JPS6251132A - Manufacture of electron tube having photoelectric surface - Google Patents

Manufacture of electron tube having photoelectric surface

Info

Publication number
JPS6251132A
JPS6251132A JP18946685A JP18946685A JPS6251132A JP S6251132 A JPS6251132 A JP S6251132A JP 18946685 A JP18946685 A JP 18946685A JP 18946685 A JP18946685 A JP 18946685A JP S6251132 A JPS6251132 A JP S6251132A
Authority
JP
Japan
Prior art keywords
photocathode
alkali metal
resistance
photoelectric surface
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18946685A
Other languages
Japanese (ja)
Inventor
Takashi Noji
隆司 野地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18946685A priority Critical patent/JPS6251132A/en
Publication of JPS6251132A publication Critical patent/JPS6251132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To easily obtain a photoelectric surface of high sensitivity, by providing resistance measuring terminals near a photoelectric surface making portion to detect a resistance change resulting from the reaction of the material for the photoelectric surface and an alkali metal, and by controlling the production of the photoelectric surface depending on the detected resistance change. CONSTITUTION:A resistance measuring section 13, in which a pair of resistance measuring terminals 12 are provided at a prescribed distance from each other on an electrically insulating base, is disposed near the photoelectric surface making portion of the input surface 2 of an X-ray image tube or the like. Electricity is then applied to a heater 10 to evaporate a material such as antimony for a photoelectric surface 8 to coat the photoelectric surface making portion with the material. The thickness of the coating film of the material is controlled by measuring the resistance through the resistance measuring section 13. An alkali metal generator 11 is then heated to evaporate an alkali metal such as cesium to deposit the alkali metal on the thin film of the material. The progress of the reaction of the alkali metal and the material is precisely detected by measuring the resistance through the resistance measuring section 13, to control the deposition of the alkali metal. This results in easily providing the photoelectric surface of high sensitivity and stability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、光電面を有する電子管の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an electron tube having a photocathode.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イメージオルシコン、イメージ管、X線イメージ管など
、光電面を有する電子管の光電面形成は、光電面形成部
にアンチモン、ビスマス、銀などの光電面母材を蒸着し
てその薄膜を形成したのち、セシウム、ナトリウム、カ
リウムなどのアルカリ金属を蒸着して形成される。形成
される光電面が高い感度を示すようにするためには、光
電面母材とその後に蒸着されるアルカリ金属が所要の金
属化合物を作るようにすることが必要であり、そのため
には、光電面母材の膜厚およびその後蒸着されるアルカ
リ金属の量を適切に制御することが必要である。
The photocathode of an electron tube with a photocathode, such as an image orthicon, an image tube, or an X-ray image tube, is formed by depositing a photocathode base material such as antimony, bismuth, or silver on the photocathode forming part, and then forming a thin film of it. , formed by vapor deposition of alkali metals such as cesium, sodium, and potassium. In order for the formed photocathode to exhibit high sensitivity, it is necessary to ensure that the photocathode matrix and the subsequently deposited alkali metal form the required metal compound. It is necessary to appropriately control the film thickness of the surface base material and the amount of alkali metal subsequently deposited.

ところで従来は、上記光電面母材の膜厚については、光
電面形成部近傍に一組の抵抗測定用端子を設けて、光電
面形成部に光電面母材を蒸着するとき同時にこの一組の
抵抗測定用端子間に蒸着する光電面母材の抵抗を測定し
たり、あるいは光電面形成部に近い外囲器外側に、外囲
器を介して投光器および受光器を配設して、光電面形成
部に光電面母材を蒸着するとき同時に外囲器内面に蒸着
する光電面母材の光透過率を測定するなどの方法により
、光電面形成部に蒸着される光電面母材の膜厚を制御し
ていた。また、アルカリ金属については、外囲器外から
光電面形成部に光を投射して、その光電感度を検出する
ことにより、蒸着量を制御している。
Conventionally, the film thickness of the photocathode base material has been determined by providing a set of resistance measuring terminals near the photocathode forming part, and simultaneously depositing the photocathode base material on the photocathode forming part. The resistance of the photocathode base material deposited between the resistance measurement terminals can be measured, or the emitter and receiver can be placed outside the envelope near the photocathode forming part through the envelope to measure the resistance of the photocathode. The film thickness of the photocathode base material deposited on the photocathode forming part is determined by a method such as measuring the light transmittance of the photocathode base material deposited on the inner surface of the envelope at the same time as the photocathode base material is deposited on the photocathode forming part. was under control. Regarding alkali metals, the amount of vapor deposition is controlled by projecting light onto the photocathode forming portion from outside the envelope and detecting the photoelectric sensitivity.

しかし、上記抵抗または光透過率測定による光電面母材
の膜厚制御は、光電面形成部の光電面母材の膜厚を間接
的に決定する方法であり、加えて抵抗測定は、光電面形
成部に必要な膜厚が数10〜100人ときわめて薄いた
め、実用上信頼性にとぼしい、また、上記光電感度の検
出によるアルカリ金属の蒸着量制御は、投光する光の条
件が実際の電子管の動作時と同じではないので、得られ
た光電感度の検出値から最も望ましい高感度光電面が形
成されたかどうか判断することがむつかしい。
However, controlling the film thickness of the photocathode base material by measuring the resistance or light transmittance described above is a method of indirectly determining the film thickness of the photocathode base material in the photocathode forming part. The film thickness required for the formation area is extremely thin, measuring tens to hundreds of layers, making it practically unreliable.Also, controlling the amount of alkali metal vapor deposited by detecting the photoelectric sensitivity described above is difficult if the conditions of the emitted light match the actual conditions. Since this is not the same as when the electron tube is operated, it is difficult to judge from the obtained photoelectric sensitivity detection value whether the most desirable high-sensitivity photocathode has been formed.

またアルカリ金属の蒸着量制御については、上記光電感
度検出のほかに、アルカリ金属ゼネレータの通電加熱を
制御することも考えられるが、アルカリ金属ゼネレータ
は化学反応によってアルカリ金属蒸気を発生させるもの
であるため、このような方法で精度よく蒸着量を制御す
ることはむつかしい。また特開昭48−43523号公
報には、アルカリ金属を蒸着するとき生ずる電離アルカ
リ金属の蒸着量を検出することにより、光電面形成部に
蒸着されるアルカリ金属の蒸着量を検出する方法が示さ
れているが、このような蒸着量を検出しても、光電面母
材との反応は検出されず、したがって最も望ましい光電
面が形成されたかどうか検出することはできない。
Regarding the control of the amount of alkali metal vapor deposited, in addition to the photoelectric sensitivity detection described above, it is also possible to control the energization heating of the alkali metal generator, but since the alkali metal generator generates alkali metal vapor through a chemical reaction, However, it is difficult to accurately control the amount of vapor deposition using such a method. Furthermore, Japanese Patent Laid-Open No. 48-43523 discloses a method for detecting the amount of ionized alkali metal deposited on the photocathode forming portion by detecting the amount of ionized alkali metal deposited when the alkali metal is deposited. However, even if such a deposition amount is detected, no reaction with the photocathode base material is detected, and therefore it is not possible to detect whether the most desirable photocathode has been formed.

〔発明の目的〕[Purpose of the invention]

この発明は、高感度光電面形成に必要な光電面母材とア
ルカリ金属との反応を検出することにより、所要の光電
面を有する電子管を容易に製造できるようにすることに
ある。
The present invention aims to enable easy manufacture of an electron tube having a desired photocathode by detecting the reaction between a photocathode base material and an alkali metal necessary for forming a highly sensitive photocathode.

〔発明の概要〕[Summary of the invention]

電子管の光電面形成部またはその近傍に抵抗測定用端子
を設け、上記光電面形成部および上記抵抗測定用端子の
設置部に光電面母材を蒸着したのち、アルカリ金属を蒸
着しながら、上記抵抗測定用端子を介して上記光電面母
材と上記アルカリ金属との反応により生ずる抵抗変化を
検出し、この検出結果に基づいて光電面形成を制御する
ことにより、高感度光電面を形成し、所要の光電面を有
する電子管を容易に製造できるようにした。
A terminal for resistance measurement is provided at or near the photocathode formation part of the electron tube, and a photocathode base material is deposited on the photocathode formation part and the installation part of the resistance measurement terminal. By detecting the resistance change caused by the reaction between the photocathode base material and the alkali metal through the measurement terminal and controlling the photocathode formation based on this detection result, a highly sensitive photocathode is formed and the desired This makes it possible to easily manufacture an electron tube having a photocathode.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明を実施例に基づいて説明
する。
Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

第1図にX線イメージ管の一実施例を示す。このX線イ
メージ管は、外囲器(1)の一端部内側に入力面(2)
、この入力面(2)に対向して外囲器(1)の他端部内
側に出力面(3)が設けられ、これら入力面(2)と出
力面(3)との間に、外囲器(1)の内側面に沿って複
数のグリッド電極(4)、(5)および出力面(3)を
取り囲む如く一つの7ノード電極(6)が設けられてい
る。上記入力面(2)は、球面状基体に設けられたX線
発光蛍光体層(7)と、この蛍光体層(7)の発光を光
電子に変換する光電面(8)とからなる。
FIG. 1 shows an embodiment of an X-ray image tube. This X-ray image tube has an input surface (2) inside one end of the envelope (1).
, an output surface (3) is provided inside the other end of the envelope (1) opposite to this input surface (2), and an external surface is provided between the input surface (2) and the output surface (3). A seven-node electrode (6) is provided along the inner surface of the enclosure (1) to surround the plurality of grid electrodes (4), (5) and the output surface (3). The input surface (2) consists of an X-ray emitting phosphor layer (7) provided on a spherical substrate and a photocathode (8) that converts the light emitted from the phosphor layer (7) into photoelectrons.

このX線イメージ管は、上記入力面(2)のX線発光蛍
光体層(7)が被写体を透過したX線を吸収して発光し
、この発光により光電面(8)に発生した光電子を複数
のグリッド電極(4)、(5)およびアノード電極(6
)で集束加速して、出力面(3)に上記被写体の像を結
像させる。なおこの出力面(3)に得られる被写体像の
視野サイズを可変にするため、電極構成が異なるものも
ある。
In this X-ray image tube, the X-ray emitting phosphor layer (7) on the input surface (2) absorbs the X-rays that have passed through the subject and emits light, and this light emission generates photoelectrons on the photocathode (8). A plurality of grid electrodes (4), (5) and an anode electrode (6
) to focus and accelerate the image of the subject on the output surface (3). Note that in order to make the field size of the subject image obtained on the output surface (3) variable, some types have different electrode configurations.

このX線イメージ管は、外囲器内に、あらかじめ球面状
基体にX線発光蛍光体層(7)が形成された入力面、出
力面(3)、グリッド電極(4)、(5)およびアノー
ド電極(6)を所定の関係になるように配設して組立て
、排気したのちに上記入力面に光電面母材およびアルカ
リ金属を蒸着して光電面(8)が形成される。この光電
面(8)形成のため、上記組立時、外囲器の他端部には
、光電面母材たとえばアンチモン(sb)を通電加熱し
て蒸発させる光電面母材加熱器(10)および間接加熱
によりアルカリ金属たとえばセシウム(Cs)蒸気を発
生させるアルカリ金属ゼネレーダ(11)が取り付けら
れている。
This X-ray image tube has an input surface (3), an output surface (3), grid electrodes (4), (5) and After arranging and assembling the anode electrodes (6) in a predetermined relationship and evacuating the air, a photocathode base material and an alkali metal are deposited on the input surface to form a photocathode (8). In order to form this photocathode (8), during the assembly, a photocathode base material heater (10) is installed at the other end of the envelope to evaporate a photocathode base material such as antimony (SB) by heating it with electricity. An alkali metal generadar (11) is installed that generates alkali metal, such as cesium (Cs) vapor, by indirect heating.

さらにこのX線イメージ管の製造においては、上記入力
面の近傍に、絶縁基体に一組の抵抗測定用端子(12)
が−走間隔離れて設けられた抵抗測定部(13)が配設
されている。この抵抗測定部(13)の端子(12)は
1図示しない外部電源に接続されて、両端子(12)間
を流れる電流または両端子(12)間の電圧降下を検出
することにより、連続して両端子(12)間の抵抗を測
定することができるようになっている。
Furthermore, in manufacturing this X-ray image tube, a set of resistance measurement terminals (12) is provided on the insulating base near the input surface.
Resistance measuring sections (13) are provided at a distance of -100 mm from each other. The terminals (12) of this resistance measuring section (13) are connected to an external power source (not shown), and are continuously measured by detecting the current flowing between both terminals (12) or the voltage drop between both terminals (12). It is now possible to measure the resistance between both terminals (12).

光電面(8)の形成は、まず光電面母材加熱器(lO)
を通電加熱して、この加熱器(10)に取り付けられた
光電面母材、すなわちこの例ではアンチモンを上記入力
面の光電面形成部に蒸着させる。このとき、上記アンチ
モンは、この入力面の近傍に設けられた抵抗測定部(1
3)の絶縁基体にも蒸着する。
The formation of the photocathode (8) begins with a photocathode base material heater (lO).
The photocathode base material attached to the heater (10), that is, antimony in this example, is vapor-deposited on the photocathode forming portion of the input surface by heating with electricity. At this time, the antimony is
3) is also deposited on the insulating substrate.

上記光電面形成部に蒸着するアンチモンの膜厚は、上記
抵抗測定部(13)の絶縁基体に蒸着するアンチモン薄
膜の抵抗を一組の抵抗測定用端子(12)を介して測定
するか、または入力面近くの外囲器(1)外側に外囲器
(1)を介して投光器(14)および受光器(15)を
設置して、外囲器(1)内面に蒸着するアンチモン薄膜
の光透過率を測定することにより、所定の膜厚になるよ
うに制御される。つぎに、アルカリ金属ゼネレータ(1
1)を加熱して、上記光電面形成部に形成されたアンチ
モン薄膜上にアルカリ金属、すなわちこの例ではセシウ
ムを蒸着させる。このセシウムは、光電面形成部と同時
に抵抗測定部(13)にも蒸着し、先に形成されたアン
チモン薄膜と反応する。この反応の進行は、抵抗測定部
(13)の−組の端子(12)間の抵抗測定から検出さ
れる。
The thickness of the antimony film deposited on the photocathode forming section can be determined by measuring the resistance of the antimony thin film deposited on the insulating substrate of the resistance measuring section (13) via a set of resistance measuring terminals (12), or A light emitter (14) and a light receiver (15) are installed on the outside of the envelope (1) near the input surface through the envelope (1), and the light from the antimony thin film deposited on the inner surface of the envelope (1) is emitted. By measuring the transmittance, the film thickness is controlled to a predetermined value. Next, the alkali metal generator (1
1) is heated to vapor deposit an alkali metal, that is, cesium in this example, on the antimony thin film formed on the photocathode forming portion. This cesium is deposited on the resistance measuring section (13) at the same time as the photocathode forming section, and reacts with the previously formed antimony thin film. The progress of this reaction is detected by measuring the resistance between the - pair of terminals (12) of the resistance measuring section (13).

すなわち、形成されるアンチモン・セシウム光電面は、
Cs、Sb化合物が安定かつ高感度であり、第2図に曲
線(17)で示すように、アンチモンとセシウムとの反
応が進行し、時間とともにアンチモンに対するセシウム
の比率が増加してその組成が変化するにしたがって抵抗
値が大きく変化する。
In other words, the antimony-cesium photocathode formed is
Cs and Sb compounds are stable and highly sensitive, and as shown by curve (17) in Figure 2, the reaction between antimony and cesium progresses, and the ratio of cesium to antimony increases over time, changing its composition. As the temperature increases, the resistance value changes greatly.

したがってこの抵抗の変化を上記−組の端子(12)を
介して検出し、たとえばそれを記録装置に記録して読み
取ることにより、セシウムの蒸着を制御する。
Therefore, the cesium deposition is controlled by detecting this change in resistance via the set of terminals (12) and recording and reading it, for example, on a recording device.

X線イメージ管においては、被写体のX線被曝を出来る
だけ少くすることが望まれ、それ故光電面(8)は、被
写体を透過した少いX線量を吸収して発光したX線発光
蛍光体層(7)の微弱な光を光電子に変換するものでな
ければならず、高い光吸収率と高い光電変換能をもつこ
とが要求される。
In an X-ray image tube, it is desired to reduce the X-ray exposure of the subject as much as possible, so the photocathode (8) is made of X-ray emitting phosphor that emits light by absorbing the small amount of X-rays that have passed through the subject. The layer (7) must convert weak light into photoelectrons, and is required to have high light absorption and high photoelectric conversion ability.

このような光電面は、従来おこなわれていた光電面母材
の膜厚制御、および実際のX線イメージ管の動作時とは
異なる条件でおこなわれる光電感度の測定や、アルカリ
金属の蒸着量の検出などでは期待できない。しかし上記
のように光電面母材とアルカリ金属との反応に基づく抵
抗の変化を検出してアルカリ金属の蒸着を制御するよう
にすると、光吸収率良好にして高感度な安定な光電面を
容易に形成することができる。また、通常所要の光電面
は、1回の光電面母材の蒸着とアルカリ金属の蒸着では
形成することかむつかしく、光電面母材の蒸着とアルカ
リ金属の蒸着を交互に繰返して形成されるが、この抵抗
変化に基づいてその蒸着を制御する方法は、その各工程
を通してその繰返しごとに光電面母材の組成変化を鋭敏
にとらえることができ、最適な光電面とすることができ
る。
This kind of photocathode can be used to control the film thickness of the photocathode base material, which has been done in the past, to measure photoelectric sensitivity, which is performed under conditions different from those during actual operation of an X-ray image tube, and to control the amount of alkali metal evaporated. You can't expect much from detection. However, if the deposition of alkali metal is controlled by detecting the change in resistance caused by the reaction between the photocathode base material and the alkali metal as described above, it is easy to create a stable photocathode with good light absorption and high sensitivity. can be formed into In addition, it is usually difficult to form the required photocathode by a single evaporation of the photocathode base material and alkali metal, so it is formed by alternately repeating the evaporation of the photocathode base material and the alkali metal. The method of controlling the vapor deposition based on this resistance change allows the composition change of the photocathode base material to be sensitively detected each time it is repeated through each process, and an optimal photocathode can be obtained.

つぎに他の実施例について述べる。Next, other embodiments will be described.

上記実施例では、絶縁基体に一組の抵抗測定用端子が設
けられた抵抗測定部を入力面の近傍に配設して、この抵
抗測定部の抵抗変化を検出することによりアルカリ金属
の蒸着を制御する場合について述べたが、この抵抗測定
部は、入力面の一部たとえばX線発光蛍光体層を利用し
てこの部分に抵抗測定用端子を取り付けて、抵抗変化を
検出するようにしてもよい。
In the above embodiment, a resistance measuring section having a set of resistance measuring terminals provided on an insulating substrate is arranged near the input surface, and the vapor deposition of alkali metal is detected by detecting the resistance change of this resistance measuring section. As described above, this resistance measuring section can also detect resistance changes by attaching a resistance measuring terminal to a part of the input surface, such as an X-ray emitting phosphor layer. good.

また上記実施例では、光電面母材とアルカリ金属との反
応により生ずる抵抗変化を検出し、その検出結果に基づ
いてアルカリ金属の蒸着を制御したが、この場合、光電
面形成部に光を投射して光電感度を測定する方法を併用
することは任意である。
Furthermore, in the above embodiment, the resistance change caused by the reaction between the photocathode base material and the alkali metal was detected, and the vapor deposition of the alkali metal was controlled based on the detection result. It is optional to use a method of measuring photoelectric sensitivity in combination.

また上記実施例は、アンチモンとセシウムとで光電面を
形成する場合について述べたが、この発明は、光電面母
材とアルカリ金属の2相系、3相系、4相系などからな
る光電面の形成にも適用できる。すなわちたとえばマ、
ルチアルカリ光電面ば、Na、 K (Cs)Sbから
なり、その光電面形成過程においてアルカリ金属間の置
換反応がおこるが、上記抵抗変化に基づいてアルカリ金
属の蒸着を制御する方法は、その反応を適確に検出し、
高感度光電面とすることができる。
Further, in the above embodiment, a case was described in which a photocathode was formed using antimony and cesium, but the present invention provides a photocathode formed of a two-phase system, a three-phase system, a four-phase system, etc. of a photocathode base material and an alkali metal. It can also be applied to the formation of For example, Ma,
The alkaline photocathode is made of Na, K(Cs)Sb, and a substitution reaction between the alkali metals occurs during the process of forming the photocathode. Accurately detect,
It can be a highly sensitive photocathode.

なお上記実施例は、X線イメージ管について述べたが、
この発明は、イメージオルシコン、イメージ管など光電
面を有する他の電子管に対しても適用できる。
Although the above embodiment described an X-ray image tube,
The present invention can also be applied to other electron tubes having a photocathode, such as image orthicons and image tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例であるX線イメージ管の製
造方法を説明するための図、第2図は光電面母材とアル
カリ金属との反応の進行にともなって変化する抵抗値の
曲線図である。 (2)・・・入力面         (7)・・・X
線発光蛍光体層(8)・・・光電面         
(10)・・・光電面母材加熱器(11)・・・アルカ
リ金属ゼネレータ (12)・・・抵抗測定用端子(1
3)・・・抵抗測定部       (14)・・・投
光器(15)・・・受光器
Figure 1 is a diagram for explaining the method of manufacturing an X-ray image tube, which is an embodiment of the present invention, and Figure 2 shows the resistance value that changes as the reaction between the photocathode base material and the alkali metal progresses. It is a curve diagram. (2)...Input surface (7)...X
Line-emitting phosphor layer (8)...photocathode
(10)...Photocathode base material heater (11)...Alkali metal generator (12)...Resistance measurement terminal (1
3)...Resistance measuring section (14)...Emitter (15)...Receiver

Claims (1)

【特許請求の範囲】[Claims] 電子管の光電面形成部またはその近傍に抵抗測定用端子
を設け、上記光電面形成部および上記抵抗測定用端子の
設置部に光電面母材を蒸着したのちアルカリ金属を蒸着
しながら上記抵抗測定用端子を介して上記光電面母材と
上記アルカリ金属との反応により生ずる抵抗変化を検出
し、この検出結果に基づいて光電面形成を制御すること
を特徴とする光電面を有する電子管の製造方法。
A terminal for resistance measurement is provided at or near the photocathode formation part of the electron tube, and after a photocathode base material is vapor-deposited on the photocathode formation part and the installation part of the resistance measurement terminal, the alkali metal is vapor-deposited while the resistance measurement terminal is evaporated. A method for manufacturing an electron tube having a photocathode, characterized in that a change in resistance caused by a reaction between the photocathode base material and the alkali metal is detected through a terminal, and formation of the photocathode is controlled based on the detection result.
JP18946685A 1985-08-30 1985-08-30 Manufacture of electron tube having photoelectric surface Pending JPS6251132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18946685A JPS6251132A (en) 1985-08-30 1985-08-30 Manufacture of electron tube having photoelectric surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18946685A JPS6251132A (en) 1985-08-30 1985-08-30 Manufacture of electron tube having photoelectric surface

Publications (1)

Publication Number Publication Date
JPS6251132A true JPS6251132A (en) 1987-03-05

Family

ID=16241739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18946685A Pending JPS6251132A (en) 1985-08-30 1985-08-30 Manufacture of electron tube having photoelectric surface

Country Status (1)

Country Link
JP (1) JPS6251132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626106A1 (en) * 1988-01-15 1989-07-21 Thomson Csf METHOD FOR MANUFACTURING PHOTOCATHODE FOR INTENSIFYING IMAGE TUBE
US5218977A (en) * 1990-02-26 1993-06-15 Masakatsu Takahashi Wig-like cool cap and method for manufacturing
AU2006345675B2 (en) * 2006-05-31 2012-07-26 Aderans Company Limited Moisture-permeable material for wigs and wig or under cap for wig having the moisture-permeable material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626106A1 (en) * 1988-01-15 1989-07-21 Thomson Csf METHOD FOR MANUFACTURING PHOTOCATHODE FOR INTENSIFYING IMAGE TUBE
US5218977A (en) * 1990-02-26 1993-06-15 Masakatsu Takahashi Wig-like cool cap and method for manufacturing
AU2006345675B2 (en) * 2006-05-31 2012-07-26 Aderans Company Limited Moisture-permeable material for wigs and wig or under cap for wig having the moisture-permeable material

Similar Documents

Publication Publication Date Title
US2676282A (en) Photocathode for multiplier tubes
Succi et al. Atomic absorption evaporation flow rate measurements of alkali metal dispensers
US2798823A (en) Fluorescent screen for X-ray image tube and method for preparing same
US2770561A (en) Photoelectric cathode and method of producing same
JPS5841622B2 (en) electronic discharge tube
US4002735A (en) Method of sensitizing electron emissive surfaces of antimony base layers with alkali metal vapors
JPS6251132A (en) Manufacture of electron tube having photoelectric surface
US2914690A (en) Electron-emitting surfaces and methods of making them
US5623141A (en) X-ray image intensifier with high x-ray conversion efficiency and resolution ratios
US4339469A (en) Method of making potassium, cesium, rubidium, antimony photocathode
US4963113A (en) Method for producing photomultiplier tube
JP2703306B2 (en) Method of manufacturing photocathode for image intensifier tube
US4568567A (en) Method of removing trace quantities of alkali metal impurities from a bialkali-antimonide photoemissive cathode
US4407857A (en) Method for processing a lithium-sodium-antimony photocathode
US5623182A (en) Reflections mode alkali photocathode and photomultiplier using the same
US2880344A (en) Photosurface
US4305972A (en) Method for expeditiously processing a sodium-potassium-cesium-antimony photocathode
US5633562A (en) Reflection mode alkali photocathode, and photomultiplier using the same
US2977252A (en) Photosurface and method of making same
EP0627755B1 (en) Reflection mode alkali photocathode, and photomultiplier using the same
US2779888A (en) Photosensitive electrode and method for producing same
US3329853A (en) Image orthicon with cesium getter adjacent electron multiplier
JPS60258827A (en) Manufacture of electron tube having photoelectric face
US2159755A (en) Method and apparatus for detecting heat
JPH04209452A (en) X-ray image tube