JPS6250530B2 - - Google Patents

Info

Publication number
JPS6250530B2
JPS6250530B2 JP55060207A JP6020780A JPS6250530B2 JP S6250530 B2 JPS6250530 B2 JP S6250530B2 JP 55060207 A JP55060207 A JP 55060207A JP 6020780 A JP6020780 A JP 6020780A JP S6250530 B2 JPS6250530 B2 JP S6250530B2
Authority
JP
Japan
Prior art keywords
scale
rolling
cold
steel
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55060207A
Other languages
Japanese (ja)
Other versions
JPS56156718A (en
Inventor
Hajime Hinoto
Teruo Iura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6020780A priority Critical patent/JPS56156718A/en
Publication of JPS56156718A publication Critical patent/JPS56156718A/en
Publication of JPS6250530B2 publication Critical patent/JPS6250530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は冷延鋼板の製造法、特に熱間圧延され
た、スケールが付着したままの鋼板を直接冷間圧
延し、非還元性雰囲気中でオープン箱焼鈍を行な
い冷却中あるいは冷却後に鋼板表面をシヨツトブ
ラストによつてスケールを除去し調質圧延するこ
とによつて冷延鋼板を製造する方法に関するもの
である。 従来の冷延鋼板は、熱間圧延→酸洗脱スケール
→冷間圧延→電解清浄→箱型又は連続焼鈍→調質
圧延という工程を経て製造されているが、一部電
解清浄を経由しない工程もある。酸洗脱スケール
工程は、熱間圧延の仕上げ及び巻取り時に発生す
る厚さ約5〜15μmの分厚い表面酸化被膜(スケ
ール)を除去するもので、このスケールFeO、
Fe3O4を主成分とする地鉄に較べて高い硬度を有
するもので、そのまま冷間圧延したのではスケー
ルの破砕片による鋼板表面へのくい込みがあり、
成品品質を著しく損うため冷間圧延に先立つて脱
スケールすることが必須とされている。 脱スケール法としては、酸洗による方法が多用
される。このスケールは鋼地鉄部に強固に密着し
ているため、酸洗も塩酸あるいは硫酸などの無機
酸に80〜95℃の高温で接触させるにも拘らず、脱
スケールに20〜60秒と長時間を要している。この
ため、長大な設備を要し、さらに廃酸処理を必要
とする等の問題を内在している。また、酸洗効率
の向上策として、熱延巻取温度並びに冷却条件を
調整して、スケール組成を改質する方法、薬剤塗
布でスケールを改質する方法、スケールの発生す
る雰囲気を調整することによりスケール量を抑制
する方法、酸洗に先立ちスキンパス程度の軽圧下
を施す方法等、幾多の提案がなされているが、い
まだ十分とは言えず実用に供されているものは数
少い現状である。 近年、この酸洗に替る新しい脱スケール法とし
て、熱延板そのままあるいは軽圧下の予備処理を
したのち、含粒高圧水吹きつけによつてスケール
を除去しようとする試みもある。しかし、前述の
ごとくスケールが鋼地鉄部に強固に密着している
こと、及びスケール厚が5〜15μmと厚いため、
相当の設備と脱スケールエネルギーを要してい
る。 電解清浄工程は、冷間圧延時に付着した圧延
油、圧延時に発生する鉄粉等の表面汚れを除去す
るため、アルカリ浴中で電解清浄を行なつている
が、酸洗脱スケール工程と同様に設備費とランニ
ングコストに多大な経費を要している。この電解
清浄工程の省略を目的として、焼鈍工程で分解揮
散し易い冷間圧延油の開発、冷延最終段階で薬液
を塗布して鋼板表面を洗浄する方法、冷間圧延時
の圧下率配分や圧延油濃度を調整する方法、焼鈍
方法の改善等、多くの試みがなされている。優れ
た鋼板表面性状を得るには、いまだ十分とは言い
難い。 焼鈍工程、特に箱焼鈍では美麗な鋼板表面性状
を付与するため高価な還元性雰囲気ガス(通常、
H2、N2ガス)を使用すること、加熱〜均熱〜冷
却に長時間を要すること、脱炉したのち調質圧延
開始温度(通常40℃以下)までの冷却中に湿空気
に触れると、鋼板表面に錆が発生するため製品に
供することが出来ないので、除湿空気又はN2
スによる防錆処理設備が必要である等、設備費、
製造コスト、製造時間のロス等の問題を内在して
いる。 本発明は、上述の問題点を解消するためになさ
れたもので、冷延鋼板の製造工程において、冷間
圧延前の脱スケール工程及び電解清浄工程を省略
し、尚かつ焼鈍工程の大巾な簡略化と簡易表面調
整によつて低コスト冷延鋼板の製造法を提供しよ
うとするものである。 本発明の骨子は、熱間圧延されたスケールがつ
いたままの鋼板を、脱スケールすることなく直接
冷間圧延し所定の板厚まで仕上げたのち、非還元
性雰囲気ガス(例えばN2ガス)中でオープンコ
イル状態にして箱焼鈍をおこない、調質圧延前に
鋼板表面付着スケールの簡易除去をおこなうこと
を特徴とする冷延鋼板の製造法である。 次に本発明について説明する。 熱延スケールがついたままの鋼板を、良好な圧
延潤滑下で直接冷間圧延をおこなうと、微粉スケ
ールで被覆された黒色表面の鋼板が得られる。熱
延スケールは地鉄よりも可塑性が劣るため、圧延
ロールバイト内の圧縮及び引張応力によつて破砕
される。圧延後のスケール形態は微粉状の集合体
として、圧延油と共に鋼板表面にルーズに付着し
ている。この微粉スケールは指でこすつても除去
しうる。同時に、冷延圧下率の増大にともなう延
伸効果による表面積増加によつて、鋼板表面を覆
う黒色のスケール厚は減少する。表1は、スケー
ル厚9μmの熱延鋼板をスケールがついたまま、
冷間圧延し、圧下率と圧延後のスケール厚を実測
したものであり、例えば70%圧下ではスケール厚
は2.1μmと減少している。圧延の仕方によつて
は微粉スケールの一部が圧延油中に混入するが、
混入スケール量はわずかである。
The present invention relates to a method for manufacturing cold-rolled steel sheets, in particular, directly cold-rolling a hot-rolled steel sheet with scale still attached, and performing open box annealing in a non-reducing atmosphere to improve the surface of the steel sheet during or after cooling. The present invention relates to a method of manufacturing a cold rolled steel sheet by removing scale by shot blasting and temper rolling. Conventional cold-rolled steel sheets are manufactured through the following steps: hot rolling → pickling descaling → cold rolling → electrolytic cleaning → box or continuous annealing → temper rolling, but some processes do not involve electrolytic cleaning. There is also. The pickling descaling process removes a thick surface oxide film (scale) with a thickness of approximately 5 to 15 μm that is generated during finishing and winding of hot rolling, and this scale FeO,
It has a higher hardness than base steel whose main component is Fe 3 O 4 , and if it is cold rolled as is, scale fragments will dig into the surface of the steel plate.
It is essential to descale the product before cold rolling, as this significantly impairs the quality of the finished product. A pickling method is often used as a descaling method. Because this scale adheres strongly to the steel base, descaling takes 20 to 60 seconds even though pickling involves contact with inorganic acids such as hydrochloric acid or sulfuric acid at high temperatures of 80 to 95°C. It takes time. For this reason, there are inherent problems such as the need for extensive equipment and the need for waste acid treatment. In addition, as measures to improve pickling efficiency, there are methods to modify the scale composition by adjusting the hot rolling winding temperature and cooling conditions, methods to modify the scale by applying chemicals, and adjusting the atmosphere in which scale is generated. A number of proposals have been made, such as a method of suppressing the amount of scale by reducing the amount of scale, and a method of applying light pressure reduction such as a skin pass prior to pickling, but these methods are still insufficient and only a few have been put into practical use. be. In recent years, as a new descaling method to replace pickling, attempts have been made to remove scale by spraying high-pressure water containing grains on the hot-rolled sheet as it is or after preliminary treatment under light rolling. However, as mentioned above, the scale is firmly attached to the steel substrate and the scale thickness is as thick as 5 to 15 μm.
Considerable equipment and descaling energy are required. In the electrolytic cleaning process, electrolytic cleaning is performed in an alkaline bath to remove surface stains such as rolling oil attached during cold rolling and iron powder generated during rolling. A large amount of equipment and running costs are required. With the aim of omitting this electrolytic cleaning process, we have developed a cold rolling oil that easily decomposes and volatilizes during the annealing process, a method of applying a chemical solution at the final stage of cold rolling to clean the steel sheet surface, a method of reducing the reduction ratio during cold rolling, and Many attempts have been made to adjust the rolling oil concentration, improve annealing methods, etc. It is still far from sufficient to obtain excellent steel sheet surface properties. In the annealing process, especially box annealing, an expensive reducing atmosphere gas (usually
H 2 , N 2 gas), it takes a long time for heating, soaking and cooling, and if it comes into contact with moist air during cooling to the temper rolling start temperature (usually below 40℃) after de-furnacing. , Since rust occurs on the surface of the steel plate, it cannot be used as a product, so rust prevention treatment equipment using dehumidified air or N2 gas is required, etc., which reduces equipment costs.
There are inherent problems such as manufacturing costs and manufacturing time losses. The present invention has been made to solve the above-mentioned problems, and in the manufacturing process of cold rolled steel sheets, the descaling process and electrolytic cleaning process before cold rolling are omitted, and the annealing process is greatly reduced. The purpose is to provide a low-cost method for manufacturing cold-rolled steel sheets through simplification and simple surface adjustment. The gist of the present invention is to directly cold-roll a hot-rolled steel plate with scales still attached to it without descaling, finish it to a predetermined thickness, and then use a non-reducing atmospheric gas (for example, N 2 gas) to finish the steel plate. This is a method for producing cold-rolled steel sheets characterized by box annealing in an open coil state and simple removal of scale adhering to the surface of the steel sheets before temper rolling. Next, the present invention will be explained. When a steel plate with hot rolling scale still attached is directly cold rolled under good rolling lubrication, a steel plate with a black surface coated with fine powder scale is obtained. Hot-rolled scale has poorer plasticity than base steel, so it is crushed by compressive and tensile stress within the rolling roll bite. The scale form after rolling is a fine powder aggregate that loosely adheres to the surface of the steel sheet together with rolling oil. This fine powder scale can also be removed by rubbing it with your fingers. At the same time, the thickness of the black scale covering the steel sheet surface decreases due to the increase in surface area due to the stretching effect as the cold rolling reduction increases. Table 1 shows a hot-rolled steel plate with a scale thickness of 9 μm, with the scale still attached.
This is a result of cold rolling and actual measurement of the rolling reduction ratio and scale thickness after rolling. For example, at 70% rolling, the scale thickness is reduced to 2.1 μm. Depending on the method of rolling, part of the fine scale may be mixed into the rolling oil, but
The amount of scale mixed in is small.

【表】 2.1μmというスケール厚は、前述の如く、微
粉スケールの集合体による平均のスケール厚であ
る。更に詳しくはスケールは地鉄より剥離分離さ
れており、あたかもロールでゆるく圧着された状
態である。微粉スケールを鋼板に圧着した状況で
あり、微粉スケールを除去すると、梨地加工した
冷間圧延板に類似した外観を呈し、キズ等は全く
存在しない。 このようにして得られた黒色スケール被覆鋼板
を次にオープンコイル状態にして箱焼鈍する。雰
囲気ガスとしては、例えばN2ガス等の非還元性
ガスで十分であり、高価な還元性ガスは不要であ
る。黒色スケール被覆鋼板は、熱吸収が優れ加熱
時間が短縮され、且つスケール被覆部が防錆作用
及び防止作用をするため、通常のスケールなし鋼
板に較べて、脱カバー温度も高くできるし、脱カ
バー後大気下の湿空気にさらしても何ら錆発生す
ることはない。通常のスケールなし鋼板の場合、
焼鈍時に鋼板表面同志が金属接触して、焼付きト
ラブルをおこすことがあるが、本発明では高融点
の微粉スケールで鋼板表面が被覆されているた
め、焼付きをおこすこともない。以上のように、
加熱時間の短縮、高温脱炉による冷却時間の短縮
と設備効率の向上、除湿設備の不要等、焼鈍効率
の向上は極めて大きい。 焼鈍済鋼板(鋼帯)は、冷却中又は冷却後調質
圧延工程に先立つて、鋼板表面に残留する微粉ス
ケール、圧延油分解生成物(炭素)等を、一挙に
除去して、良好な鋼板表面性状を付与するための
表面調整をおこなう。前述のごとく、残留スケー
ルは、地鉄より離脱され、且つ微粉状で圧着され
た状態であり、脱スケールには強力なエネルギー
を必要としない。したがつて、表面調整法として
は簡易な方法で十分であり、軽度のドライブラス
ト、あるいは液体ホーニングが有利である。一般
に、焼鈍済鋼板のメカデスケでは、鋼板表面への
砥粒の喰込みによる鋼板表面性状への影響や表面
硬化による材質低下が懸念されるが、本発明は砥
粒の吹付圧力を低くできるため、通常の冷延鋼板
と同程度の品質が得られる。 以上のごとく本発明による方法によれば、冷延
鋼板の製造工程における、省工程、省力化、省エ
ネルギーを達成し、その工業的利点は誠に大き
い。 次に実施例について説明する。 実施例 1 スケール厚9μmを有する板厚3.0mmの熱延鋼
板(キヤツプド鋼、成分C:0.060%、Su:0.001
%、Mn:0.30%、P:0.007%、S:0.010%)
を、スケールがついたまま圧下率70%で直接冷間
圧延し、黒色の微粉スケール被覆鋼板を得た。次
に、N2ガス雰囲気(露点−40℃)中でオープン
コイル状態にして箱焼鈍した。熱処理条件は、
700℃までの昇温100℃/時間、700℃×4時間保
定、炉中冷却し、300℃および100℃で脱炉した。
冷間圧延したままの試料、300℃脱炉試料、100℃
脱炉試料について、残留スケール厚を実測した。 その結果、いずれも2.1μmで同一であり、300
℃脱炉試料の場合でもスケール厚は増大せず、外
観も100℃脱炉試料と同様で、スケールが耐酸化
性を有し高温脱炉ができることが判つた。 実施例 2 実施例1で得られた試料について、耐錆性評価
をおこなつた。試験条件は、温度40℃、相対湿度
90%の高温湿空気中とし、試料は積み重ね状態
(スタツクテスト)にし、試験日数は14日間と
し、錆試験は錆発生面積パーセントで示した。な
お、従来法の製造工程にしたがつて、酸洗→冷
間圧延→電解清浄→箱焼鈍(電清材)と、酸洗
→冷間圧延→箱焼鈍(未電清材)して得られた鋼
板を比較材とした。比較材の材料、冷延圧下率箱
焼鈍条件は実施例1と同一であるが、但しタイト
コイル状態にして還元性雰囲気ガス(H2:5
%、N2:95%、露点−40℃以下)を用い、脱炉
温度は100℃とした。電解清浄はアルカリ浴を用
いた。 表2に評価結果を示す。 本発明法による試料は、錆発生がなく黒皮スケ
ールが十分な耐錆性を有することが判つた。
[Table] As mentioned above, the scale thickness of 2.1 μm is the average scale thickness due to an aggregate of fine powder scales. More specifically, the scale has been peeled off and separated from the base iron, as if it had been loosely crimped with a roll. This is a situation in which fine powder scale is crimped onto a steel plate, and when the fine powder scale is removed, it has an appearance similar to a satin-finished cold-rolled plate, and there are no scratches or the like. The black scale coated steel sheet thus obtained is then brought into an open coil state and box annealed. As the atmospheric gas, a non-reducing gas such as N 2 gas is sufficient, and an expensive reducing gas is not necessary. Black scale-coated steel sheets have excellent heat absorption, shorten heating time, and the scale-coated portion has anti-corrosion and anti-corrosion effects, so the de-covering temperature can be higher than that of normal scale-free steel sheets, and the de-covering process is easier. No rust will occur even if exposed to humid air in the back atmosphere. For ordinary scaleless steel plates,
During annealing, the steel plate surfaces may come into metal contact with each other and cause seizure trouble, but in the present invention, the steel plate surface is coated with a fine powder scale with a high melting point, so seizure does not occur. As mentioned above,
The improvements in annealing efficiency are extremely large, such as shortening heating time, shortening cooling time and improving equipment efficiency through high-temperature de-furnacing, and eliminating the need for dehumidification equipment. Annealed steel sheets (steel strips) are made into good steel sheets by removing fine scale, rolling oil decomposition products (carbon), etc. remaining on the surface of the steel sheets at once during cooling or prior to the temper rolling process after cooling. Perform surface conditioning to impart surface texture. As mentioned above, the residual scale is separated from the base iron and is in the form of fine powder and pressed, and strong energy is not required for descaling. Therefore, a simple method is sufficient as a surface conditioning method, and mild dry blasting or liquid honing is advantageous. Generally, when mechanically disposing annealed steel sheets, there are concerns that the abrasive grains biting into the surface of the steel sheet may affect the surface properties of the steel sheet, and that the quality of the material deteriorates due to surface hardening. The quality is comparable to that of ordinary cold-rolled steel sheets. As described above, the method according to the present invention achieves process saving, labor saving, and energy saving in the manufacturing process of cold rolled steel sheets, and its industrial advantages are truly great. Next, an example will be described. Example 1 Hot-rolled steel plate with a thickness of 3.0 mm and a scale thickness of 9 μm (capped steel, component C: 0.060%, Su: 0.001
%, Mn: 0.30%, P: 0.007%, S: 0.010%)
was directly cold-rolled at a reduction rate of 70% with the scale still attached to obtain a black fine scale-coated steel sheet. Next, it was box annealed in an open coil state in a N2 gas atmosphere (dew point -40°C). The heat treatment conditions are
The temperature was raised to 700°C at 100°C/hour, held at 700°C for 4 hours, cooled in the furnace, and de-furnaced at 300°C and 100°C.
As-cold-rolled sample, 300℃ de-furnaced sample, 100℃
The residual scale thickness was actually measured for the demolded samples. As a result, they were all the same at 2.1μm, and 300μm.
Even in the case of the 100°C de-heated sample, the scale thickness did not increase and the appearance was similar to that of the 100°C de-heated sample, indicating that the scale has oxidation resistance and can be de-heated at high temperatures. Example 2 The sample obtained in Example 1 was evaluated for rust resistance. Test conditions are temperature 40℃ and relative humidity.
The test was carried out in 90% high temperature and humid air, the samples were stacked (stack test), the number of test days was 14 days, and the rust test was expressed as the percentage of rusted area. In addition, according to the conventional manufacturing process, pickling → cold rolling → electrolytic cleaning → box annealing (electrolyzed material) and pickling → cold rolling → box annealing (unelectrolyzed material) were obtained. The steel plate used was used as a comparison material. The material and cold rolling reduction box annealing conditions of the comparison material are the same as in Example 1, except that the material is in a tight coil state and a reducing atmosphere gas (H 2 :5
%, N2 : 95%, dew point -40°C or lower), and the de-furnacing temperature was 100°C. An alkaline bath was used for electrolytic cleaning. Table 2 shows the evaluation results. It was found that the samples obtained by the method of the present invention did not generate rust and the black scale had sufficient rust resistance.

【表】 実施例 3 実施例2の100℃脱炉試料について、ドライブ
ラスト法及び液体ホーニング法によつて表面調整
実験をおこなつた。ドライブラスト法について
は、粒度#100のガラス粉を用い、吹付圧力2〜
4Kg/cm2で、吹付時間2〜3秒で完全脱スケール
ができた。液体ホーニング法については、粒度
#100のアランダム(酸化アルミ)を用い吹付圧
力3〜5Kg/cm2で、吹付時間2〜3秒で完全脱ス
ケールができた。脱スケール後の鋼板表面は、キ
ズ、砥粒の残留もなく極めて良好であつた。 実施例 4 実施例3の本発明による脱スケール済の試料お
よび実施例の比較材試料について、1%の調質圧
延をおこなつた鋼板について、表面清浄度(セロ
テープテスト)及びリン酸塩処理塗装後の塗料密
着性ならびに塩水噴霧試験による塗装耐蝕性を評
価した。 これらの結果を、表3に示した。 本発明法で得られた冷延鋼板の表面性状は、従
来法に比較して、同等あるいは優れていた。
[Table] Example 3 Surface conditioning experiments were conducted on the 100°C demolished sample of Example 2 by dry blasting and liquid honing. For the dry blast method, glass powder with a particle size of #100 is used, and the blowing pressure is 2~
At 4 kg/cm 2 , complete descaling was achieved within 2 to 3 seconds of spraying time. Regarding the liquid honing method, complete descaling was achieved using alundum (aluminum oxide) with a particle size of #100 at a spraying pressure of 3 to 5 kg/cm 2 and a spraying time of 2 to 3 seconds. The surface of the steel plate after descaling was in excellent condition with no scratches or residual abrasive grains. Example 4 Regarding the descaled sample according to the present invention in Example 3 and the comparative material sample in Example, the surface cleanliness (cellotape test) and phosphate treatment coating of steel plates subjected to 1% temper rolling The subsequent paint adhesion and paint corrosion resistance were evaluated using a salt spray test. These results are shown in Table 3. The surface properties of the cold-rolled steel sheets obtained by the method of the present invention were equivalent to or superior to those obtained by the conventional method.

【表】【table】

【表】 実施例 5 実施例4の本発明による試料および比較材試料
(電清材)について、機械的性質を調べた結果を
表4に示す。本発明法による冷延鋼板の機械的性
質は、従来法の工程で製造した鋼板と同等であつ
た。
[Table] Example 5 Table 4 shows the results of examining the mechanical properties of the sample according to the present invention of Example 4 and the comparative material sample (electrochemical material). The mechanical properties of the cold-rolled steel sheet manufactured by the method of the present invention were equivalent to those of the steel sheet manufactured using the conventional process.

【表】 以上、主として普通鋼冷延鋼板について説明し
たが、本発明法は脱スケール方法が普通鋼に較べ
て難しい珪素鋼板、高張力冷延鋼板の製造にも適
用できる。
[Table] Although the explanation has been given above mainly on ordinary steel cold-rolled steel sheets, the method of the present invention can also be applied to the production of silicon steel sheets and high-strength cold-rolled steel sheets, for which descaling is more difficult than for ordinary steel.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間圧延された、スケールが付着したままの
鋼板を冷間圧延した後、非還元性雰囲気中でオー
プンコイル状態にして箱焼鈍を行い、冷却中ある
いは冷却後鋼板表面をドライブラストあるいは液
体ホーニングによつてスケール及び表面汚れを除
去し、調質圧延することを特徴とする冷延鋼板の
製造方法。
1 After cold-rolling a hot-rolled steel plate with scale still attached, it is box-annealed in an open coil state in a non-reducing atmosphere, and the surface of the steel plate is subjected to dry blasting or liquid honing during or after cooling. 1. A method for producing a cold-rolled steel sheet, which comprises removing scale and surface dirt by heat rolling.
JP6020780A 1980-05-07 1980-05-07 Manufacture of cold rolled steel plate Granted JPS56156718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020780A JPS56156718A (en) 1980-05-07 1980-05-07 Manufacture of cold rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020780A JPS56156718A (en) 1980-05-07 1980-05-07 Manufacture of cold rolled steel plate

Publications (2)

Publication Number Publication Date
JPS56156718A JPS56156718A (en) 1981-12-03
JPS6250530B2 true JPS6250530B2 (en) 1987-10-26

Family

ID=13135463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020780A Granted JPS56156718A (en) 1980-05-07 1980-05-07 Manufacture of cold rolled steel plate

Country Status (1)

Country Link
JP (1) JPS56156718A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133410A (en) * 1978-04-08 1979-10-17 Nippon Steel Corp Production of cold rolled steel sheets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133410A (en) * 1978-04-08 1979-10-17 Nippon Steel Corp Production of cold rolled steel sheets

Also Published As

Publication number Publication date
JPS56156718A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
JP4809664B2 (en) Method for producing low-carbon steel cold-rolled steel strip with excellent surface smoothness
US1946766A (en) Finishing ferrous sheet material
JPS62253732A (en) Production of austenitic stainless steel strip and sheet having excellent polishability
JPS6250530B2 (en)
EP0434849B1 (en) Method of producing steel sheets for porcelain enamelling having improved enamel adhesion property
JPS6138270B2 (en)
JPS5944922B2 (en) Manufacturing method of cold rolled steel sheet
JPS6338405B2 (en)
JPH11279781A (en) Production of austenitic stailness steel plate not having pattern on surface
JPS583924A (en) Production of cold rolled steel plate
JP2001293515A (en) Highly efficient and smooth descaling method
JP3374961B2 (en) Method and apparatus for removing surface oxide film from copper alloy
JP3241240B2 (en) Method for producing pickled steel sheet preventing occurrence of surface macro unevenness
JPS5850315B2 (en) Netsukan Atsuen Stainless Steel Koutaino Datsu Scale Hohou
JPS5849621B2 (en) Manufacturing method of cold rolled steel sheet
JPS61199084A (en) Manufacture of cr stainless steel sheet
JPH07228958A (en) Production of pure titanium sheet for industry
JPS62260021A (en) Production of stainless steel strip and steel sheet having excellent polishing property
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic
JPS633010B2 (en)
JPS63293173A (en) Production of enamel
JPS62284056A (en) Pretreatment of titanium and titanium alloy before heating
JPH11156427A (en) Descaling method for hot rolled plate
JPH0517888A (en) Manufacture of stainless steel strip
CN115770796A (en) Method for green and clean surface treatment of steel plate iron scale