JPS6250811B2 - - Google Patents

Info

Publication number
JPS6250811B2
JPS6250811B2 JP13648380A JP13648380A JPS6250811B2 JP S6250811 B2 JPS6250811 B2 JP S6250811B2 JP 13648380 A JP13648380 A JP 13648380A JP 13648380 A JP13648380 A JP 13648380A JP S6250811 B2 JPS6250811 B2 JP S6250811B2
Authority
JP
Japan
Prior art keywords
intensity
transparent
amplitude
projected
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13648380A
Other languages
Japanese (ja)
Other versions
JPS5762052A (en
Inventor
Masato Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP13648380A priority Critical patent/JPS5762052A/en
Publication of JPS5762052A publication Critical patent/JPS5762052A/en
Publication of JPS6250811B2 publication Critical patent/JPS6250811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/30Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、光学的な像の再生、特に、透過照明
により照明されレンズ系によつて投影される被投
影原版に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical image reproduction, in particular to a projected original that is illuminated by transillumination and projected by a lens system.

従来、フオトエツチング等に用いられる原版に
は、透明部と不透明部とにより所定のパターンが
形成されており、これをレンズ系により感光膜面
上に投影する手法が知られている。このようなあ
るパターンをレンズにより投影する場合には、回
折現象のために再生像には解像限界があることは
周知である。そして、理論的な限界値としてのカ
ツトオフ周波数は、一般に、投影レンズの開口数
をNA、使用光線の波長をλとすると、インコヒ
ーレント照明では2NA/λ(本/mm)、またコヒ
ーレント照明ではNA/λ(本/mm)であり、投
影レンズの開口数を大きくしない限りある波長に
対する解像を高めることは不可能とされている。
Conventionally, a predetermined pattern is formed on an original plate used for photoetching or the like by transparent and opaque parts, and a method is known in which this pattern is projected onto the surface of a photoresist film using a lens system. It is well known that when such a pattern is projected using a lens, there is a resolution limit to the reproduced image due to diffraction phenomena. The cutoff frequency as a theoretical limit value is generally 2NA/λ (lines/mm) for incoherent illumination, and NA for coherent illumination, where NA is the numerical aperture of the projection lens and λ is the wavelength of the light beam used. /λ (lines/mm), and it is said that it is impossible to increase the resolution for a certain wavelength unless the numerical aperture of the projection lens is increased.

本発明の目的は、従来と同一の波長光及び同一
の投影レンズを用いながら、解像限界を従来以上
に高めることが可能な被投影原版を提供すること
にある。
An object of the present invention is to provide an original to be projected, which can raise the resolution limit more than ever while using the same wavelength light and the same projection lens as in the past.

本発明による被投影原版は、透明部と不透明部
とで形成された所定のパターンを有し、コヒーレ
ントな透過照明によつて用いられるものであつ
て、不透明部をはさむ両側の透明部のうちの少な
くとも一方に位相部材を設け、両側の透明部に位
相差を生ずる構成としたものである。
The projection master according to the present invention has a predetermined pattern formed of a transparent part and an opaque part, and is used for coherent transmitted illumination. A phase member is provided on at least one side to create a phase difference between the transparent parts on both sides.

以下、本発明の原理について説明する。第1図
には、透明部1と不透明部2とが交互に並んだ一
般的格子の断面及び、この格子の投影像の振幅分
布の様子を併せて示した。図示のごとく、透明な
部分1からの光は回折現象によつて不透明な部分
2にも拡がり、このため分解できる格子の間隔Δ
に限界が生ずる。そして、2つの部分からの光の
相互作用については、インコヒーレント照明では
強度の相互作用が働くのに対し、コヒーレント照
明では振幅の相互作用が働く。また強度は振幅の
2乗で与えられるので、振幅の拡がりの方が強度
の拡がりより大きくなる。従つて、一般的にはコ
ヒーレント照明では解像限界が低下することが定
性的に説明される。
The principle of the present invention will be explained below. FIG. 1 also shows a cross section of a general grating in which transparent parts 1 and opaque parts 2 are arranged alternately, and the amplitude distribution of a projected image of this grating. As shown in the figure, the light from the transparent part 1 spreads to the opaque part 2 due to the diffraction phenomenon, so that the grating interval Δ which can be resolved is
There are limits to this. Regarding the interaction of light from the two parts, incoherent illumination involves an intensity interaction, while coherent illumination involves an amplitude interaction. Furthermore, since the intensity is given as the square of the amplitude, the spread of the amplitude is larger than the spread of the intensity. Therefore, it is qualitatively explained that coherent illumination generally lowers the resolution limit.

しかしながら、コヒーレント照明であつても、
2つの部分からの光に位相差がある場合には解像
を高めることが可能である。第2図には、2つの
点光源がレーレーの解像限界の距離にある時に、
(a)2つの光源がインコヒーレントな場合、(b)2つ
の光源がコヒーレントで位相が一致している場
合、(c)2つの光源がコヒーレントで180゜位相が
ずれている場合の3つの場合について、それぞれ
その強度分布を示した。第2図から分るように、
インコヒーレントな2点が解像されるとき、位相
の一致したコヒーレントな2点は解像されない。
これが、一般にコヒーレント照明による場合に、
解像限界が下ることに対応している。しかし、位
相が180゜ずれたコヒーレントな2点について
は、インコヒーレントの場合よりもはるかに良く
解像されている。尚、このような2つの点光源に
ついての解析は「波動と映像」(佐藤択宋、上田
光宏、共著、森北出版)の62頁〜64頁に詳しい。
However, even with coherent illumination,
If there is a phase difference between the light from the two parts, it is possible to increase the resolution. Figure 2 shows that when two point light sources are at the distance of Rayleigh's resolution limit,
Three cases: (a) the two light sources are incoherent, (b) the two light sources are coherent and in phase, and (c) the two light sources are coherent and 180° out of phase. The intensity distribution for each is shown. As you can see from Figure 2,
When two incoherent points are resolved, two coherent points in phase are not resolved.
When this is generally done by coherent illumination,
This corresponds to the lowering of the resolution limit. However, two coherent points 180° out of phase are resolved much better than the incoherent case. A detailed analysis of these two point light sources can be found on pages 62 to 64 of ``Wave and Image'' (co-authored by Isao Sato and Mitsuhiro Ueda, Morikita Publishing).

本発明は、上述のごとく位相が180゜ずれたコ
ヒーレントの場合に解像が高まることに着目し、
上記のごとく構成したものである。第3図には、
本発明の一例として、透明部1と不透明部2とか
ら成る格子原版において、透明部の1つにλ/2
板3を設けたものの断面を示し、併せてこれをコ
ヒーレント照明によつて投影された像の振幅分布
の様子を実線で、また強度分布の様子を破線で示
した。第3図に示された3つの透明部のうち両外
側の透明部の像の振幅は従来と同じ状態である
が、こられの間の透明部の像の振幅はλ/2板3
の存在により振幅は反転する。従つて、不透明部
に達する光は、互いに打消され、不透明部での光
強度はほぼ零となつて、解像限界が向上する。
The present invention focuses on the fact that the resolution increases when the phase is shifted by 180° as described above,
It is configured as described above. In Figure 3,
As an example of the present invention, in a grid master plate consisting of a transparent part 1 and an opaque part 2, one of the transparent parts has a λ/2
A cross section of the plate 3 is shown, and the amplitude distribution of the image projected by coherent illumination is shown by a solid line, and the intensity distribution is shown by a broken line. Among the three transparent parts shown in FIG. 3, the amplitude of the image of the outer transparent parts is the same as before, but the amplitude of the image of the transparent part between them is the same as that of the λ/2 plate 3.
The amplitude is reversed due to the presence of . Therefore, the light reaching the opaque area cancels each other out, and the light intensity at the opaque area becomes almost zero, improving the resolution limit.

このような解像限界の向上は、空間周波数で考
えれば、λ/2板のために格子の振幅の基本周期
がΔから2Δとなり、振幅の基本周波数が1/2と
なり、レンズの開口数で決まるカツトオフ周波数
により従来では通過できなかつた基本周波数が通
過できるようになつたことによる。これはさら
に、物体にコヒーレンシイのある場合の像の強度
に関する式として、「フーリエ結像論」(小瀬輝次
著、共立出版)の第61頁に記載された(3.24)式
によつて説明される。すなわち、この時の像の強
度J12(XD)は、 と表わされ、ここでXDは像面上の座標、 x1は瞳上の座標 θ(x1)は物体の振幅透過率のフーリエ成分を
それぞれ表わし、*は複素共役を意味する。また
R(x1,x2)はiと呼ばれる。λ/2板の無い普
通の格子においては、基本周波数をとする
と、R(,0)の減衰が強度の基本周波数の
利得に最も大きく影響し、これによる強度の空間
周波数は、上式の被積分関数の位相項より、x1
x2−0=となる。一方、λ/2板を設
けた本発明による格子では、物体の振幅透過率の
フーリエ成分θ(x1)のうちx1=0の成分がな
く、基本周波数が1/2になり、R(γ/2,0)では なくR(γ/2,γ/2)が強度の基本周波数の利
得に 最も影響してくる。そして、強度の空間周波数
は、x1−x2/2−(−/2)=とな
る。従つて、λ/2板の無い場合には、の周
波数の強度を再生するためには、の周波数の
振幅が通過しなくてはならないが、λ/2板を設
けた場合には、同じの周波数の強度を再生す
るために/2の周波数の振幅が通過すればよ
い。これが、λ/2板を設けた格子の解像限界が
2倍になる理由である。
Considering this improvement in resolution limit in terms of spatial frequency, the fundamental period of the grating amplitude changes from Δ to 2Δ due to the λ/2 plate, the fundamental frequency of the amplitude becomes 1/2, and the numerical aperture of the lens increases. This is because the determined cutoff frequency allows the fundamental frequency, which could not be passed in the past, to pass. This is further explained by the formula (3.24) described on page 61 of "Fourier Imaging Theory" (by Teruji Kose, Kyoritsu Publishing) as a formula for the intensity of images when objects have coherency. be done. That is, the image intensity J 12 (X D ) at this time is Here, X D is the coordinate on the image plane, x 1 is the coordinate on the pupil, θ (x 1 ) is the Fourier component of the amplitude transmittance of the object, and * means complex conjugate. Further, R(x 1 , x 2 ) is called i. In a normal grating without a λ/2 plate, when the fundamental frequency is 0 , the attenuation of R( 0,0 ) has the greatest effect on the gain of the fundamental frequency of the intensity, and the spatial frequency of the intensity due to this is calculated by the above equation. From the phase term of the integrand of x 1
x 2 = 0 −0= 0 . On the other hand, in the grating according to the present invention provided with a λ/2 plate, there is no component of x 1 = 0 among the Fourier components θ(x 1 ) of the amplitude transmittance of the object, the fundamental frequency is 1/2, and R( R(γ 0 / 2, γ 0 /2) rather than γ 0 /2,0) has the greatest influence on the gain of the fundamental frequency of the intensity. Then, the spatial frequency of the intensity is x1 - x2 = 0 /2-(- 0/2 )= 0 . Therefore, if there is no λ/2 plate, in order to reproduce the intensity of the 0 frequency, the amplitude of the 0 frequency must pass through, but with the λ/2 plate, In order to reproduce the intensity of the same frequency of 0 , it is sufficient to pass the amplitude of the frequency of 0/2 . This is the reason why the resolution limit of a grating with a λ/2 plate is doubled.

このようにコヒーレント照明において、解像限
界が2倍になる訳であるが、解像限界だけではイ
ンコヒーレント照明の場合と変わりはない。とこ
ろが、インコヒーレント照明ではOTFがカツト
オフ周波数に近づくにつれて減少するのに対し、
コヒーレント照明のOTFはカツトオフ周波数ま
でOTFは1に保たれ得るため、強度の基本周波
数の利得は、λ/2板を設けてコヒーレント照明
を行なう場合の方が、インコヒーレント照明の場
合よりもはるかによく、コントラストが高くな
る。
In this way, in coherent illumination, the resolution limit is doubled, but the resolution limit alone is the same as in the case of incoherent illumination. However, in incoherent illumination, the OTF decreases as it approaches the cutoff frequency;
Since the OTF of coherent illumination can be kept at unity up to the cut-off frequency, the fundamental frequency gain of the intensity is much greater when performing coherent illumination with a λ/2 plate than when using incoherent illumination. Good, high contrast.

以上、一次元格子の場合を述べたが、本発明に
よる被投影原版としては、例えば第4図に示すご
とき二次元的パターンを有するものでもよい。ま
た、位相差は180゜に限るものではない。例え
ば、位相90゜ずれた2つの点光源の像は、インコ
ヒーレントの場合と同じ解像になり、設けるべき
位相差は被投影原版のパターンに応じて適切に選
択することが望ましい。第4図のパターン例で
は、透明部分11にλ/2板を設け、透明部13
にλ/4板を設けるならば、3つの透明部11,
12,13が並列する区域では隣接する透明部間
での位相差がそれぞれ90゜になり、透明部11,
13が隣接する区域では位相差が180゜となり、
パターンのほぼ全域にわたつて解像を高めること
が可能である。
Although the case of a one-dimensional grid has been described above, the projection original plate according to the present invention may have a two-dimensional pattern as shown in FIG. 4, for example. Further, the phase difference is not limited to 180°. For example, images of two point light sources with a phase difference of 90° have the same resolution as in the case of incoherence, and it is desirable to appropriately select the phase difference to be provided depending on the pattern of the original to be projected. In the pattern example shown in FIG. 4, a λ/2 plate is provided in the transparent portion 11, and the transparent portion 13
If a λ/4 plate is provided, three transparent parts 11,
In the area where 12 and 13 are parallel, the phase difference between adjacent transparent parts is 90°, and the transparent parts 11 and 13 are parallel to each other.
In the area where 13 is adjacent, the phase difference is 180°,
It is possible to increase the resolution over almost the entire area of the pattern.

以上のごとく、本発明による被投影原版を用い
れば、従来と同一の投影レンズで同一の波長を用
いたとしても解像限界を格段に高めることが可能
であり、特にIC製造装置による微細パターンの
焼付け等において、パターンの間隔が解像限界近
くにある場合に本発明は極めて有効である。ま
た、投影装置の機械的な制約により投影レンズ系
を大きくできない場合には、収差補正上の問題か
らレンズ系の開口数を大きくすることが困難であ
るが、本発明のごとく投影原版を構成することに
よつて、投影レンズによる解像限界以上に高い解
像を得ることが可能である。
As described above, by using the projection master according to the present invention, it is possible to significantly increase the resolution limit even if the same wavelength is used with the same projection lens as in the past. The present invention is extremely effective when the pattern spacing is close to the resolution limit in printing or the like. Furthermore, if the projection lens system cannot be enlarged due to mechanical constraints of the projection device, it is difficult to increase the numerical aperture of the lens system due to problems with aberration correction. By doing so, it is possible to obtain a resolution higher than the resolution limit of the projection lens.

尚、本発明は、被投影原版上の焼付されるパタ
ーン面のみならず、アライメントマーク等にも用
いることができ、位置合せの精度をより向上させ
ることができることはいうまでもない。
It goes without saying that the present invention can be used not only for the pattern surface to be printed on the projection original, but also for alignment marks, etc., and can further improve the accuracy of alignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一般的格子の断面及びこの格子の投
影像の振幅分布の様子を示す。第2図は2つの点
光源がレーレーの解像限界の距離にあるときの3
つの場合(a)、(b)、(c)についての強度分布を示す。
第3図は本発明の一例としての格子原版の透明部
の1つにλ/2板を設けた断面及びこれをコヒー
レント照明によつて投影された像の振幅分布の様
子(実線)と強度分布の様子(破線)を示す。第
4図は二次元的パターンを有する被投影原版の例
を示す。 主要部分の符号の説明、1……透明部分、2…
…不透明部分、3……λ/2板。
FIG. 1 shows a cross section of a typical grating and the amplitude distribution of a projected image of this grating. Figure 2 shows 3 when the two point light sources are at the distance of the Rayleigh resolution limit.
The intensity distributions for three cases (a), (b), and (c) are shown.
Figure 3 shows a cross-section of a λ/2 plate provided on one of the transparent parts of a grating original as an example of the present invention, and the amplitude distribution (solid line) and intensity distribution of an image projected from this by coherent illumination. The situation (dashed line) is shown. FIG. 4 shows an example of a projected original having a two-dimensional pattern. Explanation of symbols of main parts, 1... Transparent part, 2...
...opaque part, 3...λ/2 plate.

Claims (1)

【特許請求の範囲】 1 透明部と不透明部とで形成された所定のパタ
ーンを有し、透過照明によつて投影される被投影
原版において、 前記不透明部をはさむ両側の透明部の少なくと
も一方に位相部材を設け、該両側の透明部に位相
差を生ずる構成としたことを特徴とする透過照明
用被投影原版。
[Scope of Claims] 1. In an original plate to be projected which has a predetermined pattern formed of a transparent part and an opaque part and is projected by transmitted illumination, at least one of the transparent parts on both sides sandwiching the opaque part. 1. A projection original plate for transmitted illumination, characterized in that a phase member is provided to create a phase difference between the transparent portions on both sides.
JP13648380A 1980-09-30 1980-09-30 Original plate to be projected for use in transmission Granted JPS5762052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13648380A JPS5762052A (en) 1980-09-30 1980-09-30 Original plate to be projected for use in transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13648380A JPS5762052A (en) 1980-09-30 1980-09-30 Original plate to be projected for use in transmission

Publications (2)

Publication Number Publication Date
JPS5762052A JPS5762052A (en) 1982-04-14
JPS6250811B2 true JPS6250811B2 (en) 1987-10-27

Family

ID=15176191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13648380A Granted JPS5762052A (en) 1980-09-30 1980-09-30 Original plate to be projected for use in transmission

Country Status (1)

Country Link
JP (1) JPS5762052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838726A1 (en) 1996-10-24 1998-04-29 Toppan Printing Co., Ltd. Halftone phase shift mask, blank for the same, and methods of manufacturing these
JP2006179553A (en) * 2004-12-21 2006-07-06 Toppan Printing Co Ltd Extreme ultraviolet exposure mask blank, mask, and pattern transfer method
DE112009000965T5 (en) 2008-05-09 2011-03-10 Hoya Corp. Reflective mask, reflective mask blank, and method of making a reflective mask

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090924B1 (en) * 1982-04-05 1987-11-11 International Business Machines Corporation Method of increasing the image resolution of a transmitting mask and improved masks for performing the method
US5235400A (en) * 1988-10-12 1993-08-10 Hitachi, Ltd. Method of and apparatus for detecting defect on photomask
JP2786693B2 (en) * 1989-10-02 1998-08-13 株式会社日立製作所 Manufacturing method of mask
JP2710967B2 (en) 1988-11-22 1998-02-10 株式会社日立製作所 Manufacturing method of integrated circuit device
US5290647A (en) * 1989-12-01 1994-03-01 Mitsubishi Denki Kabushiki Kaisha Photomask and method of manufacturing a photomask
US5298365A (en) 1990-03-20 1994-03-29 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
JPH0566552A (en) * 1990-12-28 1993-03-19 Nippon Steel Corp Reticle
US5414746A (en) * 1991-04-22 1995-05-09 Nippon Telegraph & Telephone X-ray exposure mask and fabrication method thereof
JPH0536586A (en) * 1991-08-02 1993-02-12 Canon Inc Image projection method and manufacture of semiconductor device using same method
JP2759582B2 (en) * 1991-09-05 1998-05-28 三菱電機株式会社 Photomask and method of manufacturing the same
JPH0567558A (en) * 1991-09-06 1993-03-19 Nikon Corp Exposure method
JP2655215B2 (en) * 1991-11-18 1997-09-17 三菱電機株式会社 Photomask pattern defect repair method
JP3194155B2 (en) * 1992-01-31 2001-07-30 キヤノン株式会社 Semiconductor device manufacturing method and projection exposure apparatus using the same
JP3210123B2 (en) * 1992-03-27 2001-09-17 キヤノン株式会社 Imaging method and device manufacturing method using the method
US5674647A (en) * 1992-11-21 1997-10-07 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
JP3064769B2 (en) * 1992-11-21 2000-07-12 アルバック成膜株式会社 PHASE SHIFT MASK, ITS MANUFACTURING METHOD, AND EXPOSURE METHOD USING THE PHASE SHIFT MASK
US5739898A (en) * 1993-02-03 1998-04-14 Nikon Corporation Exposure method and apparatus
KR0135729B1 (en) * 1993-02-12 1998-04-24 Mitsubishi Electric Corp Attenuating type phase shifting mask and method of manufacturing thereof
US5593801A (en) * 1993-02-12 1997-01-14 Mitsubishi Denki Kabushiki Kaisha Attenuating type phase shifting mask, method of manufacturing thereof and semiconductor device manufactured by using the mask
JP3354305B2 (en) * 1993-09-24 2002-12-09 大日本印刷株式会社 Phase shift mask and phase shift mask defect repair method
JP3453435B2 (en) * 1993-10-08 2003-10-06 大日本印刷株式会社 Phase shift mask and method of manufacturing the same
JP3209645B2 (en) * 1993-10-12 2001-09-17 三菱電機株式会社 Inspection method for phase shift mask and inspection apparatus used for the method
JPH07192988A (en) * 1993-12-27 1995-07-28 Nikon Corp Illumination optical apparatus
JP3368653B2 (en) * 1994-03-11 2003-01-20 株式会社ニコン Illumination method and apparatus, and exposure method and apparatus
JPH07281413A (en) * 1994-04-05 1995-10-27 Mitsubishi Electric Corp Attenuation type phase shift mask and its production
KR960002536A (en) * 1994-06-29 1996-01-26
JP3315254B2 (en) * 1994-07-11 2002-08-19 三菱電機株式会社 Exposure method using attenuated phase shift mask
JP3080024B2 (en) * 1997-02-20 2000-08-21 日本電気株式会社 Exposure method and method of measuring spherical aberration
JP2988417B2 (en) * 1997-02-28 1999-12-13 日本電気株式会社 Photo mask
JP2000206671A (en) 1999-01-13 2000-07-28 Mitsubishi Electric Corp Photomask, its production and production of semiconductor integrated circuit device
JP2003124339A (en) 2001-10-11 2003-04-25 Toshiba Corp Semiconductor device and its manufacturing method
JP4598575B2 (en) 2005-03-17 2010-12-15 ルネサスエレクトロニクス株式会社 Pattern formation method, semiconductor device manufacturing method, phase shift mask, and phase shift mask design method
JP2006269853A (en) * 2005-03-25 2006-10-05 Sony Corp Exposure apparatus and method of exposure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838726A1 (en) 1996-10-24 1998-04-29 Toppan Printing Co., Ltd. Halftone phase shift mask, blank for the same, and methods of manufacturing these
JP2006179553A (en) * 2004-12-21 2006-07-06 Toppan Printing Co Ltd Extreme ultraviolet exposure mask blank, mask, and pattern transfer method
JP4622504B2 (en) * 2004-12-21 2011-02-02 凸版印刷株式会社 Mask blank for extreme ultraviolet exposure, mask and pattern transfer method
DE112009000965T5 (en) 2008-05-09 2011-03-10 Hoya Corp. Reflective mask, reflective mask blank, and method of making a reflective mask
US8372564B2 (en) 2008-05-09 2013-02-12 Hoya Corporation Reflective mask, reflective mask blank and method of manufacturing reflective mask

Also Published As

Publication number Publication date
JPS5762052A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
JPS6250811B2 (en)
US5625471A (en) Dual plate holographic imaging technique and masks
JP3399949B2 (en) Latent image detection by alignment device
JP3259220B2 (en) Optical device and projection aligner
US5184196A (en) Projection exposure apparatus
WO2004066366A3 (en) Tailored reflecting diffractor for euv lithographic system aberration measurement
JPS63163300A (en) X-ray microscope
KR940007983A (en) Projection exposure method, projection exposure apparatus and mask used therein
EP0451474A2 (en) Procedure and device to measure without contact the surface contours of an object
JP2004191092A (en) Three-dimensional information acquisition system
KR950015553A (en) 전자 Electron Beam Direct Recording System for ULSI Lithography with Rotating and Gain Correction of Patterns, and Electron Beam Direct Recording Method Therefor
EP0237102A1 (en) Arrangement for aligning a mask and a substrate relative to each other
JPH03134538A (en) Evaluating apparatus of lens
JPH05165194A (en) Photomask
JPH1073459A (en) Device for filtering higher-harmonic signal component in odd number
KR100233314B1 (en) Distribution and apparatus for editting a mask pattern
JP3736271B2 (en) Mask, projection optical system inspection method and exposure method, and projection optical system inspection device and exposure apparatus
CN105103238A (en) Talbot effect based nearfield diffraction for spectral filtering
JP3339051B2 (en) Method for measuring spherical aberration of projection optical system
JPH06291009A (en) Exposure and aligner
JPS5619056A (en) Method and apparatus for scanning and recording printed dot image
Maddux et al. An improved automated data reduction device for speckle metrology
JPS6212484B2 (en)
JP2000267258A (en) Reticle
GB2090997A (en) Short-time tomosynthesis apparatus for the formation of sectional layer images with reduced artefact