JPS6250926B2 - - Google Patents

Info

Publication number
JPS6250926B2
JPS6250926B2 JP55026351A JP2635180A JPS6250926B2 JP S6250926 B2 JPS6250926 B2 JP S6250926B2 JP 55026351 A JP55026351 A JP 55026351A JP 2635180 A JP2635180 A JP 2635180A JP S6250926 B2 JPS6250926 B2 JP S6250926B2
Authority
JP
Japan
Prior art keywords
resin
insulated wire
coating layer
wire
gel fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55026351A
Other languages
Japanese (ja)
Other versions
JPS56123621A (en
Inventor
Koichi Koyasu
Akira Kitamura
Isao Shirahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2635180A priority Critical patent/JPS56123621A/en
Publication of JPS56123621A publication Critical patent/JPS56123621A/en
Publication of JPS6250926B2 publication Critical patent/JPS6250926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶媒を使用しない絶縁電線の製造方
法、特にポリエステル樹脂で絶縁被覆されマグネ
ツトワイヤーとして従来品に遜色ない諸特性を待
つた絶縁電線の製造方法に関するものである。 従来、モーターなどのマグネツトワイヤーとし
て使用される絶縁電線を製造する場合には、樹脂
を有機溶剤に溶解して得た絶縁塗料を導体上に塗
布し、乾燥固化させるのが普通である。この際塗
料の導体への被覆を容易にするために多量の溶剤
を用いて塗料粘度の調整を行うが、使用する溶剤
の毒性、溶剤回収の不完全なこと等の理由で、作
業環境の改善および省資源の見地から、溶剤を使
用しない絶縁電線の製造方法が強く望まれてい
る。かかる要望に対して直鎖状ポリエステルのよ
うな強度が高く、溶融粘度の小さい樹脂を押出成
型により導体上に溶融塗布する方法が提案されて
いる(特開昭53−4875号)。しかし、この方法で
得られる絶縁電線は単に熱可塑性樹脂を導体に被
覆したのみであるので、耐摩耗性をはじめ機械的
強度、耐熱劣化特性等が劣り、JIS規格に合格す
るようなマグネツトワイヤーとして使用できるよ
うな性能を持つた絶縁電線は到底得ることはでき
ず、使用できるとしても極めて限られた機器に使
用できるにすぎない。即ち、直鎖状ポリエステル
のような樹脂は結晶性重合体であるので、コイル
加工時に伸長あるいは曲げ等の加工が加わると、
微細な亀裂が生じ、電気特性が低下するほか、乾
燥等のために加熱される場合にも結晶化による可
撓性の消失が認められる。マグネツトワイヤーの
耐熱劣化性の試験方法としてJISC3203、3210、
3211等に規定されている所定時間加熱後の可撓性
を観察する試験(例えば、ポリエステルエナメル
銅線においては200℃、6時間加熱後の巻付性)
においても、結晶化により可撓性が全く消失す
る。 本発明の目的は溶剤を使用せずに上述の欠点の
ないマグネツトワイヤーとして十分使用できる性
能を具備した絶縁電線を製造する方法を得ようと
するにある。 本発明者等は上述の目的を達成するために、溶
剤を使用しない絶縁電線の製造方法について鋭意
研究を重ねた結果、先ず実質的に直鎖状のポリエ
ステル樹脂を線状導体上に被覆し、次いでこの樹
脂被覆層を前記樹脂の融点以上の温度に加熱する
ことにより絶縁電線としての特性を得ることがで
きたが、溶剤タイプの塗料を用いて製造した絶縁
電線と比較すると、熱軟化特性等のような耐熱性
の面でなお劣るものであつた。 更に検討を加えた結果、樹脂被覆層を融点以上
の高温にて加熱する前にこの層の表面に多官能性
不飽和単量体を塗布することにより、被覆層の架
橋密度が増大し、耐熱性が向上し、架橋の結合力
が強化されて熱安定性を改善することができ、か
くして上述の欠点を消減することができることを
見出し、本発明の到達したものである。 本発明は、(a)芳香族またはその一部を脂肪族で
置き換えたジカルボン酸を主とする酸成分と、脂
肪族ジオールを主とするジオール成分とからなる
エステル結合を主成分とする実質的に直鎖状のポ
リエステル樹脂を線状導体上に被覆し、(b)次いで
この樹脂被覆層の表面に多官能性不飽和単量体を
塗布し、(c)この被覆層を酸素含有雰囲気中で前記
樹脂の融点以上の温度に加熱して前記被覆層のゲ
ル分率が20%以上になるまで架橋させることによ
り、上述の目的を達成する。 本発明で使用する直鎖状ポリエステル樹脂を構
成する酸成分は芳香族またはその一部を脂肪族で
置き換えたジカルボン酸である。 芳香族ジカルボン酸としては、例えば、テレフ
タル酸、イソフタル酸、ナフタリンジカルボン
酸、ジフエニルジカルボン酸、ジフエニルスルホ
ンジカルボン酸、ジフエノキシエタンジカルボン
酸、ジフエニルエーテルジカルボン酸、メチルテ
レフタル酸、メチルイソフタル酸等があり、特に
テレフタル酸が好ましい。また芳香族ジカルボン
酸はその30モル%以下、好ましくは20モル%以下
の割合でコハク酸、アジピン酸、セバチン酸等の
脂肪族ジカルボン酸を含有することができる。 また直鎖状ポリエステル樹脂を構成する脂肪族
ジオール成分としては、例えば、エチレングリコ
ール、トリメチレングリコール、テトラメチレン
グリコール、ヘキサンジオール、デカンジオール
等がある。特にエチレングリコールおよびテトラ
メチレングリコールが好ましい。また脂肪族ジオ
ールの一部をオキシ(アルキレン)グリコール、
例えば、ポリエチレングリコール、ポリテトラメ
チレングリコールとすることもできる。 本発明で使用するポリエステル樹脂には、所要
に応じて、各種の添加剤、例えば、紫外線吸収
剤、酸化防止剤等のような安定剤、顔料、ガラス
繊維等のようなフイラーを添加することができ
る。ポリエステル樹脂の線状体上への被覆方法と
しては、加熱溶融状態にして塗布する方法、ある
いは押出成形等のような通常の熱可塑性樹脂の成
形方法によつて容易に行うことができる。 本発明で使用する多官能性不飽和単量体は、ジ
ビニルベンゼン、モノ−、ジ−、トリ−およびテ
トラーエチレングリコールジアクリレート類、モ
ノー、ジ−、トリ−およびテトラ−エチレングリ
コールジメタクリレート類、ビニルアクリレー
ト、ビニルメタクリレート、アリルアクリレー
ト、アリルメタクリレート、ジエチレングリコー
ルのジビニルエーテル、ジアリルマレエート、ジ
アリルイタコネート、ジアリルマロネート、ジア
リルベンゼンフオスフオネート、トリアリルフオ
スフエート、トリアリルシアヌレート、グリセリ
ントリメタクリレートおよびこれらの対応する近
縁同族体およびこれらの混合物から成る群から選
定した多官能性単量体である。本発明の方法では
上記の如き多官能性単量体を塗布した後でポリエ
ステル樹脂の融点以上に加熱する工程を行うの
で、多官能性不飽和単量体としては安定性および
自己架橋性の見地から高融点のものが望ましく、
また高融点のものを使用すると耐熱性にも優れた
絶縁電線が得られる点から、特にトリアリルイソ
シアヌレート、トリアリルシアヌレート、ジアリ
ルメチルイソシアヌレート等のようなシアヌル酸
またはイソシアヌル酸の誘導体が好適である。し
かし、低融点のものでも添加しない場合より耐熱
性の向上が認められるが、高融点のものに較べる
と効果の程度が小さい。多官能性単量体はポリエ
ステル樹脂に練り込む必要がなく、単にポリエス
テル樹脂の表面に塗布するだけで十分な特性を示
すので、費用および製造工程上有利である。多官
能性単量体の塗布には、噴霧器により吹き付ける
方法、槽等に入れておきこの中を通過させる方法
等を使用することができる。 多官能性単量体塗布後の加熱は酸素含有雰囲気
中で行う。この理由は酸素を含有しない雰囲気で
加熱すると架橋の生成度が著しく低く、被覆層の
ゲル分率が20%以上になるまで架橋させるのが困
難であるからである。酸素雰囲気としては工業的
に最も容易な空気を使用することができる。従つ
て溶剤を使用する従来のエナメル電線用焼付炉を
そのまゝ利用でき、新たな装置を必要としないの
で有利である。加熱温度は使用したポリエステル
樹脂の融点以上とすることが必要で、融点以下で
あると結晶化が進行する場合もあり、可撓性が消
失し、折返し、巻取り等の際に皮膜が脱落するお
それがある。被覆層は加熱してそのゲル分率が20
%以上になるまで架橋される。こゝに「ゲル分
率」とはm−クレゾールを使用して90℃で加熱し
た場合の不溶残分の全被覆層に対する比率であ
る。ゲル分率が20%未満であると、マグネツトワ
イヤー用の絶縁電線として必要な特性を得るのが
困難である。 被覆層が融点以上の酸素雰囲気中での加熱によ
り架橋する機構は明らかでないが、酸素含有雰囲
気中で加熱することにより酸素および熱の作用に
よる主鎖の切断および酸化が生起し、この結果遊
離基が発生し、分子の架橋が生じ、不溶性がでて
くるものと推定される。この多官能性単量体は多
官能性単量体相互で反応するほか、ポリエステル
樹脂の熱架橋が進行する途中の段階で発生する遊
離基と反応することが考えられる。多官能性単量
体が共存するとポリエステル樹脂単独の場合より
強固な架橋生成物が生成し、このため上述の熱架
橋のみの場合より優れた耐熱性が得られるものと
考えられる。マグネツトワイヤー用の絶縁電線の
特性として重要な上昇熱軟化温度について耐熱性
を比較すると、熱架橋のみのものは280℃程度で
あるのに対し、多官能性単量体を塗布したものは
350℃程度と、驚くべき向上を示す。 本発明により絶縁電線を製造するに当つては、
ポリエステル樹脂の被覆、多官能性単量体の塗布
および加熱の各工程は走行した線状導体を使用し
て連続的に行う必要がある。被覆層は加熱工程で
樹脂の融点以上の温度に加熱されて溶融し、溶剤
を使用する従来の塗料を塗布した場合と同様に液
状となるので、従来方法と同様に走行状態で行わ
ないと樹脂被覆層の偏り、落下等が発生する。 また、ポリエステル樹脂を線状導体に溶融被覆
したのみでは、生成した線材をボビン等に巻取る
場合に曲げ応力が加わつて結晶化が起り、亀裂が
生じる場合もあるので、被覆、塗布および加熱の
各工程は走行線状導体を使用して連続的に行なう
ことが、本発明の方法の実施に当つて必要であ
る。 本発明の方法により製造される絶縁電線はその
耐熱性の尺度である上昇熱軟化温度が溶剤タイプ
の塗料を用いて製造した絶縁電線より優れてい
る。また、溶剤を使用する従来の製造方法では、
皮膜形成のための塗布焼付工程における1回の塗
布量は、溶剤および反応生成物を揮発させるため
に制約され、例えば、直径1.0mmの導体を使用す
る場合には塗布焼付操作を少くとも3回以上繰返
す必要があるのに対し、本発明の方法では1回の
被覆、塗布および加熱操作で十分であることも本
発明の利点である。 次に本発明を実施例について説明する。 実施例 1 270℃で加熱溶融したポリエチレンテレフタレ
ート樹脂(帝人(株)製、商品名TR−4550BH、融点
250〜260℃)を入れた槽のなかに直径0.85mmの銅
線を通し、出口でダイを絞つて厚さ28〜31μの塗
膜を形成させた。この塗膜に噴霧器によりトリア
リルイソシアヌレート(日本化成(株)製)を吹付
け、生成した塗装線を炉長6m、炉温度400℃の
空気雰囲気の炉のなかに4m/分の速度で通して
絶縁電線を得た。この絶縁電線の上昇熱軟化温度
を測定したところ380℃であつた。この絶縁電線
から樹脂皮膜を剥ぎ取り、これについてゲル分率
を測定したところ95%であつた。上昇熱軟化温度
の測定はJIS C−3003に規定される試験法の
13.1.1交差法の(2)昇温法に準じ行つた(なお、荷
重は800gとした)。すなわち、同一巻わくから長
さ約10cmの試験片2枚をとり、これを直角に重ね
て平板上に置き、重ね部分の上に800gのおもり
を載せ、これを恒温槽に入れ、試験片の導体間に
50または60Hzの正弦波に近い波形を持つた交流電
圧100Vを加え、その状態で約2℃/分の割合で
温度を上昇させ、短絡する温度を測定した。 比較例 1 トリアリルイソシアヌレートを吹付けなかつた
点を除き、実施例1と同様にしてポリエチレンテ
レフタレート樹脂を銅線上に被覆し、焼付けて絶
縁電線を得た。この絶縁電線について、実施例1
と同様にして上昇熱軟化温度およびゲル分率を測
定した。熱軟化温度は280℃でゲル分率は90%で
あつた。 比較例 2 270℃で加熱溶融した実施例1と同一のポリエ
チレンテレフタレート樹脂を入れた槽のなかに直
径0.85mmの銅線を通し、出口でダイを絞つて厚さ
28〜31μの塗膜を形成させ、次いでこの塗装線を
直ちに水冷して絶縁電線を得た。この絶縁電線に
ついて、実施例1と同様にして上昇熱軟化温度お
よびゲル分率を測定した。熱軟化温度は250℃
で、ゲル分率は0%であつた。 実施例 2 トリアリルイソシアヌレートの代りにトリアリ
ルシアヌレート(日本化成(株)製)を使用した点を
除き、実施例1と同様な条件で絶縁電線を得た。
この絶縁電線について実施例1と同様にして上昇
熱軟化温度およびゲル分率を測定した。上昇熱軟
化温度は370℃でゲル分率は93%であつた。 実施例1および2、並びに比較例1および2で
得た絶縁電線の諸特性をJIS3210に準じて測定し
た。測定結果を第1表に示す。
The present invention relates to a method of manufacturing an insulated wire without using a solvent, and particularly to a method of manufacturing an insulated wire coated with a polyester resin and having various properties comparable to those of conventional magnet wires. Conventionally, when manufacturing insulated wires used as magnet wires for motors, etc., it is common to apply an insulating paint obtained by dissolving a resin in an organic solvent onto a conductor and dry and solidify it. At this time, a large amount of solvent is used to adjust the viscosity of the paint in order to make it easier to coat the conductor with the paint, but due to the toxicity of the solvent used and incomplete recovery of the solvent, it is difficult to improve the working environment. Also, from the viewpoint of resource saving, there is a strong desire for a method of manufacturing insulated wires that does not use solvents. In response to this demand, a method has been proposed in which a resin having high strength and low melt viscosity, such as linear polyester, is melt-coated onto a conductor by extrusion molding (Japanese Patent Application Laid-Open No. 4875/1983). However, since the insulated wire obtained by this method is simply a conductor coated with thermoplastic resin, it has inferior abrasion resistance, mechanical strength, heat deterioration resistance, etc., and is inferior to magnet wire that passes JIS standards. It is impossible to obtain an insulated wire with the performance that would allow it to be used as such, and even if it could be used, it could only be used in extremely limited equipment. In other words, since resins such as linear polyester are crystalline polymers, if they are stretched or bent during coil processing,
In addition to the formation of minute cracks and deterioration of electrical properties, loss of flexibility due to crystallization is also observed when heated for drying or the like. JISC3203, 3210, as a test method for heat deterioration resistance of magnet wire.
3211, etc., which observes flexibility after heating for a predetermined period of time (e.g., for polyester enamelled copper wire, wrapability after heating at 200°C for 6 hours)
Also, the flexibility completely disappears due to crystallization. An object of the present invention is to provide a method for producing an insulated wire without the use of a solvent and having sufficient performance to be used as a magnet wire without the above-mentioned drawbacks. In order to achieve the above-mentioned object, the present inventors have conducted extensive research on a method for manufacturing insulated wires that does not use solvents, and as a result, first, a substantially linear polyester resin is coated on a linear conductor. Next, by heating this resin coating layer to a temperature higher than the melting point of the resin, it was possible to obtain properties as an insulated wire, but when compared with an insulated wire manufactured using a solvent-based paint, the thermal softening properties, etc. It was still inferior in terms of heat resistance. Further studies revealed that by applying a polyfunctional unsaturated monomer to the surface of the resin coating layer before heating it to a high temperature above the melting point, the crosslinking density of the coating layer increases and heat resistance increases. The present invention has been achieved based on the discovery that the thermal stability can be improved by increasing the bonding strength of crosslinks and eliminating the above-mentioned drawbacks. The present invention is directed to (a) a substantive substance whose main component is an ester bond consisting of an acid component mainly consisting of a dicarboxylic acid in which an aromatic group or a part thereof is replaced with an aliphatic group, and a diol component mainly consisting of an aliphatic diol. (b) Next, a polyfunctional unsaturated monomer is applied to the surface of this resin coating layer. (c) This coating layer is coated in an oxygen-containing atmosphere. The above object is achieved by heating the resin to a temperature higher than the melting point of the resin and crosslinking the coating layer until the gel fraction reaches 20% or more. The acid component constituting the linear polyester resin used in the present invention is an aromatic acid or a dicarboxylic acid in which a portion thereof is replaced with an aliphatic acid. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, methyl terephthalic acid, and methyl isophthalic acid. etc., with terephthalic acid being particularly preferred. Further, the aromatic dicarboxylic acid can contain an aliphatic dicarboxylic acid such as succinic acid, adipic acid, and sebacic acid in a proportion of 30 mol% or less, preferably 20 mol% or less. Further, examples of the aliphatic diol component constituting the linear polyester resin include ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, and decanediol. Particularly preferred are ethylene glycol and tetramethylene glycol. In addition, some of the aliphatic diols are oxy(alkylene) glycols,
For example, polyethylene glycol or polytetramethylene glycol can also be used. Various additives such as UV absorbers, stabilizers such as antioxidants, pigments, fillers such as glass fibers, etc. may be added to the polyester resin used in the present invention as required. can. The polyester resin can be easily coated onto the linear body by applying the polyester resin in a heated molten state, or by a conventional thermoplastic resin molding method such as extrusion molding. Polyfunctional unsaturated monomers used in the present invention include divinylbenzene, mono-, di-, tri- and tetra-ethylene glycol diacrylates, mono-, di-, tri- and tetra-ethylene glycol dimethacrylates. , vinyl acrylate, vinyl methacrylate, allyl acrylate, allyl methacrylate, divinyl ether of diethylene glycol, diallyl maleate, diallylitaconate, diallyl malonate, diallylbenzene phosphonate, triallyl phosphate, triallyl cyanurate, glycerin trimethacrylate and their corresponding close homologs and mixtures thereof. In the method of the present invention, after applying the polyfunctional monomer as described above, a step of heating it to a temperature higher than the melting point of the polyester resin is performed. It is desirable to have a high melting point,
In addition, cyanuric acid or derivatives of isocyanuric acid such as triallyl isocyanurate, triallyl cyanurate, diallylmethyl isocyanurate, etc. are particularly suitable, since an insulated wire with excellent heat resistance can be obtained by using one with a high melting point. It is. However, even with a low melting point, the heat resistance is improved compared to when it is not added, but the effect is smaller than that of a high melting point. The polyfunctional monomer does not need to be kneaded into the polyester resin, and exhibits sufficient properties simply by being applied to the surface of the polyester resin, which is advantageous in terms of cost and manufacturing process. The polyfunctional monomer can be applied by spraying it with a sprayer, by placing it in a tank or the like, and passing it through it. Heating after coating the polyfunctional monomer is performed in an oxygen-containing atmosphere. The reason for this is that when heated in an oxygen-free atmosphere, the degree of crosslinking is extremely low, and it is difficult to crosslink until the gel fraction of the coating layer reaches 20% or more. Air, which is industrially easiest to use, can be used as the oxygen atmosphere. Therefore, a conventional baking furnace for enamelled electric wires that uses a solvent can be used as is, and no new equipment is required, which is advantageous. The heating temperature must be above the melting point of the polyester resin used; if it is below the melting point, crystallization may proceed, resulting in loss of flexibility and the film falling off when folded or rolled up. There is a risk. The coating layer is heated to a gel fraction of 20
% or more. Here, the "gel fraction" is the ratio of the insoluble residue to the total coating layer when m-cresol is heated at 90°C. When the gel fraction is less than 20%, it is difficult to obtain the characteristics necessary for an insulated wire for a magnet wire. The mechanism by which the coating layer crosslinks when heated in an oxygen atmosphere above its melting point is not clear, but heating in an oxygen-containing atmosphere causes scission and oxidation of the main chain due to the action of oxygen and heat, resulting in the formation of free radicals. It is presumed that this causes cross-linking of the molecules, resulting in insolubility. It is thought that this polyfunctional monomer reacts not only with each other but also with free radicals generated during the course of thermal crosslinking of the polyester resin. It is thought that when a polyfunctional monomer coexists, a stronger crosslinked product is produced than when a polyester resin is used alone, and therefore superior heat resistance can be obtained than when the above-mentioned thermal crosslinking is used alone. Comparing the heat resistance with respect to the elevated heat softening temperature, which is an important characteristic of insulated wires for magnet wires, the heat resistance of only thermally crosslinked wires is around 280℃, while that of wires coated with polyfunctional monomers is about 280℃.
It shows a surprising improvement of about 350℃. In manufacturing an insulated wire according to the present invention,
The steps of coating with polyester resin, coating with polyfunctional monomer, and heating must be performed continuously using a running linear conductor. The coating layer is heated to a temperature higher than the melting point of the resin during the heating process and melts, becoming liquid like when applying conventional paint that uses a solvent. The coating layer may become uneven or fall off. Furthermore, if only a wire conductor is melted and coated with polyester resin, bending stress is applied when the wire is wound onto a bobbin, etc., which may cause crystallization and cracks. In carrying out the method of the present invention, it is necessary to carry out each step continuously using a running linear conductor. The insulated wire produced by the method of the present invention has an elevated heat softening temperature, which is a measure of its heat resistance, than an insulated wire produced using a solvent-based paint. In addition, traditional manufacturing methods that use solvents
The amount of coating per time in the coating and baking process for film formation is limited in order to volatilize the solvent and reaction products. For example, when using a conductor with a diameter of 1.0 mm, the coating and baking process must be applied at least three times. It is also an advantage of the present invention that a single coating, application and heating operation is sufficient for the method of the present invention, as opposed to the above-mentioned repeats. Next, the present invention will be explained with reference to examples. Example 1 Polyethylene terephthalate resin heated and melted at 270°C (manufactured by Teijin Ltd., trade name TR-4550BH, melting point
A copper wire with a diameter of 0.85 mm was passed through a tank containing a temperature of 250 to 260°C, and a die was squeezed at the exit to form a coating film with a thickness of 28 to 31 μm. Triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd.) is sprayed onto this coating film using a sprayer, and the resulting painted line is passed through a furnace with a length of 6 m and an air atmosphere at a furnace temperature of 400°C at a speed of 4 m/min. An insulated wire was obtained. When the rising heat softening temperature of this insulated wire was measured, it was 380°C. When the resin film was peeled off from this insulated wire and the gel fraction was measured, it was found to be 95%. The rising heat softening temperature is measured using the test method specified in JIS C-3003.
The test was carried out according to (2) heating method of 13.1.1 cross method (the load was 800 g). That is, take two test pieces approximately 10 cm long from the same roll, stack them at right angles, place them on a flat plate, place an 800 g weight on the overlapped part, place this in a thermostatic oven, and place the test pieces on a flat plate. between conductors
An AC voltage of 100 V with a waveform close to a 50 or 60 Hz sine wave was applied, the temperature was raised at a rate of about 2°C/min, and the temperature at which a short circuit occurred was measured. Comparative Example 1 A copper wire was coated with polyethylene terephthalate resin in the same manner as in Example 1, except that triallyl isocyanurate was not sprayed, and an insulated wire was obtained by baking. Regarding this insulated wire, Example 1
The elevated heat softening temperature and gel fraction were measured in the same manner as above. The heat softening temperature was 280°C and the gel fraction was 90%. Comparative Example 2 A copper wire with a diameter of 0.85 mm is passed through a tank containing the same polyethylene terephthalate resin as in Example 1 heated and melted at 270°C, and the die is squeezed at the outlet to determine the thickness.
A coating film of 28 to 31 μm was formed, and then the coated wire was immediately cooled with water to obtain an insulated wire. Regarding this insulated wire, the increased thermal softening temperature and gel fraction were measured in the same manner as in Example 1. Heat softening temperature is 250℃
The gel fraction was 0%. Example 2 An insulated wire was obtained under the same conditions as in Example 1, except that triallyl cyanurate (manufactured by Nippon Kasei Co., Ltd.) was used instead of triallyl isocyanurate.
The increased thermal softening temperature and gel fraction of this insulated wire were measured in the same manner as in Example 1. The rising heat softening temperature was 370°C and the gel fraction was 93%. Various properties of the insulated wires obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured according to JIS3210. The measurement results are shown in Table 1.

【表】 実施例1および2並びに比較例1および2に示
す上昇熱軟化温度、ゲル分率および電線特性の測
定結果から、次のことがわかる。 上昇熱軟化温度に関しては、従来の溶剤タイプ
の塗料を用いて製造した絶縁電線は300℃である
のに対し、本発明の実施例1のものは380℃また
実施例2のものは370℃と溶剤タイプのものより
優れているが、比較例1のトリアリルイソシアヌ
レートを吹付けないものは280℃と従来の溶剤タ
イプより低く、問題があることが分る。また比較
例2に示す熱架橋を行わないものは250℃とさら
に低く、マグネツトワイヤー用の絶縁電線として
の特性を満足していないことが分る。 ゲル分率に関しては、トリアリルイソシアヌレ
ートを吹付けた実施例1とトリアリルイソシアヌ
レートを吹付けない比較例1とはほぼ同等の値で
あるが、実施例1のトリアリルイソシアヌレート
を吹付けたものは熱架橋単独のものより一層強固
な三次元構造をとるため、上昇熱軟化温度が高く
なるものと思われる。 またトリアリルイソシアヌレートの代りにトリ
アリルシアヌレートを使用した実施例2のものは
上昇熱軟化温度、ゲル分率および電線特性はトリ
アリルイソシアヌレートを使用した実施例と同等
である。 実施例3および4並びに比較例3および4 実施例1と同一のポリエチレンテレフタレート
を用いて直径0.85mmの銅線に溶融塗装し、これに
各種の多官能性単量体を吹付けたものを炉長6m
の焼付炉に通して第2表に示す条件で加熱処理す
ることにより絶縁電線を得た。絶縁電線の樹脂皮
膜の厚さはいずれも28〜31μであつた。これらの
絶縁電線の諸特性をJIS3210に準じて測定した。
測定結果を第2表に示す。
[Table] From the measurement results of the elevated heat softening temperature, gel fraction, and wire characteristics shown in Examples 1 and 2 and Comparative Examples 1 and 2, the following can be found. Regarding the increased heat softening temperature, the insulated wire manufactured using conventional solvent-type paint has a softening temperature of 300°C, whereas that of Example 1 of the present invention has a softening temperature of 380°C, and that of Example 2 has a softening temperature of 370°C. Although it is superior to the solvent type, the temperature of Comparative Example 1 without triallyl isocyanurate is 280°C, which is lower than the conventional solvent type, indicating a problem. Moreover, the temperature of the wire without thermal crosslinking as shown in Comparative Example 2 was even lower at 250° C., which indicates that it does not satisfy the characteristics as an insulated wire for magnet wire. Regarding the gel fraction, Example 1 in which triallylisocyanurate was sprayed and Comparative Example 1 in which triallylisocyanurate was not sprayed had almost the same value; It is thought that the increased thermal softening temperature will be higher because these materials have a three-dimensional structure that is stronger than those that are thermally crosslinked alone. Moreover, the material of Example 2 in which triallyl cyanurate was used instead of triallyl isocyanurate had the same elevated heat softening temperature, gel fraction, and wire characteristics as the example in which triallyl isocyanurate was used. Examples 3 and 4 and Comparative Examples 3 and 4 The same polyethylene terephthalate as in Example 1 was melt-coated on a copper wire with a diameter of 0.85 mm, and various polyfunctional monomers were sprayed on it and then heated in a furnace. length 6m
An insulated wire was obtained by passing it through a baking furnace and heat-treating it under the conditions shown in Table 2. The thickness of the resin film of each insulated wire was 28 to 31 μm. Various properties of these insulated wires were measured according to JIS3210.
The measurement results are shown in Table 2.

【表】 第1表の実施例1および第2表の実施例3およ
び4から、多官能性単量体の種類が変つてもゲル
分率および電線特性はほぼ同じであるが、上昇熱
軟化温度は可成り変化することが分る。また、ト
リアリルイソシアヌレートを吹付けたものであつ
ても加熱温度が200℃であると(比較例3)、架橋
が不充分であるほか結晶化が進行し、その電気特
性はマグネツトワイヤー用ポリエステル絶縁電線
のJIS規格に不合格である。これから、結晶化を
防止するためのポリエステル樹脂の融点以上に加
熱する必要があることが分る。また、トリアリル
イソシアヌレートを吹付けても窒素中で加熱処理
したもの(比較例4)は、やはり架橋が不充分
で、その電気特性は前記のJIS規格に不合格であ
る。熱架橋の作用は先に実施例1および2並びに
比較例2について説明した通りであるが、かかる
熱架橋の作用は実施例1、比較例3および4から
も明らかである。
[Table] From Example 1 in Table 1 and Examples 3 and 4 in Table 2, the gel fraction and wire properties are almost the same even if the type of polyfunctional monomer is changed, but the increase in thermal softening It can be seen that the temperature varies considerably. In addition, even when triallyl isocyanurate is sprayed, if the heating temperature is 200°C (Comparative Example 3), crosslinking is insufficient and crystallization progresses, resulting in poor electrical properties for magnet wires. Fails the JIS standard for polyester insulated wires. This shows that it is necessary to heat the polyester resin above its melting point in order to prevent crystallization. Furthermore, even when triallylisocyanurate was sprayed, the product heat-treated in nitrogen (Comparative Example 4) still had insufficient crosslinking, and its electrical properties failed the JIS standard. The effect of thermal crosslinking is as previously explained for Examples 1 and 2 and Comparative Example 2, and the effect of such thermal crosslinking is also clear from Example 1 and Comparative Examples 3 and 4.

Claims (1)

【特許請求の範囲】 1 (a) 芳香族またはその一部を脂肪族で置き換
えたジカルボン酸を主とする酸成分と、脂肪族
ジオールを主とするジオール成分とから成るエ
ステル結合を主成分とする実質的に直鎖状のポ
リエステル樹脂を線状導体上に被覆し、 (b) 次いでこの樹脂被覆層の表面に多官能性不飽
和単量体を塗布し、 (c) この被覆層を酸素含有雰囲気中で前記樹脂の
融点以上の温度に加熱して前記被覆層のゲル分
率が20%以上になるまで架橋させることを特徴
とする絶縁電線の製造方法。
[Scope of Claims] 1 (a) The main component is an ester bond consisting of an acid component mainly consisting of a dicarboxylic acid in which an aromatic group or a part thereof is replaced with an aliphatic group, and a diol component mainly consisting of an aliphatic diol. (b) Next, a polyfunctional unsaturated monomer is applied to the surface of this resin coating layer. (c) This coating layer is exposed to oxygen. A method for producing an insulated wire, comprising heating the resin to a temperature higher than the melting point of the resin in an atmosphere containing the resin to crosslink the coating layer until the gel fraction reaches 20% or more.
JP2635180A 1980-03-03 1980-03-03 Method of manufacturing insulated wire Granted JPS56123621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2635180A JPS56123621A (en) 1980-03-03 1980-03-03 Method of manufacturing insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2635180A JPS56123621A (en) 1980-03-03 1980-03-03 Method of manufacturing insulated wire

Publications (2)

Publication Number Publication Date
JPS56123621A JPS56123621A (en) 1981-09-28
JPS6250926B2 true JPS6250926B2 (en) 1987-10-27

Family

ID=12191036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2635180A Granted JPS56123621A (en) 1980-03-03 1980-03-03 Method of manufacturing insulated wire

Country Status (1)

Country Link
JP (1) JPS56123621A (en)

Also Published As

Publication number Publication date
JPS56123621A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
US3428486A (en) Polyamide-imide electrical insulation
US3966655A (en) Manufacture of polyester imide dispersions
JPS6049666B2 (en) wire enamel mixture
US3944706A (en) Self-bonding polyethylene trimellitate imide varnish
US4476279A (en) High solids THEIC polyester enamels
US4124419A (en) Self-bonding varnish for magnet wire and magnets produced using said
US4117032A (en) Wire coating powder
US4012555A (en) Self-bonding varnish for magnet wires comprising a combination of a polyalkylenetrimellitate imide and a polyalkylenetrimellitate ester imide
JPS6019609B2 (en) Manufacturing method of insulated wire
US4121266A (en) Polyamide-imide precondensates
JPS6250926B2 (en)
US4012556A (en) Self-bonding varnish for magnet wires comprising a polyalkylenetrimellitate ester imide
US4966932A (en) Ultra-high solids theic polyester enamels
US3994863A (en) Process for the manufacture of polyester imides using melamine as the polyamine reactant
JPS5919607B2 (en) Manufacturing method of polyester magnet wire
JP3525060B2 (en) Self-fusing insulating paint and self-fusing insulated wire using the same
JPH0210190B2 (en)
JPH02281091A (en) Manufacture of thermosetting meltadhesive lacquer solution having high strength after baking
JPS6315690B2 (en)
JPS5821649B2 (en) Fuhouwa Polyester Keiji Yushino Seizouhouhou
KR101950851B1 (en) Solvent-free wire enamel composition
JPS5917486B2 (en) Manufacturing method of polyester insulated wire
JPS63168907A (en) Paint for electrically insulated wire and wire using the same
JPS6166314A (en) Method of producing magnet wire
JPH03171511A (en) Insulating paint composite