hisaaki Tamura
久明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60189719A priority Critical patent/JPS6251380A/en
Publication of JPS6251380A publication Critical patent/JPS6251380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the resolution by changing the optical axis direction of photon from a video image original line so as to make the thickness of the titled device thin thereby attaining miniaturization, light weight and large input area. CONSTITUTION:An optical fiber 1 incorporated with a fluorescent dye is a transparent rod or a transluscent rod having a square cross section made of a material such as resin, glass or ceramic. The fluorescent dye 13 arranged in the optical fiber 1 absorbs a direct ray or a scattered light and diverges it as a fluorescent light. That is, the projected light F made incident in the optical fiber 1 is absorbed by the fluorescent dye and is irradiated scatteringly in unspecified directions from the position. The fluorescent dye is prepared in the optical fiber 1 which is arranged in an array taking into the wavelength of the incident and irradiated light into consideration in this way so as to form an optical input plane to one face of a fluorescent plate 2 and to form fluorescent radiation end faces B, B'. Thus, fluorescent ray is irradiated in a direction nearly at a right angle to the incident light and the optical axis is made thin.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は主として可視光線あるいは放射線等の映像原線
を検知して光学的映像を得る撮像用装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention mainly relates to an imaging device that obtains an optical image by detecting an image primitive such as visible light or radiation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、前記映像原線を検知しこれを映像化する方法
は種々考案されている。その中で、電子的方法により放
射線入力を映像化する場合としては、例えば (イ)螢光体によって可視光に変換する。
Conventionally, various methods for detecting the image primitive and visualizing it have been devised. Among them, when radiation input is visualized by an electronic method, for example, (a) it is converted into visible light using a phosphor.

(ロ)気体を電離させる作用によりイオンを検知する。(b) Ions are detected by the action of ionizing gas.

(ハ)半導体の光電効果による起電力を利用する。(c) Utilizing electromotive force due to the photoelectric effect of semiconductors.

(ニ)フォトカソードによる光電子放出を利用する。(d) Utilizing photoelectron emission by a photocathode.

(ホ)マイクロチャンネルプレートを用いて光電子を増
倍する。
(e) Multiply photoelectrons using a microchannel plate.

等の方法が用いられ、そして、これらの方法に対する評
価項目としては (A)リアルタイム性があるか。
The following methods are used, and the evaluation items for these methods are (A) Is it real-time?

(B)位置分解性があるか。(B) Is it positionally resolvable?

(C)コントラストがあるか。(C) Is there contrast?

(D)入力面積を大きくできるか。(D) Can the input area be increased?

等の項目が考えられている。The following items are being considered.

ところで、現在上記評価項目をすべて満足する撮像用装
置はなく、一般に1−1(イメージングインテンシファ
イア)−TVカメラ方法が利用されている。
By the way, there is currently no imaging device that satisfies all of the above evaluation items, and the 1-1 (imaging intensifier)-TV camera method is generally used.

しかしながら、この方法は映像原線からの光量子を検知
する入力面に相対向する面から光−電気変換素子へと光
を出力するため光軸が長くなり、装置の厚みが少なくと
もこの光軸分必要となり、装置が大型にならざるを得な
いと共に、操作、設計上不便な点が多いと言う問題があ
った。また、実用上分解能に限界があり、現在分解能は
3本/鶴が限界と言われている。
However, in this method, the optical axis is long because the light is output from the surface opposite to the input surface that detects photons from the image primitive to the photoelectric conversion element, and the thickness of the device needs to be at least as thick as this optical axis. Therefore, there were problems in that the device had to be large in size and had many inconveniences in terms of operation and design. In addition, there is a practical limit to the resolution, and currently the resolution is said to be 3 lines per crane.

一方、半導体を固体撮像素子として直接光入力部に用い
る場合には、製造上の制約から人力面積を大きくするこ
とはできず、レンズ系を用いる必要があったり、素子数
の製造上の制約から分解能は前記■・Iを使用する方法
に優ることは困難である。
On the other hand, if a semiconductor is used as a solid-state image sensor in the direct light input section, it is not possible to increase the manpower area due to manufacturing constraints, it is necessary to use a lens system, and due to manufacturing constraints on the number of elements. It is difficult to achieve better resolution than the method using the above-mentioned method (1) and (1).

また、一般に■・■の代替としてマイクロ・チャンネル
・プレートを用いることがあるが、I・Iと同様にT″
■■カメラ方式用しているので、TVカメラの性能が制
約されており、分解能の点ではI・■方式と大差がない
In addition, microchannel plates are generally used as an alternative to ■ and ■, but like I and I, T''
Since it uses the ■■ camera system, the performance of the TV camera is limited, and there is no big difference in resolution from the I/■ system.

さらに、光ファイバを用いてファイバ端面を光入力面と
することも一般的になされているが、入力口径を太き(
しようとすると、そのままファイバ数が増加することに
なり、構成及び電子的な処理が複雑となる。一方、光フ
アイバ数を少なくするためには機械的な走査が必要とな
り運動要素があるため、オンライン化が困難になったり
、装置全体の機構が複雑となる。従って、光軸方向と光
ファイバを同一にして撮像用装置を構成することは難し
い。
Furthermore, it is common practice to use optical fibers and use the fiber end face as the optical input surface, but the input aperture is thick (
If this is attempted, the number of fibers will increase as is, and the configuration and electronic processing will become complicated. On the other hand, in order to reduce the number of optical fibers, mechanical scanning is required and there is a moving element, which makes it difficult to go online and complicates the overall mechanism of the device. Therefore, it is difficult to configure an imaging device with the same optical axis direction and optical fiber.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題に基づいてなされたものであり、映像
原線からの光量子の光軸方向を変えることにより装置の
厚みを薄くして小型、軽量を図ると共に、入力面積を太
き(して分解能を向上させる撮像用装置を提供すること
を目的とするものである。
The present invention has been made based on the above problem, and by changing the optical axis direction of photons from the image primitive, the device can be made thinner, smaller and lighter, and the input area can be made thicker. It is an object of the present invention to provide an imaging device that improves resolution.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の概要は、それぞれ螢
光染料を配合した光学繊維群を、一層のアレイ形に整列
配置して螢光プレートを構成すると共に、この整列配置
された光学繊維群の少なくとも一方の端面側に、それぞ
れの繊維に対向して螢光−電気変換素子群を配設し、更
に、前記螢光プレート面上に投射される映像原線の画像
を、前記光学繊維列と交差する線状部分画像に時系列的
に分割して順次螢光プレート面上に入射せしめ得る線走
査手段を設けて、前記各繊維端面から出力される螢光光
量信号と線走査手段の走査信号との組合せに基づき、前
記映像原線の画像の電気信号を形成せしめたことを特徴
とするものである。
The outline of the present invention for achieving the above object is to construct a fluorescent plate by arranging a group of optical fibers each containing a fluorescent dye in a single-layer array, and to construct a fluorescent plate by arranging a group of optical fibers each containing a fluorescent dye. A group of fluorescent-electrical conversion elements is disposed on at least one end face side of the optical fiber array to face each fiber, and further, an image of the image primitive projected onto the fluorescent plate surface is transmitted to the optical fiber array. A line scanning means is provided which can time-sequentially divide linear partial images intersecting with each other and make them sequentially incident on the fluorescent plate surface, and scan the fluorescent light amount signal outputted from each fiber end face and the line scanning means. The present invention is characterized in that an electric signal of an image of the image primitive is formed based on the combination with the signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示しており、1は螢光染料
を配合した光学繊維であり、樹脂、ガラス、セラミック
等の材料で形成された四角形断面を有する棒状の透明体
あるいは半透明体である。
FIG. 1 shows an embodiment of the present invention, in which 1 is an optical fiber containing a fluorescent dye, which is a rod-shaped transparent body or semi-transparent body with a square cross section made of a material such as resin, glass, or ceramic. It is a transparent body.

この配合される螢光染料としてはZnS、 BaS、 
CaSのような無機螢光体の他、アントラセン、サリチ
ル酸ナトリウム、フルオレセイン、エオシン、ジアミノ
スチルベン、テルフェニル、ベンゼン、ピリジン、ピロ
ン酸、ピラジン、オキサジン、チアジン、チオフラビン
、ローダミン、イミダプル、クマリン、トリアゾル、ナ
フタル酸、イミダシロン。
The fluorescent dyes to be blended include ZnS, BaS,
Inorganic fluorophores such as CaS, as well as anthracene, sodium salicylate, fluorescein, eosin, diaminostilbene, terphenyl, benzene, pyridine, pyroic acid, pyrazine, oxazine, thiazine, thioflavin, rhodamine, imidapur, coumarin, triazole, and naphthalene. acid, imidacilone.

カルバゾル及びこれら有機物質の誘導螢光体を使用でき
、他にMg、Cd、Ca、Ba、Znの酸化物、ケイ酸
塩。
Carbasoles and phosphors derived from these organic substances can be used, as well as oxides and silicates of Mg, Cd, Ca, Ba, and Zn.

リン酸塩、タングステン酸塩、硫化物及びこれらにMn
+ Ag、 Cu、 sb、 pb、 Fu、 T I
t などの活性剤を添加したものを使用でき、入射光、
放射光の波長を考慮して選定される。
Phosphates, tungstates, sulfides and Mn
+ Ag, Cu, sb, pb, Fu, T I
t can be used, and the incident light,
Selection is made taking into consideration the wavelength of the emitted light.

第2図は光学繊維1を示しており、光が入射する光入力
面Aは全面にわたってコーティングした後、研磨して前
記コーティング層を剥離するかあるいはマスキングして
製作される。尚、光入力面Aは入射光の損失を少なくす
るため光整合層をコーティングすることもできる。また
、光学繊維1の両端面B、B’は光放射面であり、光入
射面Aを除く他の3側面A’、C,C’は透過損失を少
なくするためCaF、A l 、Sin、などを表面に
コーティングして反射面としている。
FIG. 2 shows an optical fiber 1, which is manufactured by coating the entire surface of the optical input surface A onto which light is incident, and then polishing to remove the coating layer or masking the coating layer. Note that the light input surface A may be coated with an optical matching layer in order to reduce loss of incident light. Further, both end surfaces B and B' of the optical fiber 1 are light emitting surfaces, and the other three side surfaces A', C, and C' except for the light incidence surface A are made of CaF, Al, Sin, etc. in order to reduce transmission loss. The surface is coated with something like this to make it a reflective surface.

2は多数の光学繊維1を一層のアレイ形に整列配置して
形成された螢光プレートであり、各光学繊維1の光入力
面Aを同一方向に揃えることにより同時に両端面B、B
’が光放射面となる。この螢光プレート2は第3図に示
すように、隣接する光学繊維1同士を含浸法やフィルム
接着剤等により接着して形成される。
Reference numeral 2 denotes a fluorescent plate formed by arranging a large number of optical fibers 1 in a single layer array, and by arranging the light input surfaces A of each optical fiber 1 in the same direction, both end surfaces B and B can be simultaneously illuminated.
' becomes the light emitting surface. As shown in FIG. 3, this fluorescent plate 2 is formed by adhering adjacent optical fibers 1 to each other using an impregnation method, a film adhesive, or the like.

螢光プレート2の両端面B、B’側には放射される螢光
を電気信号に変換する螢光−電気変換素子群であるホト
アレイ3がそれぞれの光学繊維1に対向して配設されて
いる。
On both end surfaces B and B' of the fluorescent plate 2, a photoarray 3, which is a group of fluorescent-to-electrical conversion elements for converting emitted fluorescent light into an electrical signal, is arranged facing each optical fiber 1. There is.

螢光プレート2の光入力面A側には入射画像をこの螢光
プレート2上に投射する線走査手段である液晶光学シャ
ッタ4が配設されている。第4図は、例えば液晶光学シ
ャッタ4としてTN型(ツイスト・ネマチック・タイプ
)液晶を用いた場合を示しており、液晶分子5が上下で
90°ツイストするように配向処理を施した透明電極6
,7を有する2枚のガラス板8.9間に液晶を封入して
液晶セル10を構成する。そして、この上下のガラス板
の両外側には液晶分子5の方向と合わせて偏光方向が互
いに直交した偏光板11.12を配設する。この状態に
おいて、無電界時に上方の偏光板11に入射した光は液
晶セル10の中で90″偏光面が回転し、下方の偏光板
12を通過する。
A liquid crystal optical shutter 4 serving as a line scanning means for projecting an incident image onto the fluorescent plate 2 is disposed on the light input surface A side of the fluorescent plate 2. FIG. 4 shows a case where, for example, a TN type (twisted nematic type) liquid crystal is used as the liquid crystal optical shutter 4, and the transparent electrode 6 is aligned so that the liquid crystal molecules 5 are twisted at 90° vertically.
, 7, a liquid crystal is sealed between two glass plates 8 and 9 to form a liquid crystal cell 10. Polarizing plates 11 and 12 whose polarization directions are orthogonal to each other along with the direction of the liquid crystal molecules 5 are disposed on both outer sides of the upper and lower glass plates. In this state, the light incident on the upper polarizing plate 11 in the absence of an electric field has its polarization plane rotated by 90'' within the liquid crystal cell 10, and passes through the lower polarizing plate 12.

一方、2枚のガラス板8.9に配設されている透明電極
6,7に信号を印加すると、液晶分子5は上下に配列し
て旋光性が失われる。この結果、上方の偏光板11から
入射した光はそのまま偏光面が回転することなく下方の
偏光板12へ達し、この偏光板12で遮られる。このよ
うにして印加した電圧に対してTN型液晶は明暗のコン
トラストを形成する。TN型の場合、2V程度の電圧で
液晶分子配列が変わり、また固有抵抗は19100cm
と高いので低消費電力駆動を行なうことができるため、
時分割駆動ができる。
On the other hand, when a signal is applied to the transparent electrodes 6, 7 disposed on the two glass plates 8.9, the liquid crystal molecules 5 are arranged vertically and the optical rotation is lost. As a result, the light incident from the upper polarizing plate 11 reaches the lower polarizing plate 12 without rotating the plane of polarization, and is blocked by this polarizing plate 12. In this way, the TN type liquid crystal forms a contrast between brightness and darkness in response to the applied voltage. In the case of the TN type, the liquid crystal molecular arrangement changes with a voltage of about 2V, and the specific resistance is 19100cm.
Since it is possible to drive with low power consumption,
Time division driving is possible.

光入力面Aの特定の区域(画素)を選択して光シヤツタ
操作を行う場合(ライトバルブ)は2つの透明電極の一
方の電極を列状に構成し列電極とすると共に、他方の電
極を行電極とし、これらの電極の交点が画素となるよう
マトリクス電極を構成する。
When performing optical shutter operation by selecting a specific area (pixel) on the light input surface A (light valve), one of the two transparent electrodes is arranged in a row to serve as a column electrode, and the other electrode is arranged in a row. A matrix electrode is configured such that row electrodes are used as row electrodes, and pixels are formed at intersections of these electrodes.

このように構成される本発明装置はまず第5図に示すよ
うに、光学繊維1に配合された螢光染料13は周囲から
の直射光、分散光等を吸収して螢光として発散する。す
なわち、光学繊維1に入射した投射光Fは螢光染料13
に吸収され、その場所より不特定の方向に分散放射され
る。全反射の法則により発散光のほぼ75%が光学繊維
1中を伝播し、その中の20〜30%は螢光染料13に
再吸収されその他の損失が10%あるので、残りの約4
0%の光量子が光学繊維1の端面B、B’へ伝播されて
放射される。第6図はこの吸収光と発散光の関係を示し
たものであって、波高のピークの波長がずれている方が
発散光の再吸収が少ないことを表わしている。発散光は
ストークスの法則により光量子の単位エネルギーが小さ
く、すなわち光の波長は長い。一般に、光電子効果は波
長が短い程電子放出が大きく、入射光のエネルギーが大
きい程発散先のエネルギーが高(、吸収光とのギャップ
を大きくすることができるため、光学繊維1の端面に伝
播された放射光をホトアレイ3を構成する光電素子で検
知する場合は入射光1反射光のエネルギーが高い方が望
ましいことになる。
As shown in FIG. 5, in the apparatus of the present invention constructed in this manner, the fluorescent dye 13 blended into the optical fiber 1 absorbs direct light, dispersed light, etc. from the surroundings and emits it as fluorescent light. That is, the projected light F incident on the optical fiber 1 is exposed to the fluorescent dye 13.
It is absorbed by the area, and is dispersed and radiated from that location in unspecified directions. According to the law of total internal reflection, approximately 75% of the diverging light propagates through the optical fiber 1, and 20-30% of it is reabsorbed by the fluorescent dye 13, with other losses of 10%, leaving approximately 4% of the divergent light propagating through the optical fiber 1.
0% of the photons are propagated to the end faces B and B' of the optical fiber 1 and emitted. FIG. 6 shows the relationship between the absorbed light and the diverging light, and shows that the reabsorption of the diverging light is smaller when the peak wavelengths of the wave heights are shifted. According to Stokes' law, the unit energy of a photon of diverging light is small, that is, the wavelength of light is long. In general, in the photoelectron effect, the shorter the wavelength, the greater the electron emission, and the greater the energy of the incident light, the higher the energy at the divergent destination. When the emitted light is detected by the photoelectric element constituting the photoarray 3, it is desirable that the energy of the incident light 1 and the reflected light be higher.

このように入射光及び放射光の波長を考慮して螢光染料
13を配合した光学繊維1をアレイ形に整列配置して螢
光プレート2を構成することにより、螢光プレート2の
一面に光入力面Aを形成すると共に、螢光放射端面B、
B’を形成する。従って、入射光と略直角の方向に螢光
が放射されることになり、光学軸の薄型化を可能とする
。尚、通常の光ファイバの場合、ファイバ側面からの入
射光は内部伝播成分が少なく反射損失のため急速に減衰
するが、本発明の螢光染料13を配合した光学繊維1の
場合前述のように伝播成分が生じかつ再吸収も少ないた
め、入射光を有効に端面に伝達することができる。
By configuring the fluorescent plate 2 by arranging the optical fibers 1 containing the fluorescent dye 13 in an array in consideration of the wavelengths of the incident light and the emitted light, light is emitted onto one surface of the fluorescent plate 2. forming an input surface A, and a fluorescent emitting end surface B;
Form B'. Therefore, fluorescent light is emitted in a direction substantially perpendicular to the incident light, making it possible to reduce the thickness of the optical axis. In the case of a normal optical fiber, the light incident from the side of the fiber has few internal propagation components and is rapidly attenuated due to reflection loss, but in the case of the optical fiber 1 containing the fluorescent dye 13 of the present invention, as described above, Since a propagation component is generated and there is little reabsorption, the incident light can be effectively transmitted to the end face.

また、螢光プレート2の光入力面A上に投射される入射
画像は透明電極をマドリスク状に構成して液晶セル10
から入力される。尚、LCD (液晶ディスプレイ)と
して用いる場合と異なり、I造像画素を入力窓とする場
合は走査電極の速度が低い方が望ましい。すなわち、前
述したように光学繊維1を螢光プレート2として構成し
た場合、第1図に示すように、この繊維方向を走査電極
と交差されるとこの交点が入力窓となるので、光学繊維
lの端面に光電素子例えばホトアレイを多数接続するこ
とにより、各光電素子の出力の走査電極による時間変化
を画像信号とすることができる。
In addition, the incident image projected onto the light input surface A of the fluorescent plate 2 is formed by forming transparent electrodes in a Madrisk shape to form a liquid crystal cell 10.
Input from Note that, unlike when used as an LCD (liquid crystal display), when the I image forming pixel is used as an input window, it is desirable that the speed of the scanning electrode be low. That is, when the optical fiber 1 is constructed as the fluorescent plate 2 as described above, as shown in FIG. By connecting a large number of photoelectric elements, such as photoarrays, to the end face of the image sensor, the temporal change in the output of each photoelectric element due to the scanning electrode can be used as an image signal.

すなわち、各光電素子出力を同時入力とし平行処理する
ことにより、高速論理演算によって画像を再構成できる
利点があり、その分だけ秒毎のフレーム画数を変えずに
走査速度を遅くして撮像信号の信転度を高めることがで
きると同時に、走査電極列を多くすることが可能となっ
て、分解能を高めることができる。
In other words, by processing the outputs of each photoelectric element simultaneously and processing them in parallel, there is an advantage that images can be reconstructed using high-speed logical operations. Not only can the reliability be improved, but also the number of scanning electrode arrays can be increased, and the resolution can be improved.

このようにして本発明によれば各光学繊維1端面から出
力される螢光光量信号と液晶の走査信号との組合わせに
基づいて入射画像の電気信号を形成することができる。
In this manner, according to the present invention, it is possible to form an electric signal of an incident image based on a combination of a fluorescent light amount signal outputted from the end face of each optical fiber 1 and a scanning signal of the liquid crystal.

また、光学繊維1の両端面B、B’を光出力端とするこ
とができるので光電素子を両端面に振り分けて配設する
ことができ、空間的干渉がなく装置を小型化かつ軽量で
きる。
Further, since both end faces B and B' of the optical fiber 1 can be used as light output ends, photoelectric elements can be distributed and arranged on both end faces, and there is no spatial interference, and the device can be made smaller and lighter.

さらに、このような平面的な構造のため、容易に螢光ス
クリーンやマイクロチャンネルプレート等に光入力面を
結合することができる。また、液晶セル10を構成する
ガラス電極及び偏光板は容易に大面積のものを製作する
ことができるため、液、       高光学バルブと
して入力光面積を大きくすることができる。螢光プレー
トは同様に大面積のものが製作できるので、撮像入力面
の大きい描像用装置を得ることが可能となる。
Moreover, such a planar structure allows the light input surface to be easily coupled to a fluorescent screen, microchannel plate, etc. Further, since the glass electrodes and polarizing plates that constitute the liquid crystal cell 10 can be easily manufactured to have a large area, the area of input light can be increased as a liquid, high optical bulb. Since the fluorescent plate can also be manufactured with a large area, it is possible to obtain an imaging device with a large imaging input surface.

以上本発明の一実施例を詳述したが、本発明の要旨の範
囲内で適宜変形可能である。例えば、前記実施例では螢
光プレートの両端面に光電素子を配設したが、一方の端
面に配設しても良い。
Although one embodiment of the present invention has been described in detail above, it can be modified as appropriate within the scope of the gist of the present invention. For example, in the above embodiment, the photoelectric elements were disposed on both end faces of the fluorescent plate, but they may be disposed on one end face.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば装置の厚みを薄くし
て小型、軽量を図ることができると共に、入光面積を大
きくして分解能を高くできる↑造像用装置を提供するこ
とができる。
As described in detail above, according to the present invention, it is possible to provide an imaging device that can be made smaller and lighter by reducing the thickness of the device, and can also increase the resolution by increasing the light incident area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は光学
繊維を示す一部切欠き斜視図、第3図は螢光プレートを
示す斜視図、第4図(A)は無電界時の液晶を示す説明
図、同図(B)は電圧印加時の液晶を示す説明図、第5
図は光学繊維の光の流れを示す説明図、第6図は吸収光
・放射光と波長を示すグラフである。 1・・・光学繊維、2・・・螢光プレート、3・・・ホ
トアレイ (螢光−電気変換素子)、4・・・液晶光学
シャッタ(線走査手段)、5・・・液晶分子、13・・
・螢光染料。 代理人 弁理士 則  近 憲 右 同     大  胡  典  夫 (A)
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a partially cutaway perspective view showing an optical fiber, Fig. 3 is a perspective view showing a fluorescent plate, and Fig. 4 (A) is a blank view. An explanatory diagram showing the liquid crystal when an electric field is applied. Figure 5 (B) is an explanatory diagram showing the liquid crystal when a voltage is applied.
The figure is an explanatory diagram showing the flow of light through the optical fiber, and FIG. 6 is a graph showing absorbed light, emitted light, and wavelength. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Fluorescent plate, 3... Photo array (fluorescent-electric conversion element), 4... Liquid crystal optical shutter (line scanning means), 5... Liquid crystal molecule, 13・・・
・Fluorescent dye. Agent: Patent Attorney Ken Nori Chika Udo Norio Ogo (A)

Claims (3)

【特許請求の範囲】[Claims] (1)それぞれ螢光染料を配合した光学繊維群を、一層
のアレイ形に整列配置して螢光プレートを構成すると共
に、この整列配置された光学繊維群の少なくとも一方の
端面側に、それぞれの繊維に対向して螢光−電気変換素
子群を配設し、更に、前記螢光プレート面上に投射され
る映像原線の画像を、前記光学繊維列と交差する線状部
分画像に時系列的に分割して順次螢光プレート面上に入
射せしめ得る線走査手段を設けて、前記各繊維端面から
出力される螢光光量信号と線走査手段の走査信号との組
合せに基づき、前記映像原線の画像の電気信号を形成せ
しめたことを特徴とする撮像用装置。
(1) A fluorescent plate is constructed by arranging a group of optical fibers, each containing a fluorescent dye, in a single layer array, and at least one end face side of each of the optical fiber groups arranged in an array. A group of fluorescent-electrical conversion elements is disposed opposite to the fibers, and the image of the image primitive projected onto the fluorescent plate surface is time-sequentially converted into linear partial images intersecting with the optical fiber row. A line scanning means is provided which can divide the fluorescent light into parts and sequentially make the light incident on the surface of the fluorescent plate. An imaging device characterized by forming an electrical signal of a line image.
(2)前記映像原線の画像が可視または不可視光線によ
り形成され、前記走査手段が液晶光学シャッタである特
許請求の範囲第1項記載の撮像用装置。
(2) The imaging device according to claim 1, wherein the image of the image primitive is formed by visible or invisible light, and the scanning means is a liquid crystal optical shutter.
(3)前記各光学繊維がそれぞれ四角形断面を有し、且
つそれぞれの光入力面を除く3側面が裏面反射面である
特許請求の範囲第1項記載の撮像用装置。
(3) The imaging device according to claim 1, wherein each of the optical fibers has a rectangular cross section, and three side surfaces excluding the optical input surface are back reflective surfaces.
JP60189719A 1985-08-30 1985-08-30 Image pickup device Pending JPS6251380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189719A JPS6251380A (en) 1985-08-30 1985-08-30 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189719A JPS6251380A (en) 1985-08-30 1985-08-30 Image pickup device

Publications (1)

Publication Number Publication Date
JPS6251380A true JPS6251380A (en) 1987-03-06

Family

ID=16246044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189719A Pending JPS6251380A (en) 1985-08-30 1985-08-30 Image pickup device

Country Status (1)

Country Link
JP (1) JPS6251380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291370A (en) * 2008-06-04 2009-12-17 Toshiba Corp X-ray ct scanner and x-ray detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291370A (en) * 2008-06-04 2009-12-17 Toshiba Corp X-ray ct scanner and x-ray detector

Similar Documents

Publication Publication Date Title
US6717348B2 (en) Display apparatus
US5650865A (en) Holographic backlight for flat panel displays
US10103207B2 (en) Display device
US9086619B2 (en) Optical device for projection display device having plasmons excited with fluorescence
JP7315557B2 (en) optical resonator, display panel
EP0291122A1 (en) Electroscopic display device
WO2022174611A1 (en) Display panel and display apparatus
JPS63186213A (en) Display device
US5973327A (en) Image detector with improved contrast
CN110515151B (en) Light guide structure, preparation method thereof, front light source and display panel
JP2001281655A (en) Illumination system and view finder provided with the same
JP3543951B2 (en) Image display device
JPH0511060A (en) Two-dimensional mosaic scintillation detector
US4626739A (en) Electron beam pumped mosaic array of light emitters
RU2119274C1 (en) Thin-film high-contrast fluorescent display unit and its manufacturing process
CN109946882A (en) A kind of backlight and preparation method thereof and backlight module
JPS6251380A (en) Image pickup device
CN102983154A (en) Image receiving and transmitting device integrated transparent organic light emitting diode (OLED) micro-display and manufacture method thereof
CN110265456B (en) Display panel and display device
US5079423A (en) X-ray image sensor
JPH06151061A (en) Electroluminescent element
JP2020091419A (en) Display device
JPS6398631A (en) Capsule type liquid crystal display device
JP2001347701A (en) Exposing unit
US3541374A (en) Multiple-unit display apparatus producing radiant energy at phenomenon of dielectric trapping