JPS6250806A - Oil-immersed microscope for coal - Google Patents

Oil-immersed microscope for coal

Info

Publication number
JPS6250806A
JPS6250806A JP19233985A JP19233985A JPS6250806A JP S6250806 A JPS6250806 A JP S6250806A JP 19233985 A JP19233985 A JP 19233985A JP 19233985 A JP19233985 A JP 19233985A JP S6250806 A JPS6250806 A JP S6250806A
Authority
JP
Japan
Prior art keywords
coal
distance
objective
sensor
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19233985A
Other languages
Japanese (ja)
Other versions
JPH0562962B2 (en
Inventor
Shojiro Sasaki
佐々木 象二郎
Kensuke Yoshikawa
吉川 憲輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP19233985A priority Critical patent/JPS6250806A/en
Publication of JPS6250806A publication Critical patent/JPS6250806A/en
Publication of JPH0562962B2 publication Critical patent/JPH0562962B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure distance accurately without any adverse influence of an oil film covering a coal polished surface by providing a sensor which measures the distance between the coal polished surface and an objective and measuring the movement distance of a measuring element to the objective. CONSTITUTION:A stage 4 is fitted so that it is moved at an extremely slow sped by a stepping motor 12 in the X-axial and Y-axial directions on a plane nearly perpendicular to the optical axis 2a of the objective 2. Then, the stage 4 is moved according to a program commanded to a computer 13 through an input means 15 to measure reflection factors at many points over the nearly entire coal polished surface 8a. In this case, a sensor 19 measures the distance between the coal polished surface 8a coated with the oil film 11 and the objective 2 and a focus controller 20 performs puts a potentiometer in automatic operation on the basis of commands from the computer 13 so as to hold the measured distance of the sensor 18 constant. Consequently, the objective is prevented from becoming out of focus owing to the movement of the stage 4 and an analysis of the coal texture based upon the reflection factor distribution is taken easily and speedily and improved in reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭研磨面の反射率分布に基く石炭組織分析
を行うために、油膜で覆われた石炭研磨面の反射率を極
で多くの測定点で測るに際  。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims to increase the reflectance of a polished coal surface covered with an oil film to the greatest extent possible in order to analyze the coal structure based on the reflectance distribution of the polished coal surface. When measuring at the measurement point.

し、測定点の変更に伴う人為的焦点調整を不要にすべ(
、ステージ上の油膜で覆われた石炭研磨面と対物レンズ
との距離を測定するセンサー、及び、そのセンサーから
の情報に基いて測定距離を一定に保つように前記対物レ
ンズ又はステージを自動的に移動させる自動焦点調節手
段を備え、た顕微鏡、詳しくは、センサーの改良に関す
る。 。
This eliminates the need for artificial focus adjustment when changing the measurement point (
, a sensor that measures the distance between the coal polishing surface covered with an oil film on the stage and the objective lens; and a sensor that automatically adjusts the objective lens or the stage to keep the measured distance constant based on information from the sensor. The present invention relates to a microscope equipped with a movable automatic focusing means, and more particularly to an improvement of a sensor. .

〔従来技術〕[Prior art]

従来、油膜で覆われた石炭研磨面を対象にしたもので無
いが、ドライな被測定物に対する顕微鏡において、 (イ)ノズルから空気を被測定物に向けて噴出し、ノズ
ルの背圧検出に基いて距離を測定する型式のセンサー、 (0)レーザや超音波を被測定物に向けて発信し、被測
定物から反射するレーザや超音波を受信し、発信から受
信までの時間測定に基いて距離を測定する型式のセンサ
ー が利用されていた。
Conventionally, the microscope was not designed for the polished surface of coal covered with an oil film, but for dry objects to be measured, (a) Air is ejected from the nozzle toward the object to be measured, and the back pressure of the nozzle is detected. A type of sensor that measures distance based on (0) a type of sensor that emits a laser or ultrasonic wave toward an object to be measured, receives the laser or ultrasonic wave reflected from the object, and measures the time from emission to reception. A type of sensor that measures distance was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、油膜で覆われた石炭研磨面を対象にする場合、
前記(イ)項の従来センサーでは、油膜の表面に顕微鏡
の焦点が合うため、石炭研磨面の反射率測定の精度が劣
化する欠点があり、また、前記(ロ)項の従来センサー
では、油膜の表面で反射したレーザや超音波に起因して
、油膜の表面を石炭研磨面に誤認する危険性があり、反
射率測定精度の低下を生じやすい欠点があった。
However, when targeting coal polished surfaces covered with oil film,
The conventional sensor described in item (a) above has the disadvantage that the microscope focuses on the surface of the oil film, which deteriorates the accuracy of measuring the reflectance of the polished coal surface. Due to the laser and ultrasonic waves reflected from the surface of the oil film, there is a risk that the surface of the oil film may be mistaken for a polished coal surface, and the accuracy of reflectance measurement tends to decrease.

本発明の目的は、石炭研磨面と対物レンズとの距離を測
定するセンサーを、石炭研磨面を覆う油膜による悪影響
を受けること無く、常に確実に正確な距離測定を行える
ものに改良する点にある。
An object of the present invention is to improve a sensor that measures the distance between a coal polished surface and an objective lens so that it can always accurately measure the distance without being adversely affected by the oil film covering the coal polished surface. .

C問題を解決するための手段〕 本発明の特徴構成は、ステージ上の油膜で覆われた石炭
研磨面と対物レンズとの距離を測定するセンサーを形成
するに、前記石炭研磨面に接触する測定子を前記対物レ
ンズに、その対−物レンズの光軸の方向に移動自在にか
つ前記石炭研磨面側に付勢された状態で付設すると共に
、前記測定子の対物レンズに対する移動距離を測定する
計測手段を設けたことにあり、その作用効果は次の通り
である。
Means for Solving Problem C] The characteristic configuration of the present invention is that, in forming a sensor for measuring the distance between the coal-polishing surface covered with an oil film on the stage and the objective lens, a measuring device that comes into contact with the coal-polishing surface is formed. A probe is attached to the objective lens so as to be movable in the direction of the optical axis of the objective lens and biased toward the coal polishing surface side, and a moving distance of the probe with respect to the objective lens is measured. The purpose of this invention is to provide a measuring means, and its effects are as follows.

〔作 用〕[For production]

つまり、顕微鏡においては被測定物の表面に゛キズを付
けてはいけないとの固定観念に基いて、従来、空気圧、
レーザ、超音波等を利用−した無接触タイプの距離測定
用センサーを利用していたのであるが、本発明者は、各
種実験の結果、油膜で覆われた石炭研磨面を対象に反射
率を測定する場合、測定子を石炭研磨面に接触させても
、油膜によるキズ防止が有効に作用して、石炭研磨面の
キズによる反射率測定への悪影響が実質上皆無であると
の新規な技術思想に達したのである。
In other words, based on the fixed idea that microscopy should not scratch the surface of the object to be measured, pneumatic pressure,
Previously, non-contact distance measurement sensors using lasers, ultrasonic waves, etc. were used, but as a result of various experiments, the present inventors determined the reflectance of polished coal surfaces covered with oil film. A new technology that effectively prevents scratches due to the oil film even when the probe comes into contact with the polished coal surface during measurement, and there is virtually no negative effect on reflectance measurement due to scratches on the polished coal surface. I have reached an idea.

そして、測定子を、常に石炭研磨面に接触するように付
勢すると共に、対物レンズと石炭研磨面との距離が変化
すると対物レンズに対して移動するように取付け、その
対物レンズに対する測定子の移動距離を測定する手段か
らの情報により、自動焦点調節手段が動作するように構
成することによって、石炭研磨面と対物レンズの距離が
、顕微鏡の焦点が石炭研磨面に合うものになっているか
否かを、油膜にる悪影響を受けずに常に正確に検出させ
ることができると共に、石炭研磨面と対物レンズの距離
を、油膜による悪影響を受けずに常に正確に、顕微鏡の
焦点が石炭研磨面に合うものに維持できるようになった
Then, the gauge head is always urged to be in contact with the polished coal surface, and is attached so that it moves relative to the objective lens when the distance between the objective lens and the coal polished surface changes, and the gauge head is attached to the objective lens. By configuring the automatic focus adjustment means to operate based on information from the means for measuring the moving distance, it is possible to determine whether the distance between the coal polishing surface and the objective lens is such that the focus of the microscope matches the coal polishing surface. The distance between the polished coal surface and the objective lens can always be accurately determined without being adversely affected by the oil film, and the focus of the microscope can be placed on the polished coal surface. I was able to keep it as it suited me.

〔発明の効果〕〔Effect of the invention〕

その結果、油膜で覆われた石炭研磨面の反射率を極めて
多くの測定点で測るに際しての自動焦点調節を精度良好
に行え、反射率分布に基く石炭組織分析を容易迅速に行
えるのみならず信頼性の高い状態で行えるようになった
As a result, when measuring the reflectance of a polished coal surface covered with an oil film at a large number of measurement points, automatic focus adjustment can be performed with good accuracy, and coal structure analysis based on the reflectance distribution can be performed not only easily and quickly but also reliably. Now it can be performed in a highly sexual state.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第2図に示すように、接眼レンズ(1)や対物レンズ(
2)を有する顕微鏡本体(3)、及び、試料を載置する
ステージ(4)を基台(5)に取付け、対物レンズ(2
)の像を写すテレビカメラ(6)及び光源装置(7)を
顕微鏡本体(3)に取付け、もって、第1図に示すよう
に、石炭粉末と樹脂を混合して硬化させ石炭研磨面(8
a)を形成した試料(8)を、油粘土(9)等でブレパ
ラ−) (10)に接着した状態で、石炭研磨面(8a
)を油膜(11)で覆った状態で、かつ、対物レンズ(
2)の光軸(2a)に対して石炭研磨面(8a)がほぼ
垂直になる状態でステージ(4)に載置して、石炭研磨
面(8a)の反射率を測定するための、石炭用油浸型顕
微鏡を形成しである。
As shown in Figure 2, the eyepiece lens (1) and objective lens (
A microscope body (3) having a microscope body (2) and a stage (4) on which a sample is placed are attached to a base (5), and an objective lens (2) is attached to the base (5).
) and a light source device (7) are attached to the microscope body (3), and as shown in Fig. 1, coal powder and resin are mixed and hardened to form a polished coal surface (8
The sample (8) formed in a) was adhered to the coal-polished surface (8a) with oil clay (9) etc.
) is covered with an oil film (11), and the objective lens (
Coal for measuring the reflectance of the coal polished surface (8a) by placing it on the stage (4) with the coal polished surface (8a) almost perpendicular to the optical axis (2a) of 2). It is used to form an oil immersion microscope.

ステージ(4)を、対物レンズ(2)の光軸(2a)と
ほぼ垂直な平面方向においてX軸方向及びY軸方向にス
テッピングモータ(12)で微速移動自在に取付け、コ
ンピュータ(13)からの指令に基いてステンピングモ
ータ(12)を自動操作するステージコントローラ(1
4)を設け、入力手段(15)によりコンピュータ(1
3)に指令したプログラムに従って自動的にステージ(
4)が移動されて、石炭研磨面(8a)のほぼ全面にわ
たる極めて多くのポイントで反射率が測定されるように
構成しである。
A stage (4) is mounted to be movable at very low speed in the X-axis direction and the Y-axis direction in a plane direction substantially perpendicular to the optical axis (2a) of the objective lens (2) using a stepping motor (12). A stage controller (1) automatically operates the stamping motor (12) based on commands.
4) is provided, and the computer (1
3) The stage (
4) is moved so that the reflectance is measured at a large number of points over almost the entire surface of the polished coal surface (8a).

テレビカメラ(6)からの情報を適宜処理してコンピュ
ータ(I3)に送る情報処理手段(15)、コンピュー
タ(13)からの情報を表示するディスプレイ(16)
及び記録するレコーダ(17)を設けて、測定結果の表
示や記録が行われるように構成しである。
Information processing means (15) that appropriately processes information from the television camera (6) and sends it to the computer (I3), and a display (16) that displays information from the computer (13).
and a recorder (17) for recording, so that measurement results can be displayed and recorded.

顕微鏡本体(3)を対物レンズ(2)の光軸(2a)の
方向にポテンショモータ(18)で移動自在に基台(5
)に取付け、石炭研磨面(8a)と対物レンズ(2)と
の距離を測定してコンピュータ(13)に測定距離を伝
えるセンサー(19)、コンピュータ(13)カらの指
令に基いてポテンショモータ(18)を、センサー(1
9)による測定距離が一定保たれるように自動操作する
焦点コントローラ(2o)を設け、ステージ(4)の移
動に伴う焦点ズレを防止するように構成しである。
The base (5) allows the microscope body (3) to be freely moved in the direction of the optical axis (2a) of the objective lens (2) using a potentiomotor (18).
), the sensor (19) measures the distance between the coal polishing surface (8a) and the objective lens (2) and transmits the measured distance to the computer (13), and the potentiomotor operates based on instructions from the computer (13). (18), sensor (1
A focus controller (2o) that automatically operates so that the measurement distance according to 9) is kept constant is provided, and is configured to prevent focus shift due to movement of the stage (4).

前記センサー(19)を形成するに、第1図に示すよう
に、石炭研磨面(8a)に接触する測定子(19a)を
、対物レンズ(2)の光軸(2a)の方向に摺動または
揺動自在に、かつ、重力やスプリングで石炭研磨面(8
a)側に付勢した状態で対物レンズ(2)に付設すると
共に、対物レンズ(2)と石炭研磨面(8a)の距離変
化に伴う測定子の対物レンズに対する移動距離を測定す
る計測手段(19b)を設け、計測手段(19b)から
の情報が情報処理手段(19C)で適宜処理されてコン
ピュータ(13)に送られるように構成し、油膜(11
)による悪影響を受けることな(、対物レンズ(2)と
石炭研磨面(8a)との距離を正確に測定できるように
しである。
To form the sensor (19), as shown in FIG. Or, the coal polishing surface (8
A measuring means attached to the objective lens (2) in a state biased toward the a) side, and measuring the moving distance of the probe with respect to the objective lens as the distance between the objective lens (2) and the coal polishing surface (8a) changes. 19b), the information from the measuring means (19b) is appropriately processed by the information processing means (19C) and sent to the computer (13), and the oil film (11
This is so that the distance between the objective lens (2) and the coal polished surface (8a) can be accurately measured without being adversely affected by ().

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

石炭研磨面(8a)と対物レンズ(2)との測定距離を
一定に保つに、ステージ(4)を対物レンズ(2)の光
軸(2a)の方向に自動的に移動させる手段を利用して
もよく、対物レンズ(2)又はステージ(4)を自動的
に移動させる手段を自動焦点調節手段(13) 、 (
18) 、 (20)と称する。
In order to keep the measurement distance between the coal polishing surface (8a) and the objective lens (2) constant, a means for automatically moving the stage (4) in the direction of the optical axis (2a) of the objective lens (2) is used. The means for automatically moving the objective lens (2) or the stage (4) may be an automatic focusing means (13), (
18), (20).

測定子(19a)のうち石炭研磨面(8a)に接触する
部分は、合成樹脂、ガラス、鋼等から成る真珠に形成し
て、石炭研磨面(8a)を傷付けないものにすることが
望ましい。
It is desirable that the portion of the probe (19a) that comes into contact with the coal polished surface (8a) be formed into a pearl made of synthetic resin, glass, steel, etc. so as not to damage the coal polished surface (8a).

計測手段(19b)は、差動トランス式やストレインゲ
ージ弐、その他適当なものを利用できる。
As the measuring means (19b), a differential transformer type, a strain gauge, or other suitable means can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は要部概念図、第
2図は全体概念図である。 (2)・・・・・・対物レンズ、(2a)・・・・・・
光軸、(4)・・・・・・ステージ、(8a)・旧・・
石炭研磨面、(11)・・・・・・油膜、(13) 、
 (18) 、 (20)・・・・・・自動焦点調節手
段、(19)・・・・・・センサー、(19a)川・・
・測定子、(19b)・・・・・・計測手段。
The drawings show an embodiment of the present invention, and FIG. 1 is a conceptual diagram of the main part, and FIG. 2 is a conceptual diagram of the entirety. (2)...Objective lens, (2a)...
Optical axis, (4)... Stage, (8a) Old...
Coal polished surface, (11)...oil film, (13),
(18), (20)...Automatic focus adjustment means, (19)...Sensor, (19a) River...
- Measuring head, (19b)...Measuring means.

Claims (1)

【特許請求の範囲】[Claims] ステージ(4)上の油膜(11)で覆われた石炭研磨面
(8a)と対物レンズ(2)との距離を測定するセンサ
ー(19)、及び、そのセンサー(19)からの情報に
基いて測定距離を一定に保つように前記対物レンズ(2
0)又はステージ(4)を自動的に移動させる自動焦点
調節手段(13)、(18)、(20)を備えた顕微鏡
であって、前記センサー(19)において、前記石炭研
磨面(8a)に接触する測定子(19a)を前記対物レ
ンズ(2)に、その対物レンズ(2)の光軸(2a)の
方向に移動自在にかつ前記石炭研磨面(8a)側に付勢
された状態で付設すると共に、前記測定子(19a)の
対物レンズ(2)に対する移動距離を測定する計測手段
(19b)を設けてある石炭用油浸型顕微鏡。
Based on the sensor (19) that measures the distance between the coal polishing surface (8a) covered with the oil film (11) on the stage (4) and the objective lens (2), and the information from the sensor (19). The objective lens (2
0) or an automatic focusing means (13), (18), (20) for automatically moving the stage (4), in which the sensor (19) is arranged so that the coal-polished surface (8a) The measuring element (19a) in contact with the objective lens (2) is movable in the direction of the optical axis (2a) of the objective lens (2) and is urged toward the coal polishing surface (8a). The oil immersion microscope for coal is provided with a measuring means (19b) for measuring the moving distance of the measuring element (19a) with respect to the objective lens (2).
JP19233985A 1985-08-30 1985-08-30 Oil-immersed microscope for coal Granted JPS6250806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19233985A JPS6250806A (en) 1985-08-30 1985-08-30 Oil-immersed microscope for coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19233985A JPS6250806A (en) 1985-08-30 1985-08-30 Oil-immersed microscope for coal

Publications (2)

Publication Number Publication Date
JPS6250806A true JPS6250806A (en) 1987-03-05
JPH0562962B2 JPH0562962B2 (en) 1993-09-09

Family

ID=16289633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19233985A Granted JPS6250806A (en) 1985-08-30 1985-08-30 Oil-immersed microscope for coal

Country Status (1)

Country Link
JP (1) JPS6250806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333271A (en) * 1992-06-04 1993-12-17 Hitachi Ltd Method and device for recognizing three-dimensional substance
WO2000048031A1 (en) * 1999-02-09 2000-08-17 Minnesota Mining And Manufacturing Company Device for removing torsion in optical fiber ribbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333271A (en) * 1992-06-04 1993-12-17 Hitachi Ltd Method and device for recognizing three-dimensional substance
WO2000048031A1 (en) * 1999-02-09 2000-08-17 Minnesota Mining And Manufacturing Company Device for removing torsion in optical fiber ribbons

Also Published As

Publication number Publication date
JPH0562962B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
US3986774A (en) Gauging surfaces by remotely tracking multiple images
US5852232A (en) Acoustic sensor as proximity detector
CA1258966A (en) Noncontact gage system utilizing reflected light
JP2004535580A (en) Surface characteristic measuring method and coordinate measuring device
US5483347A (en) Non-contact measurement apparatus using bifurcated optical fiber bundle with intermixed fibers
AU3231889A (en) Measuring curvature of transparent or translucent material
US5701178A (en) Non-damaging flatness and thickness gauge for glass
Young et al. In-process and on-line measurement of surface finish
JPH01239404A (en) Method and apparatus for detecting edge of object
US5568258A (en) Method and device for measuring distortion of a transmitting beam or a surface shape of a three-dimensional object
WO1993002349A1 (en) Method and apparatus for measuring orange peel and texture in painted surfaces
JPS6250806A (en) Oil-immersed microscope for coal
CN104034284A (en) Polishing rubber disc face shape detection device for large annular polishing machine
JPH02114113A (en) Microscope apparatus with function of measuring flatness
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JPH04151502A (en) Photosensor device
JPH06109447A (en) Method and apparatus for measuring surface shape
CN114563981B (en) Micro-gap non-contact measurement regulation and control device and method
Brown et al. Industrial applications of an optical profilometer
Fawcett et al. Use of a fiber optic displacement probe as a surface finish sensor
JP3615330B2 (en) Height measuring device for protrusions and foreign objects
Asher et al. Noncontacting Optical Measurement And Inspection Systems
JPS62177409A (en) Noncontact straightness measuring instrument
JPS6347601A (en) Scanning capacitance microscopy
JPS62127618A (en) Measuring instrument for surface shape