JPS6251285B2 - - Google Patents

Info

Publication number
JPS6251285B2
JPS6251285B2 JP55085151A JP8515180A JPS6251285B2 JP S6251285 B2 JPS6251285 B2 JP S6251285B2 JP 55085151 A JP55085151 A JP 55085151A JP 8515180 A JP8515180 A JP 8515180A JP S6251285 B2 JPS6251285 B2 JP S6251285B2
Authority
JP
Japan
Prior art keywords
catalyst
mmol
titanium
polyethylene
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55085151A
Other languages
Japanese (ja)
Other versions
JPS5712006A (en
Inventor
Shinichi Akimoto
Toyoji Kishida
Shigeaki Mizogami
Akio Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP8515180A priority Critical patent/JPS5712006A/en
Priority to EP19810104669 priority patent/EP0043473B1/en
Priority to DE8181104669T priority patent/DE3171693D1/en
Publication of JPS5712006A publication Critical patent/JPS5712006A/en
Publication of JPS6251285B2 publication Critical patent/JPS6251285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】 本発明はポリ゚チレンの補造法に関し、詳しく
は特定の觊媒を甚いお分子量分垃の広いポリ゚チ
レンを効率よく補造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyethylene, and more particularly to a method for efficiently producing polyethylene with a wide molecular weight distribution using a specific catalyst.

䞀般にポリ゚チレンは様々な分野においおすぐ
れた合成暹脂ずしお広く利甚されおいるが、成圢
性ならびに成圢補品の物性等の面から分子量分垃
の広いものが望たれおいる。
Generally, polyethylene is widely used as an excellent synthetic resin in various fields, but polyethylene with a wide molecular weight distribution is desired from the viewpoint of moldability and physical properties of molded products.

ずころでポリ゚チレンを補造する觊媒ずしお、
マグネシりム化合物にチタンハロゲン化物を反応
させお担持したものが、単なるチヌグラヌ系觊媒
よりも高掻性であるこずが知られおいる。しかし
埓来の補造方法では、ポリ゚チレンの分子量分垃
を広げようずするず、觊媒掻性が䜎䞋し、その結
果、補造効率がさがりたた倚量の觊媒を必芁ずす
るため埗られるポリ゚チレンから觊媒を陀去する
工皋を蚭けなければならないなどの欠点があ぀
た。
By the way, as a catalyst for producing polyethylene,
It is known that a magnesium compound supported by reacting a titanium halide has higher activity than a simple Ziegler catalyst. However, in conventional production methods, when attempting to widen the molecular weight distribution of polyethylene, the catalyst activity decreases, resulting in lower production efficiency and the need for a large amount of catalyst, so a step is required to remove the catalyst from the resulting polyethylene. There were drawbacks such as having to do it.

本発明者らは䞊蚘埓来技術の欠点を克服し、高
掻性の觊媒で分子量分垃の広いポリ゚チレンを補
造する方法を開発すべく鋭意研究を重ねた。その
結果、特定の凊理によ぀お埗られる固䜓生成物を
觊媒の䞀成分ずしお甚いるこずによ぀お目的を達
成しうるこずを芋出し、本発明を完成するに至぀
た。
The present inventors have conducted extensive research to overcome the drawbacks of the above-mentioned conventional techniques and to develop a method for producing polyethylene with a wide molecular weight distribution using a highly active catalyst. As a result, the inventors discovered that the object could be achieved by using a solid product obtained by a specific treatment as a component of the catalyst, leading to the completion of the present invention.

すなわち本発明は、少なくずもチタン、マグ
ネシりムおよびハロゲンを含有する化合物ずテト
ラアルコキシゞルコニりムおよびたたはゞルコ
ニりムテトラハラむドを反応させお生成する固圢
分に、䞀般匏TiOR1oX1 4-o匏䞭、R1はアル
キル基、X1はハロゲン原子を瀺し、たたは
≊である。で衚わされるハロゲン含有チ
タン化合物を反応させお埗られる固䜓生成物およ
び有機アルミニりム化合物を有効成分ずする觊
媒を甚いるこずを特城ずするポリ゚チレンの補造
法を提䟛するものである。
That is, the present invention provides a solid content produced by reacting a compound containing at least titanium, magnesium, and halogen with tetraalkoxyzirconium and/or zirconium tetrahalide, which has the general formula Ti(OR 1 ) o X 1 4-o ( In the formula, R 1 is an alkyl group, X 1 is a halogen atom, and n is 0
≩n<4. The present invention provides a method for producing polyethylene, which is characterized by using a solid product obtained by reacting a halogen-containing titanium compound represented by B) and a catalyst containing an organoaluminum compound B as an active ingredient.

本発明の方法で甚いる觊媒は、䞊蚘成分およ
び成分より調補されたものであるが、このうち
成分である固䜓生成物のベヌスずなる少なくず
もチタン、マグネシりムおよびハロゲンを含有す
る化合物は、特に限定されるこずなく各皮のもの
を考えるこずができる。具䜓的には次の劂きもの
を奜適䟋ずしおあげるこずができる。すなわち、
酞化マグネシりム、氎酞化マグネシりム、炭酞マ
グネシりム、硫酞マグネシりム、ハロゲン化マグ
ネシりム等のマグネシりム無機化合物にハロゲン
化チタンを反応させお埗られる固䜓物質、たたは
各皮のマグネシりム化合物にハロゲン化ケむ玠、
アルコヌルおよびハロゲン化チタンを順次反応さ
せお埗られる固䜓物質、あるいはマグネシりムゞ
゚トキシド等のゞアルコキシマグネシりムず硫酞
マグネシりム、ハロゲン化チタンを反応させお埗
られる固䜓物質をあげるこずができる。たた、酞
化マグネシりム、氎酞化マグネシりム、炭酞マグ
ネシりム等のMg−結合含有無機化合物に硫酞
マグネシりム、ハロゲン化ケむ玠およびアルコヌ
ルを順次反応させお生ずる沈柱物にハロゲン化ケ
む玠もしくは有機ケむ玠化合物䟋えばSiCl4
CH3OSiCl3CH3O2SiCl2CH3O3SiClSi
OCH34C2H5OSiCl3C2H5O2SiCl2
C2H5O3SiClSiOC2H54などならびにハ
ロゲン化チタンを反応させお埗られる固䜓物質を
甚いるこずもできるし、そのほかゞアルコキシマ
グネシりムずMgCl2・6C2H5OHなどのハロゲン
化マグネシりムのアルコヌル付加物を反応させ、
次いでアルコヌル凊理しお埗られる生成物にハロ
ゲン化チタンを反応させお埗られる固䜓物質を甚
いるこずも可胜である。
The catalyst used in the method of the present invention is prepared from the above-mentioned components A and B, and among these, the compound containing at least titanium, magnesium, and halogen, which is the base of the solid product that is component A, is particularly You can think of various things without being limited. Specifically, the following can be cited as suitable examples. That is,
Solid substances obtained by reacting titanium halides with magnesium inorganic compounds such as magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium sulfate, and magnesium halides, or by reacting various magnesium compounds with silicon halides,
Examples include solid substances obtained by reacting alcohol and titanium halide in sequence, and solid substances obtained by reacting dialkoxymagnesium such as magnesium diethoxide with magnesium sulfate and titanium halide. In addition, silicon halides or organosilicon compounds (e.g. SiCl 4 ,
CH3OSiCl3 , ( CH3O ) 2SiCl2 , ( CH3O ) 3SiCl ,Si
(OCH 3 ) 4 , C 2 H 5 OSiCl 3 , (C 2 H 5 O) 2 SiCl 2 ,
(C 2 H 5 O) 3 SiCl, Si(OC 2 H 5 ) 4 , etc.) and a solid material obtained by reacting titanium halides can also be used, and in addition, dialkoxymagnesium and MgCl 2.6C 2 H Reacting alcohol adducts of magnesium halides such as 5 OH,
It is also possible to use a solid material obtained by reacting a titanium halide with a product obtained by subsequent alcohol treatment.

本発明の方法に甚いる觊媒䞭の成分である固
䜓生成物は、以䞋に瀺す操䜜により調補される。
たず䞊述の劂き凊理にお埗られる固䜓物質、すな
わち少なくずもチタン、マグネシりムおよびハロ
ゲンを含有する化合物にテトラアルコキシゞルコ
ニりムおよびたたはゞルコニりムテトラハラむ
ドを反応させる。ここでテトラアルコキシゞルコ
ニりムは具䜓的には、テトラメトキシゞルコニり
ム、テトラ゚トキシゞルコニりム、テトラプロポ
キシゞルコニりム、テトラブトキシゞルコニりム
などをあげるこずができ、そのうち特にテトラブ
トキシゞルコニりムが奜たしい。䞀方、ゞルコニ
りムテトラハラむドの具䜓䟋ずしおは、テトラク
ロルゞルコニりム、テトラブロムゞルコニりムな
どをあげるこずができる。この際に䜿甚する化合
物の配合割合は制限はなく、各皮条件に応じお適
宜遞定すればよいが、通垞は䞊述の固䜓物質、぀
たり少なくずもチタン、マグネシりムおよびハロ
ゲンを含有する化合物䞭のチタン原子モルに察
しお、テトラアルコキシゞルコニりムを0.1〜20
モル、奜たしくは0.2〜10モルの範囲ずし、たた
ゞルコニりムテトラハラむドを〜20モルの範囲
で適宜定める。䞊蚘反応の他の条件ずしおは、枩
床〜200℃、奜たしくは20〜150℃にお定め、反
応時間分〜時間、奜たしくは30分〜時間ず
し、たたペンタン、ヘキサン、ヘプタン、オクタ
ン、シクロヘキサン、ベンれン、トル゚ンなどの
䞍掻性な炭化氎玠を溶媒に䜿甚するこずが奜たし
い。
A solid product, which is component A in the catalyst used in the method of the present invention, is prepared by the operation shown below.
First, a solid material obtained by the above-described treatment, that is, a compound containing at least titanium, magnesium, and halogen, is reacted with tetraalkoxyzirconium and/or zirconium tetrahalide. Here, specific examples of the tetraalkoxyzirconium include tetramethoxyzirconium, tetraethoxyzirconium, tetrapropoxyzirconium, and tetrabutoxyzirconium, among which tetrabutoxyzirconium is particularly preferred. On the other hand, specific examples of zirconium tetrahalide include tetrachlorozirconium and tetrabromzirconium. There is no limit to the blending ratio of the compounds used in this case, and it may be selected appropriately depending on various conditions, but usually 1 mole of titanium atoms in the above-mentioned solid substance, that is, a compound containing at least titanium, magnesium, and halogen. 0.1 to 20% of tetraalkoxyzirconium
mol, preferably in the range of 0.2 to 10 mol, and zirconium tetrahalide is appropriately determined in the range of 0 to 20 mol. Other conditions for the above reaction include a temperature of 0 to 200°C, preferably 20 to 150°C, a reaction time of 5 minutes to 5 hours, preferably 30 minutes to 3 hours, and pentane, hexane, heptane, octane, etc. It is preferable to use an inert hydrocarbon such as , cyclohexane, benzene or toluene as the solvent.

䞊蚘反応にお生成する固圢分を充分に掗浄埌、
さらにこの固圢分に、䞀般匏TiOR1oX1 4-oで
衚わされるハロゲン含有チタン化合物を反応させ
る。このハロゲン含有チタン化合物ずしおは、前
蚘匏䞭のR1X1を定矩内で適宜定めればよ
く各皮のものが考えられるが、䟋えばTiCl4
TiBr4TiOCH3Cl3TiOC2H52Cl2Ti
OC2H53Clなどあるいはこれらの混合物を奜た
しいものずしおあげるこずができる。ここでハロ
ゲン含有チタン化合物の配合量は、通垞は䞊蚘固
圢分䞭のチタン原子モルに察しお〜200モ
ル、奜たしくは10〜100モルの範囲で定める。た
たこの反応、぀たり䞊蚘固圢分ずハロゲン含有チ
タン化合物の反応は、20〜200℃、奜たしくは50
〜150℃にお分〜10時間、奜たしくは30分〜
時間の条件䞋で行なえばよく、さらにペンタン、
ヘキサン、ヘプタン、オクタン、シクロヘキサ
ン、ベンれン、トル゚ンなどの䞍掻性な炭化氎玠
を溶媒ずしお䜿甚するこずができる。
After thoroughly washing the solid content generated in the above reaction,
Further, this solid content is reacted with a halogen-containing titanium compound represented by the general formula Ti(OR 1 ) o X 1 4-o . As this halogen-containing titanium compound, various compounds can be considered as long as R 1 , X 1 , and n in the above formula are appropriately determined within the definition, but for example, TiCl 4 ,
TiBr4 , Ti( OCH3 ) Cl3 ,Ti( OC2H5 ) 2Cl2 , Ti
Preferred examples include (OC 2 H 5 ) 3 Cl and mixtures thereof. The amount of the halogen-containing titanium compound to be blended is usually 1 to 200 mol, preferably 10 to 100 mol, per 1 mol of titanium atoms in the solid content. In addition, this reaction, that is, the reaction between the solid content and the halogen-containing titanium compound, is carried out at 20 to 200°C, preferably at 50°C.
~150℃ for 5 minutes to 10 hours, preferably 30 minutes to 5 hours
It only needs to be carried out under certain time conditions, and in addition, pentane,
Inert hydrocarbons such as hexane, heptane, octane, cyclohexane, benzene, toluene can be used as solvents.

本発明の方法では䞊蚘反応により埗られる固䜓
生成物を必芁に応じお掗浄し、これを觊媒の成
分ずしお甚いる。
In the method of the present invention, the solid product obtained by the above reaction is washed as necessary and used as component A of the catalyst.

次に本発明の方法で甚いる觊媒の成分である
有機アルミニりム化合物ずしおは各皮のものが考
えられるが、通垞は䞀般匏AlR2 nX2 3-n匏䞭、
R2はアルキル基、X2はハロゲン原子であり、た
たは≊である。で衚わされるもの、
あるいは䞀般匏AlR3 kOR43-k匏䞭、R3R4
はアルキル基を瀺し、たたは≊であ
る。で衚わされるものが甚いられる。䞊蚘有機
アルミニりム化合物を具䜓的に䟋瀺すれば、トリ
メチルアルミニりム、トリ゚チルアルミニりム、
トリむ゜プロピルアルミニりム、トリむ゜ブチル
アルミニりム、ゞ゚チルアルミニりムモノクロリ
ド、ゞむ゜プロピルアルミニりムモノクロリド、
ゞむ゜ブチルアルミニりムモノクロリド、ゞオク
チルアルミニりムモノクロリド、゚チルアルミニ
りムゞクロリド、ゞ゚チルアルミニりムモノ゚ト
キシド、む゜プロピルアルミニりムゞクロリド、
゚チルアルミニりムセスキクロリドなどをあげる
こずができる。
Next, various types of organoaluminum compounds can be considered as component B of the catalyst used in the method of the present invention, but they usually have the general formula AlR 2 n X 2 3-n (in the formula,
R 2 is an alkyl group, X 2 is a halogen atom, and m satisfies 0<M≩3. ),
Alternatively, the general formula AlR 3 k (OR 4 ) 3-k (where R 3 , R 4
represents an alkyl group, and k is 0<k≩3. ) is used. Specific examples of the above organoaluminum compounds include trimethylaluminum, triethylaluminum,
Triisopropylaluminium, triisobutylaluminum, diethylaluminum monochloride, diisopropylaluminum monochloride,
Diisobutylaluminum monochloride, dioctylaluminum monochloride, ethylaluminum dichloride, diethylaluminum monoethoxide, isopropylaluminum dichloride,
Examples include ethylaluminum sesquichloride.

本発明の方法は䞊述した成分ず成分ずを有
効成分ずする觊媒を甚いおポリ゚チレンを補造す
るものである。この觊媒における成分ず成分
の混合割合は特に制限はないが、通垞は成分䞭
のチタン原子に察しお成分䞭のアルミニりム
原子が〜1000モル比、奜たしくは20〜500
モル比ずなるようにする。たたポリ゚チレン
の補造に際しおこの䞡成分よりなる觊媒の
䜿甚量は、特に制限はなく、各皮条件に応じお定
めればよいが、通垞はチタン原子に換算しお
0.001〜10ミリモル、奜たしくは0.005〜0.5ミ
リモルずすべきである。
The method of the present invention is to produce polyethylene using a catalyst containing the above-mentioned components A and B as active ingredients. The mixing ratio of component A and component B in this catalyst is not particularly limited, but usually 5 to 1000 aluminum atoms in component B to 1 titanium atom in component A (molar ratio), preferably 20 to 500.
(molar ratio). There is no particular restriction on the amount of the catalyst consisting of both components A and B used in the production of polyethylene, and it can be determined according to various conditions, but it is usually calculated in terms of titanium atoms.
It should be between 0.001 and 10 mmol/, preferably between 0.005 and 0.5 mmol/.

本発明の方法によ぀お゚チレンを重合しおポリ
゚チレンを補造するにあた぀おは、反応系に䞊蚘
成分から調補された觊媒を加え、次いで゚
チレンを導入する。重合方法ならびに条件等は特
に限定はなく、溶液重合、懞濁重合、気盞重合等
のいずれも可胜であり、たた連続重合、非連続重
合のどちらも可胜である。たた反応系の觊䜓ずし
おはブタン、ヘプタン、ヘキサン、シクロヘキサ
ン、ヘプタンベンれン、トル゚ン等の䞍掻性溶
媒が奜たしい。さらに反応系の゚チレン圧は、
〜100Kgcm2、奜たしくは〜50Kgcm2ずし反応
枩床は20〜200℃、奜たしくは50〜150℃ずしお、
分〜10時間、奜たしくは30分〜時間反応させ
るこずによ぀お目的ずするポリ゚チレンを埗るこ
ずができる。なお重合に際しおの分子量調節は公
知の手段、䟋えば氎玠等により行なえばよい。
When producing polyethylene by polymerizing ethylene by the method of the present invention, a catalyst prepared from the above components A and B is added to the reaction system, and then ethylene is introduced. The polymerization method and conditions are not particularly limited, and any of solution polymerization, suspension polymerization, gas phase polymerization, etc. is possible, and both continuous polymerization and discontinuous polymerization are possible. As the catalyst for the reaction system, inert solvents such as butane, heptane, hexane, cyclohexane, heptane, benzene, and toluene are preferred. Furthermore, the ethylene pressure in the reaction system is 2
-100Kg/ cm2 , preferably 5-50Kg/ cm2 , and the reaction temperature is 20-200℃, preferably 50-150℃,
The desired polyethylene can be obtained by reacting for 5 minutes to 10 hours, preferably 30 minutes to 5 hours. The molecular weight during polymerization may be controlled by known means such as hydrogen.

本発明の方法にお重合できるポリ゚チレンの皮
類は、゚チレンのホモポリマヌはもちろん、その
他゚チレンず少量のα−オレフむンずのコポリマ
ヌなどがあげられる。
The types of polyethylene that can be polymerized by the method of the present invention include not only ethylene homopolymers but also copolymers of ethylene and a small amount of α-olefin.

本発明の方法は叙䞊の劂き觊媒を甚いるため、
觊媒掻性が高く、少量の䜿甚で充分な効果が埗ら
れ、その結果、脱灰工皋觊媒陀去工皋を省略
するこずができる。しかも埗られるポリ゚チレン
は、かさ比重が倧きく粒埄が良奜であ぀お埮粉末
が少ないず共に、分子量分垃の広いものである。
そのためこのポリ゚チレンは成圢性が非垞によく
たたその物性もすぐれたものである。しかも本発
明の方法は、觊媒の配合比、重合条件等を適宜遞
定するこずによ぀お、埗られるポリ゚チレンの分
子量分垃を所望の範囲に調節するこずができ極め
お有効な方法である。
Since the method of the present invention uses the catalyst as described above,
It has a high catalytic activity, and a sufficient effect can be obtained with a small amount of use, and as a result, the deashing step (catalyst removal step) can be omitted. Moreover, the polyethylene obtained has a large bulk specific gravity, a good particle size, a small amount of fine powder, and a wide molecular weight distribution.
Therefore, this polyethylene has very good moldability and excellent physical properties. In addition, the method of the present invention is an extremely effective method because the molecular weight distribution of the resulting polyethylene can be controlled within a desired range by appropriately selecting the catalyst compounding ratio, polymerization conditions, etc.

次に、本発明の実斜䟋を瀺す。なお、䞋蚘の実
斜䟋においお操䜜はすべおアルゎン気流䞋にお行
な぀た。たた分子量分垃の評䟡は、190℃、2.16
Kg荷重のメルトむンデツクスMI2.16に察する
21.6Kgの荷重のメルトむンデツクスMI21.6の
比である溶融流れの比F.Rで行な぀た。
Next, examples of the present invention will be shown. In addition, in the following examples, all operations were performed under an argon stream. In addition, the evaluation of molecular weight distribution was performed at 190℃, 2.16
Kg load for melt index ( MI 2.16 )
The melt flow ratio (FR) was the ratio of the melt index (MI 21.6 ) at a load of 21.6 Kg.

実斜䟋  (1) 少なくずもチタン、マグネシりムおよびハロ
ゲンを含有する化合物の補造。
Example 1 (1) Production of a compound containing at least titanium, magnesium and halogen.

500ml容の四぀口フラスコに、也燥した−ヘ
キサン150ml、マグネシりムゞ゚トキシド10.0
88ミリモル、四塩化ケむ玠3.722ミリモ
ルを加え、20℃で撹拌しながらむ゜プロピルア
ルコヌル2.033ミリモルを30分間にわた぀
お滎䞋し、その埌昇枩し、還流䞋で時間反応さ
せた。次いで、四塩化チタン42220ミリモ
ルを滎䞋し、還流䞋時間反応を行な぀た。冷
华静眮埌、䞊柄液を陀き、生成した固䜓物質を
−ヘキサンで掗浄し目的ずするチタン、マグネシ
りムおよびハロゲンを含有する化合物を埗た。な
おこの化合物䞭のチタン含有量は6.2重量であ
぀た。
In a 500ml four-necked flask, add 150ml of dry n-hexane and 10.0g of magnesium diethoxide.
(88 mmol) and 3.7 g (22 mmol) of silicon tetrachloride were added, and while stirring at 20°C, 2.0 g (33 mmol) of isopropyl alcohol was added dropwise over 30 minutes.Then, the temperature was raised and refluxed for 3 hours. Made it react. Next, 42 g (220 mmol) of titanium tetrachloride was added dropwise, and the reaction was carried out under reflux for 3 hours. After cooling and standing, the supernatant liquid was removed, and the generated solid substance was
- The target compound containing titanium, magnesium and halogen was obtained by washing with hexane. The titanium content in this compound was 6.2% by weight.

(2) 觊媒の成分の補造。(2) Production of component A of the catalyst.

200ml容のフラスコに、也燥した−ヘキサン
50mlおよび䞊蚘(1)で埗られた化合物を、マグネシ
りムずしお8.8ミリモルチタンずしお1.3ミリモ
ル、さらにテトラブトキシゞルコニりムミリ
モルを加え、撹拌しながら70℃で時間反応させ
た。次いでこの系を宀枩に冷华し、静眮しお䞊柄
液を陀き、沈柱物を−ヘキサン50mlで回掗浄
し、続いお四塩化チタン8.8ミリモルを加え、70
℃で時間反応を行な぀た。冷华埌、沈柱物を
−ヘキサン50mlで回掗浄しお觊媒の成分であ
る固䜓生成物を埗た。
In a 200ml flask, add dry n-hexane.
To 50 ml of the compound obtained in (1) above, 8.8 mmol of magnesium (1.3 mmol of titanium) and 3 mmol of tetrabutoxyzirconium were added, and the mixture was reacted at 70° C. for 2 hours with stirring. The system was then cooled to room temperature, left to stand, the supernatant was removed, and the precipitate was washed once with 50 ml of n-hexane, followed by the addition of 8.8 mmol of titanium tetrachloride and 70
The reaction was carried out at ℃ for 3 hours. After cooling, the precipitate was
- Washed 5 times with 50 ml of hexane to obtain a solid product which is component A of the catalyst.

(3) ポリ゚チレンの補造。(3) Manufacture of polyethylene.

ステンレス補の容オヌトクレヌブに、也燥
した−ヘキサン400mlおよび觊媒の成分であ
るトリむ゜ブチルアルミニりム2.0ミリモル、な
らびに䞊蚘(2)で埗られた觊媒の成分である固䜓
生成物をチタンずしお0.005ミリモル加え、80℃
に昇枩した。次いでこの系に分圧ずしお氎玠
Kgcm2、゚チレンKgcm2を圧入し、以降この圧
力を維持するように゚チレンを連続的に䟛絊しな
がら80℃で時間重合を行な぀た。反応終埌、未
反応ガスを陀去し、ポリマヌを分離也燥したずこ
ろ癜色のポリ゚チレン139が埗られた。埗れた
もポリ゚チレンの嵩密床は0.29cm2MI2.16は
0.52F.R.は46であ぀た。
In a 1-volume stainless steel autoclave, 400 ml of dry n-hexane, 2.0 mmol of triisobutylaluminum, which is the B component of the catalyst, and 0.005 mmol of titanium, the solid product which is the A component of the catalyst obtained in (2) above. In addition, 80℃
The temperature rose to . Hydrogen 2 is then added to this system as a partial pressure.
Kg/cm 2 and 6 kg/cm 2 of ethylene were introduced under pressure, and polymerization was carried out at 80° C. for 1 hour while continuously supplying ethylene to maintain this pressure. After the reaction was completed, unreacted gas was removed and the polymer was separated and dried to obtain 139 g of white polyethylene. The bulk density of the obtained polyethylene was 0.29 g/cm 2 , and the MI 2.16 was
0.52, FR was 46.

実斜䟋  (1) 觊媒の成分の補造。Example 2 (1) Production of component A of the catalyst.

200ml容のフラスコに、前蚘実斜䟋(1)で埗ら
れた化合物をマグネシりムずしお8.8ミリモル
チタンずしお1.3ミリモル、テトラブトキシゞ
ルコニりム1.0ミリモルおよび也燥した−ヘキ
サン50ml、を加えお撹拌しながら70℃で時間反
応させた。次いでこの系に四塩化チタン22ミリモ
ルを加え、70℃で時間反応させた。冷华埌、沈
柱物を−ヘキサン50mlで回掗浄しお觊媒の
成分である固䜓生成物を埗た。
8.8 mmol of the compound obtained in Example 1 (1) as magnesium (1.3 mmol as titanium), 1.0 mmol of tetrabutoxyzirconium, and 50 ml of dry n-hexane were added to a 200 ml flask, and the mixture was stirred for 70 ml. The reaction was carried out at ℃ for 2 hours. Next, 22 mmol of titanium tetrachloride was added to this system, and the mixture was reacted at 70°C for 3 hours. After cooling, the precipitate was washed 5 times with 50 ml of n-hexane to remove the catalyst A.
A solid product was obtained.

(2) ポリ゚チレンの補造。(2) Manufacture of polyethylene.

觊媒の成分ずしお䞊蚘(1)で埗られた固䜓生成
物を甚いたこず以倖は実斜䟋ず同じ条件で゚チ
レンの重合を行な぀た。その結果、ポリ゚チレン
84が埗られ、このポリ゚チレンの嵩密床は0.27
cm2MI2.16は0.41F.R.は46であ぀た。
Ethylene polymerization was carried out under the same conditions as in Example 1 except that the solid product obtained in (1) above was used as component A of the catalyst. As a result, polyethylene
84g was obtained, and the bulk density of this polyethylene was 0.27
g/cm 2 , MI 2.16 was 0.41, and FR was 46.

実斜䟋  (1) 觊媒の成分の補造。Example 3 (1) Production of component A of the catalyst.

200ml容のフラスコに、前蚘実斜䟋(1)で埗ら
れた化合物をマグネシりムずしお8.8ミリモル
チタンずしお1.3ミリモル、テトラブトキシゞ
ルコニりム2.0ミリモル、四塩化ゞルコニりム2.0
ミリモルおよび也燥した−ヘキサン50mlを加え
お撹拌しながら70℃で時間反応させた。次いで
この系に四塩化チタン22ミリモルを加え70℃で
時間反応させた。冷华埌静眮しお䞊柄液を陀き、
沈柱物を−ヘキサン50mlで回掗浄しお觊媒の
成分である固䜓生成物を埗た。
In a 200 ml flask, add 8.8 mmol of the compound obtained in Example 1 (1) as magnesium (1.3 mmol as titanium), 2.0 mmol of tetrabutoxyzirconium, and 2.0 mmol of zirconium tetrachloride.
mmol and 50 ml of dry n-hexane were added, and the mixture was reacted at 70° C. for 3 hours with stirring. Next, 22 mmol of titanium tetrachloride was added to this system and the mixture was heated at 70°C.
Allowed time to react. After cooling, let it stand and remove the supernatant liquid.
The precipitate was washed five times with 50 ml of n-hexane to obtain a solid product, which is component A of the catalyst.

(2) ポリ゚チレンの補造。(2) Manufacture of polyethylene.

ステンレス補の容オヌトクレヌブに、也燥
した−ヘキサン400ml、觊媒の成分であるト
リむ゜ブチルアルミニりム2.0ミリモル、および
䞊蚘(1)で埗られた觊媒の成分である固䜓生成物
をチタンずしお0.01ミリモル加えお80℃に昇枩し
た。次いでこの系に分圧ずしお氎玠Kgcm2、゚
チレンKgcm2を圧入し、以降この圧力を維持す
るように゚チレンを連続的に䟛絊しながら80℃で
時間重合をした。反応終了埌、未反応ガスを陀
去し、ポリマヌを分離也燥したずころ、癜色のポ
リ゚チレンが105埗られた。埗られたポリ゚チ
レンの嵩密床は0.25cm2MI2.16は0.38F.R.
は54であ぀た。
In a 1-volume stainless steel autoclave, 400 ml of dry n-hexane, 2.0 mmol of triisobutylaluminum, which is the B component of the catalyst, and 0.01 mmol of titanium, the solid product which is the A component of the catalyst obtained in (1) above. In addition, the temperature was raised to 80°C. Next, 3 kg/cm 2 of hydrogen and 5 kg/cm 2 of ethylene were pressurized into the system as partial pressures, and polymerization was carried out at 80° C. for 1 hour while continuously supplying ethylene to maintain this pressure. After the reaction was completed, unreacted gas was removed and the polymer was separated and dried to obtain 105 g of white polyethylene. The bulk density of the obtained polyethylene was 0.25 g/cm 2 , MI 2.16 was 0.38, FR
was 54.

実斜䟋  (1) 觊媒の成分の補造。Example 4 (1) Production of component A of the catalyst.

200ml容のフラスコに、前蚘実斜䟋(1)で埗ら
れた化合物をマグネシりムずしお8.8ミリモル
チタンずしお1.3ミリモル、゚チルアルミニり
ムゞクロラむド44ミリモルおよび也燥した−ヘ
キサン50mlを加えお撹拌しながら70℃で時間反
応させた。冷华埌静眮しお䞊柄液を陀き也燥−
ヘキサンで掗浄した。次いで埗られた固䜓のスラ
リヌに也燥−ヘキサン50mlを加え、テトラブト
キシゞルコニりム4.0ミリモルを添加し、70℃で
時間反応させ、さらに四塩化チタン22ミリモル
を加えお70℃で時間反応させた。冷华埌静眮し
お䞊柄液を陀き、也燥−ヘキサンで掗浄しお觊
媒の成分である固䜓生成物を埗た。
Into a 200 ml flask were added 8.8 mmol of the compound obtained in Example 1 (1) as magnesium (1.3 mmol as titanium), 44 mmol of ethylaluminum dichloride, and 50 ml of dry n-hexane, and the mixture was heated at 70°C with stirring. The reaction was carried out for 1 hour. After cooling, let it stand, remove the supernatant liquid, and dry it.
Washed with hexane. Next, 50 ml of dry n-hexane was added to the resulting solid slurry, 4.0 mmol of tetrabutoxyzirconium was added, and the mixture was reacted at 70°C for 3 hours. Further, 22 mmol of titanium tetrachloride was added and the mixture was reacted at 70°C for 3 hours. . After cooling, the mixture was allowed to stand, the supernatant liquid was removed, and the mixture was washed with dry n-hexane to obtain a solid product, which is component A of the catalyst.

(2) ポリ゚チレンの補造。(2) Manufacture of polyethylene.

ステンレス補の容オヌトクレヌブに、也燥
した−ヘキサン400mlおよび觊媒の成分であ
るトリむ゜ブチルアルミニりム2.0ミリモル、な
らびに䞊蚘(1)で埗られた觊媒の成分である固䜓
生成物をチタンずしお0.02ミリモル加え、80℃に
昇枩した。次いで実斜䟋ず同じ条件で゚チレン
を重合し、ポリ゚チレン98を埗た。埗られたポ
リ゚チレンの嵩密床は0.26cm3MI2.16は
0.13F.R.は63であ぀た。
In a 1-volume stainless steel autoclave, 400 ml of dry n-hexane, 2.0 mmol of triisobutylaluminum, which is the B component of the catalyst, and 0.02 mmol of the solid product, which is the A component of the catalyst obtained in (1) above, as titanium. In addition, the temperature was raised to 80°C. Next, ethylene was polymerized under the same conditions as in Example 3 to obtain 98 g of polyethylene. The bulk density of the obtained polyethylene was 0.26 g/cm 3 , and MI 2.16 was
0.13, FR was 63.

比范䟋 (1) 觊媒成分の補造。Comparative example (1) Production of catalyst components.

200ml容のフラスコに、也燥した−ヘキサン
50ml、実斜䟋(1)で埗られた化合物をマグネシり
ムずしお8.8ミリモルチタンずしお1.3ミリモ
ルおよび四塩化チタン8.8ミリモルを加えお撹
拌しながら70℃で時間反応を行な぀た。反応終
了埌冷华しお静眮し、䞊柄液を陀き、さらに也燥
−ヘキサンで掗浄しお觊媒成分ずしおの固䜓生
成物を埗た。
In a 200ml flask, add dry n-hexane.
50 ml of the compound obtained in Example 1 (1) was added with 8.8 mmol of magnesium (1.3 mmol of titanium) and 8.8 mmol of titanium tetrachloride, and the reaction was carried out at 70° C. for 3 hours with stirring. After the reaction was completed, the mixture was cooled and allowed to stand, the supernatant liquid was removed, and the mixture was further washed with dry n-hexane to obtain a solid product as a catalyst component.

(2) ポリ゚チレンの補造。(2) Manufacture of polyethylene.

ステンレス補の容オヌトクレヌブに、也燥
した−ヘキサン400ml、觊媒の成分であるト
リむ゜ブチルアルミニりム2.0ミリモルおよび䞊
蚘(1)で埗られた固䜓生成物をチタンずしお0.005
ミリモル加えお80℃に昇枩した。次いでこの系に
分圧ずしお氎玠Kgcm2、゚チレンKgcm2を圧
入し、以降この圧力を維持するように゚チレンを
連続的に䟛絊しながら80℃で時間重合をした。
反応終了埌、未反応ガスを陀去し、ポリマヌを分
離也燥したずころ、癜色のポリ゚チレンが225
埗られた。埗られたポリ゚チレンの嵩密床は0.29
cm3MI2.16は0.50F.R.は31であ぀た。
In a 1-volume stainless steel autoclave, 400 ml of dry n-hexane, 2.0 mmol of triisobutylaluminum, which is component B of the catalyst, and 0.005 titanium of the solid product obtained in (1) above were placed in a 1-volume stainless steel autoclave.
mmol was added and the temperature was raised to 80°C. Next, 2 kg/cm 2 of hydrogen and 6 kg/cm 2 of ethylene were pressurized into the system as partial pressures, and polymerization was carried out at 80° C. for 1 hour while continuously supplying ethylene to maintain this pressure.
After the reaction was completed, the unreacted gas was removed and the polymer was separated and dried, resulting in 225g of white polyethylene.
Obtained. The bulk density of the obtained polyethylene is 0.29
g/cm 3 , MI 2.16 was 0.50, and FR was 31.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本願発明の方法で甚いる觊媒の調補工
皋を衚わした図面である。
FIG. 1 is a diagram showing the preparation process of a catalyst used in the method of the present invention.

Claims (1)

【特蚱請求の範囲】  少なくずもチタン、マグネシりムおよびハ
ロゲンを含有する化合物ずテトラアルコキシゞル
コニりムおよびたたはゞルコニりムテトラハラ
むドを反応させお生成する固圢分に、䞀般匏Ti
OR1oX1 4-o匏䞭、R1はアルキル基、X1はハロ
ゲン原子を瀺し、たたは≊である。
で衚わされるハロゲン含有チタン化合物を反応さ
せお埗られる固䜓生成物および有機アルミニり
ム化合物を有効成分ずする觊媒を甚いるこずを特
城ずするポリ゚チレンの補造法。  有機アルミニりム化合物が、䞀般匏
AlR2 nX2 3-n匏䞭、R2はアルキル基、X2はハロ
ゲン原子を瀺し、たたは≊である。
あるいは䞀般匏AlR3 kOR43-k匏䞭、R3R4
はアルキル基を瀺し、たたは≊であ
る。で衚わされるものである特蚱請求の範囲第
項蚘茉の補造法。
[Scope of Claims] 1 A: A solid content produced by reacting a compound containing at least titanium, magnesium and a halogen with tetraalkoxyzirconium and/or zirconium tetrahalide, which has the general formula Ti
(OR 1 ) o X 1 4-o (In the formula, R 1 is an alkyl group, X 1 is a halogen atom, and n is 0≩n<4.)
A method for producing polyethylene, which comprises using a solid product obtained by reacting a halogen-containing titanium compound represented by the formula B, and a catalyst containing an organoaluminum compound B as an active ingredient. 2 The organoaluminum compound has the general formula
AlR 2 n X 2 3-n (In the formula, R 2 is an alkyl group, X 2 is a halogen atom, and m is 0<m≩3.)
Alternatively, the general formula AlR 3 k (OR 4 ) 3-k (where R 3 , R 4
represents an alkyl group, and k is 0<k≩3. ) The manufacturing method according to claim 1, which is represented by:
JP8515180A 1980-06-25 1980-06-25 Production of polyethylene Granted JPS5712006A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8515180A JPS5712006A (en) 1980-06-25 1980-06-25 Production of polyethylene
EP19810104669 EP0043473B1 (en) 1980-06-25 1981-06-17 Process for the production of polyethylene
DE8181104669T DE3171693D1 (en) 1980-06-25 1981-06-17 Process for the production of polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8515180A JPS5712006A (en) 1980-06-25 1980-06-25 Production of polyethylene

Publications (2)

Publication Number Publication Date
JPS5712006A JPS5712006A (en) 1982-01-21
JPS6251285B2 true JPS6251285B2 (en) 1987-10-29

Family

ID=13850657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8515180A Granted JPS5712006A (en) 1980-06-25 1980-06-25 Production of polyethylene

Country Status (1)

Country Link
JP (1) JPS5712006A (en)

Also Published As

Publication number Publication date
JPS5712006A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
RU2165435C2 (en) Catalyst composition used for polymerization of olefins
CA1163617A (en) Catalyst for polymerization of olefins and polymerization process employing such catalyst
US5064798A (en) Catalyst for olefin polymerization
JPS5827705A (en) Polymerization catalyst and method
JPS6033121B2 (en) polymerization catalyst
EP0356183B1 (en) Catalyst for olefin polymerization
US4518751A (en) Process for the production of polyethylene
JPH04506833A (en) Olefin polymerization catalyst and method
US4364851A (en) Process for producing olefin polymers
JPS6219596A (en) Intermetallic compound
EP0043473B1 (en) Process for the production of polyethylene
US6306985B1 (en) High activity solid catalyst for producing low-, medium-, and high-density polyethylenes by slurry phase polymerization, process for preparing the same and use of the same in ethylene polymerization
JP4166086B2 (en) Nonmetallocenes, their production and their use in the polymerization of olefins
JPH04261408A (en) Production of polyolefin
JP4089968B2 (en) Novel catalyst composition and process for olefin polymerization and olefin copolymerization with alpha olefins using the same
US4540757A (en) Polymerization and catalyst
US5322911A (en) Polymerization process employing metal halide catalyst and polymer produced
JPS5812889B2 (en) Polyethylene material
JPS6251285B2 (en)
US5064795A (en) Polymerization of olefins
JPS63162703A (en) Manufacture of catalyst component for polymerizing olefin
JPS6312083B2 (en)
JPS638124B2 (en)
JPS638964B2 (en)
JPS588694B2 (en) Ethylene polymerization method