JPS6250610A - Plasma monitoring method - Google Patents

Plasma monitoring method

Info

Publication number
JPS6250610A
JPS6250610A JP18952185A JP18952185A JPS6250610A JP S6250610 A JPS6250610 A JP S6250610A JP 18952185 A JP18952185 A JP 18952185A JP 18952185 A JP18952185 A JP 18952185A JP S6250610 A JPS6250610 A JP S6250610A
Authority
JP
Japan
Prior art keywords
light
reflected
si3n4
plasma
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18952185A
Other languages
Japanese (ja)
Inventor
Akira Okamoto
明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18952185A priority Critical patent/JPS6250610A/en
Publication of JPS6250610A publication Critical patent/JPS6250610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate the filming state on the surface of a sample by monitoring light from a specific chemical species in plasma which is reflected by the surface of the sample during a plasma treatment by a photodetector. CONSTITUTION:An Si substrate 2 which has Si3N4 on the surface is put in a reaction chamber 1, CF4+O2 is flowed to maintain about 0.4Torr, and high frequency electric power is supplied to etch the Si3N4. Then, N2 is produced on the start of the etching to cause light emission 3 and the light is reflected by the substrate 2. The reflected light is converted by a sensor 4 photoelectrically and the variation in light intensity is recorded 5. The light intensity is varies periodically owing to interference as the film thickness of the Si3N4 film decreases. The film thickness (t) is determined according to the interference rule t=lambda/4cosgamma.mu, where lambda is wavelength, gamma is the angle of refraction of the reflected light, and mu is the refraction of the Si3N4. Sensors 4-4''' are fitted at the periphery of the reaction chamber 1 at equal intervals and reflected light from parts 6-9 are monitored to compare variation in thickness from variation in the light intensity of each part, thereby evaluating the uniformity.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体や太陽電池等をプラズマ処理を行い製
造する装置の監視モニタに係り、試料の処理状態を非接
触で、プラズマ処理中に試料の除膜もしくは成膜状態を
評価できるモニタ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the monitoring of equipment for manufacturing semiconductors, solar cells, etc. by plasma processing. The present invention relates to a monitoring method that can evaluate the state of film removal or film formation.

〔発明の背景〕[Background of the invention]

従来のプラズマエツチングによる膜の微細加工、プラズ
マデポクシ1ンによる成膜プロセスにおいて膜厚の評価
は、プラズマ処理後に膜厚測定器(エリプソメータ)や
表面あらさ計等により計測して行っていた。またプラズ
マ処理中に評価する方法としては、レーザ等の単色光を
試料表面にあててその反射光の下地と薄膜間の干渉現象
を用いて膜厚を測定する方法があった。
In the conventional film microfabrication process using plasma etching and film formation process using plasma deposition, the film thickness has been evaluated by measuring with a film thickness measuring device (ellipsometer), surface roughness meter, etc. after plasma processing. In addition, as a method for evaluating during plasma processing, there has been a method in which monochromatic light such as a laser is applied to the sample surface and the film thickness is measured using the interference phenomenon between the base and the thin film of the reflected light.

前者の場合はプラズマ処理後に評価するため、プロセス
条件に異常があっても、プラズマ処理を一定量行なって
からでないと評価することができず、何か異常なことが
あっても事後でしか対応がとれなかった。そのため、後
者の方法により、プラズマ処理中に膜厚を評価する方法
が行なわれているが、レーザ等余分な機器を使用するた
め、プロセスの安全性、ランニングコストの上昇等に問
題があった。
In the former case, the evaluation is performed after plasma treatment, so even if there is an abnormality in the process conditions, it cannot be evaluated until after a certain amount of plasma treatment has been performed, and even if something abnormal occurs, it can only be dealt with after the fact. I couldn't get it. Therefore, the latter method has been used to evaluate the film thickness during plasma processing, but since it uses extra equipment such as a laser, there are problems with process safety, increased running costs, etc.

なお関連する技術として、半導体プロセスにおける薄膜
形成のインプロセス・モニタリング(日経エレクトロニ
クス、  1978.7. p111〜p114に記載
されたものがある。
As a related technique, there is one described in in-process monitoring of thin film formation in a semiconductor process (Nikkei Electronics, July 1978, p. 111 to p. 114).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマ処理中の試料に外部からレー
ザ光等の単色光を照射しないで、プラズマ中の特定化学
種の発光を利用して膜厚状態をモニタする方法を提供す
ることにある。
An object of the present invention is to provide a method for monitoring a film thickness state by utilizing light emission of a specific chemical species in plasma without irradiating a sample undergoing plasma treatment with monochromatic light such as laser light from the outside. .

〔発明の概要〕[Summary of the invention]

プラズマ処理されている試料の表面から反射するプラズ
マ中の特定化学種の発光スペクトルの光強度は、該試料
表面の膜厚がプラズマ処理により変化するに従い、干渉
作用により周期的に増減することがわかった。そこでこ
の光強度の増減する周期をモニタすることにより、試料
の膜厚状態を正確に把握できること圧着目し、本発明が
なされた。
It has been found that the light intensity of the emission spectrum of a specific chemical species in the plasma reflected from the surface of a plasma-treated sample periodically increases or decreases due to interference as the film thickness of the sample surface changes due to plasma treatment. Ta. Therefore, the present invention was developed based on the idea that the film thickness state of the sample could be accurately determined by monitoring the period of increase and decrease of the light intensity.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図から第4図を用いて説明
する。第1図に本発明の概略構成を示す。プラズマエツ
チングチャンバ1にCF、 十02を流JIL4oSC
CMで供給し、内部の圧力を0.4Thrr程度に保ち
、電周波電力150Wを印加し、被エツチング材料であ
る8i基板上の3i3N、を成膜したウェハ2tエクチ
ングする。エツチング開始とともに8i3N、とCF4
 +Otの反応生成物である窒素(N、)が生成され、
発光する。該へ、からのプラズマ発光3の光は該ウェハ
2表面上で反射される。この反射光3を光センサ4で受
光し、電気信号に変へ、記録計5上にエツチング中の該
反射光の光強度変化を記録する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 shows a schematic configuration of the present invention. Flow CF, 102 into plasma etching chamber 1 JIL4oSC
CM is supplied, the internal pressure is maintained at about 0.4 Thrr, and a radio frequency power of 150 W is applied to etch a wafer 2t on which a 3i3N film has been formed on an 8i substrate, which is the material to be etched. 8i3N and CF4 at the start of etching
Nitrogen (N, ), which is a reaction product of +Ot, is produced,
Emits light. The light of the plasma emission 3 from the wafer 2 is reflected on the surface of the wafer 2. This reflected light 3 is received by an optical sensor 4, converted into an electrical signal, and changes in the light intensity of the reflected light during etching are recorded on a recorder 5.

該反射光3の光強度は、該ウェハ2のSi、N。The light intensity of the reflected light 3 is determined by the Si, N of the wafer 2.

膜がエツチングにより膜厚が減少するに従い、干渉を受
は第2図1(示すように周期的に増減する。この反射光
の光強度の増減の周期から、光の干渉の法則t−−−と
m−(t :膜厚(^)4 ・CO8γ ・ μ 28反射光の波長(’A)、γ:反射光の屈折角。
As the thickness of the film decreases due to etching, the amount of interference it receives increases and decreases periodically as shown in Figure 2. From the period of increase and decrease in the light intensity of this reflected light, the law of light interference t--- and m-(t: Film thickness (^) 4 ・CO8 γ ・ μ 28 Wavelength of reflected light ('A), γ: Refraction angle of reflected light.

μ: Si、N4の屈折率)、より光強度の減衰に伴う
膜厚を求めることができる。そこで、該光センサ4を二
ンチングチャンパ1の周囲に等間隔に4個の光センサ4
〜4′#を取り付け、第3図に示すようにウニ八表面の
ローカルな部分6〜9かもの反射光をモニタすることに
より第4図に示すよ5な局所の光強度の経時変化を得る
ことができる。ウニ八表面の各部6〜9の光強度変化か
ら膜厚変化を比較することができ、エツチングの均一性
評価が可能となる。
μ: refractive index of Si, N4), it is possible to determine the film thickness as the light intensity attenuates. Therefore, four optical sensors 4 are arranged around the double-inching chamber 1 at equal intervals.
By attaching ~4'# and monitoring the reflected light in 6 to 9 local areas on the surface of the sea urchin as shown in Figure 3, we can obtain the temporal changes in the light intensity in 5 local areas as shown in Figure 4. be able to. The change in film thickness can be compared from the change in light intensity at each part 6 to 9 on the surface of the sea urchin, making it possible to evaluate the uniformity of etching.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマ処理中ば試料の表面状態を監
視し、評価できることから、製品の不良を低減できると
共にレーザ光等を用いる必要のないことから経済性の面
で効果がある。
According to the present invention, since the surface condition of a sample can be monitored and evaluated during plasma processing, product defects can be reduced, and there is no need to use a laser beam or the like, which is advantageous in terms of economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成概略図、第2図は反射
光のエツチング中の経時変化を示す線図、第3図は複数
個の光検出器によるモニタ方法の説明図、第4図は第3
図のモニタ方法により得られた試料表面局所の反射光経
時変化説明図である。 1・・・プラズマエツチング装置、 2・・・試料、       3・・・反射光、4〜4
/l・・・光センサ、  5・・・記録計。
FIG. 1 is a schematic diagram of the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing changes in reflected light over time during etching, FIG. 3 is an explanatory diagram of a monitoring method using a plurality of photodetectors, and FIG. Figure 4 is the third
FIG. 3 is an explanatory diagram of changes over time in reflected light locally on the sample surface obtained by the monitoring method shown in the figure. 1... Plasma etching device, 2... Sample, 3... Reflected light, 4-4
/l... Optical sensor, 5... Recorder.

Claims (1)

【特許請求の範囲】[Claims] 1、低圧ガスプラズマを利用する半導体製造プロセス装
置において、プラズマ処理中に、試料表面から反射する
プラズマ中の特定化学種の発光を複数の光検出器を用い
てモニタすることにより、該試料表面の成膜状態を評価
することを特徴としたプラズマモニタ方法。
1. In semiconductor manufacturing process equipment that uses low-pressure gas plasma, during plasma processing, the emission of specific chemical species in the plasma reflected from the sample surface is monitored using multiple photodetectors, thereby detecting the surface of the sample. A plasma monitoring method characterized by evaluating the state of film formation.
JP18952185A 1985-08-30 1985-08-30 Plasma monitoring method Pending JPS6250610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18952185A JPS6250610A (en) 1985-08-30 1985-08-30 Plasma monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18952185A JPS6250610A (en) 1985-08-30 1985-08-30 Plasma monitoring method

Publications (1)

Publication Number Publication Date
JPS6250610A true JPS6250610A (en) 1987-03-05

Family

ID=16242677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18952185A Pending JPS6250610A (en) 1985-08-30 1985-08-30 Plasma monitoring method

Country Status (1)

Country Link
JP (1) JPS6250610A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448420A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Plasma treater and decision method of end point of plasma treatment
US5346582A (en) * 1990-10-12 1994-09-13 Seiko Epson Corporation Dry etching apparatus
JP2005241282A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Film thickness detection method and apparatus and film deposition method and apparatus
JP2006325785A (en) * 2005-05-25 2006-12-07 Takashi Toyonaga High-frequency treatment instrument and method of releasing mucous membrane by using high-frequency treatment instrument
JP2007313345A (en) * 2007-07-24 2007-12-06 Takashi Toyonaga High-frequency treatment instrument
US8192431B2 (en) 2003-02-28 2012-06-05 Olympus Corporation Endoscopic treatment instrument
US8663221B2 (en) 2007-06-08 2014-03-04 Olympus Medical Systems Corp. Endoscopic treatment tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231761A (en) * 1975-09-05 1977-03-10 Hitachi Ltd Method of monitoring thickness of thin film formed by vapor phase reac tion process
JPS5494068A (en) * 1978-01-07 1979-07-25 Victor Co Of Japan Ltd Film thickness metering and monitoring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231761A (en) * 1975-09-05 1977-03-10 Hitachi Ltd Method of monitoring thickness of thin film formed by vapor phase reac tion process
JPS5494068A (en) * 1978-01-07 1979-07-25 Victor Co Of Japan Ltd Film thickness metering and monitoring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448420A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Plasma treater and decision method of end point of plasma treatment
US5346582A (en) * 1990-10-12 1994-09-13 Seiko Epson Corporation Dry etching apparatus
US8192431B2 (en) 2003-02-28 2012-06-05 Olympus Corporation Endoscopic treatment instrument
JP2005241282A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Film thickness detection method and apparatus and film deposition method and apparatus
JP2006325785A (en) * 2005-05-25 2006-12-07 Takashi Toyonaga High-frequency treatment instrument and method of releasing mucous membrane by using high-frequency treatment instrument
US8663221B2 (en) 2007-06-08 2014-03-04 Olympus Medical Systems Corp. Endoscopic treatment tool
JP2007313345A (en) * 2007-07-24 2007-12-06 Takashi Toyonaga High-frequency treatment instrument

Similar Documents

Publication Publication Date Title
US5362356A (en) Plasma etching process control
EP0735565B1 (en) Method and apparatus for monitoring the dry etching of a dielectric film to a given thickness
KR100769607B1 (en) Method and apparatus for processing semiconductor waper
US6395563B1 (en) Device for manufacturing semiconductor device and method of manufacturing the same
KR100521109B1 (en) Processing apparatus and cleaning method
US6297064B1 (en) End point detecting method for semiconductor plasma processing
KR100358265B1 (en) Device manufacturing method using elliptical polarization technology
US4717446A (en) Method of detecting the endpoint of the etch of epitaxially grown silicon
JP2004507070A (en) Method and apparatus for in-situ monitoring of plasma etching and deposition processes using a pulsed broadband light source
JP3854810B2 (en) Method and apparatus for measuring film thickness of material to be processed by emission spectroscopy, and method and apparatus for processing material using the same
US7738976B2 (en) Monitoring method of processing state and processing unit
JP5022708B2 (en) In-situ substrate temperature monitoring method and apparatus
JPS6250610A (en) Plasma monitoring method
JP3893868B2 (en) Field effect transistor manufacturing method, semiconductor device manufacturing method and apparatus
JPS5925227A (en) Device for plasma etching
JP2006119145A (en) Method and device for processing semiconductor wafer
JP4654097B2 (en) Semiconductor manufacturing equipment
JPS62282435A (en) Method for detecting end point of etching
JPH0737958A (en) Monitoring apparatus for semiconductor treatment process
KR0137822B1 (en) Method of guage of etching speed and uniformity
KR100733120B1 (en) Method and apparatus for detecting processing of semiconductor waper
KR100438379B1 (en) Method and apparatus for determining endpoint of semiconductor element fabricating process and method and apparatus for processing member to be processed
JPH04280650A (en) Manufacture of semiconductor device
JPH11238723A (en) Method and apparatus for plasma processing
JPS6118133A (en) Method and apparatus for detecting termination point in rie