JPS6250455A - Coating method with ceramic - Google Patents

Coating method with ceramic

Info

Publication number
JPS6250455A
JPS6250455A JP60190497A JP19049785A JPS6250455A JP S6250455 A JPS6250455 A JP S6250455A JP 60190497 A JP60190497 A JP 60190497A JP 19049785 A JP19049785 A JP 19049785A JP S6250455 A JPS6250455 A JP S6250455A
Authority
JP
Japan
Prior art keywords
valve
ceramic
coating
spraying
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60190497A
Other languages
Japanese (ja)
Inventor
Yuji Takahashi
勇二 高橋
Hiroshi Sakaida
坂井田 博
Gunji Ueno
植野 軍二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANMETA ENG KK
Cosmo Co Ltd
Original Assignee
KANMETA ENG KK
Cosmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANMETA ENG KK, Cosmo Co Ltd filed Critical KANMETA ENG KK
Priority to JP60190497A priority Critical patent/JPS6250455A/en
Publication of JPS6250455A publication Critical patent/JPS6250455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain a tough ceramic coating layer having high adhesion, superior heat, corrosion and wear resistances and high hardness by thermally spraying a composite material consisting of ceramics and a polymer on a surface to be processed. CONSTITUTION:The surface of a material to be processed is ground according to the thickness of a coating layer to be formed and it is roughened by blasting or other method. After an underlayer is preferably formed by thermally spraying composite Ni-Al powder or the like, a composite material consisting of ceramics such as Cr2O3, Cr2O3-SiO2, other metallic oxide, TiC, other metallic carbide, ZrB2 or other metallic boride and a polymer such as polypropylene resin or silicone resin is thermally sprayed with plasma, a flame or the like. The surface of the resulting ceramic layer is treated with a pore sealing agent such as epoxy resin to seal the pores and the coated material is subjected to finish working to prescribed dimensions.

Description

【発明の詳細な説明】 (イ)発明の目的 (産業上の利用分野) 本発明は堅牢なセラミックコーティングを施す方法に関
する。より詳しく云うと、従来用いられているセラミッ
クコーティングよりモ硬くかつ耐蝕性、耐摩耗性に優れ
るセラミックコーティングを施す方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention (Field of Industrial Application) The present invention relates to a method of applying a robust ceramic coating. More specifically, the present invention relates to a method of applying a ceramic coating that is harder and has better corrosion resistance and wear resistance than conventionally used ceramic coatings.

(従来の技術) 石油精製装置、石油化学装置などに設けられている弁の
いくつかは、高温の流体あるいは腐蝕性成分や固形粒子
を含有する流体を扱ったシ、高差圧下で操作されるとい
った苛酷な条件下で使用されている。たとえば石油留分
の水素化精製装置では多量の硫化水素およびアンモニア
、そしテ少量ではあるが腐蝕性の強いハロゲンを含有す
る水溶液が取扱われているが、この水溶液を扱う液面制
御弁は、弁の入口、出口の差圧が約50 Ky/ cr
!Gの条件下で使用されており、この調節弁は溶液の侵
蝕および腐蝕による内弁の損傷のため短期間のうちに全
閉時の閉止性(漏洩がないこと)が悪くなり、制御能力
を失なって、製品の品質および機器の安全対策上にも悪
影響を及ぼすので、内弁を取替えざるを得なくなる。と
ころで、従来、(1)  高差圧下あるいは腐蝕雰囲気
下で使用される調節弁の内弁の腐蝕、摩耗の防止には、
一般に金属材料のステライ) (Co−Cr−W−Nb
系コバルト合金)を用いステンレス鋼製の内弁にステラ
イト溶着を施したものが使用に供されている。
(Prior Art) Some valves installed in petroleum refineries, petrochemical equipment, etc. handle high-temperature fluids or fluids containing corrosive components or solid particles, and are operated under high differential pressure. It is used under harsh conditions. For example, hydrorefining equipment for petroleum fractions handles aqueous solutions containing large amounts of hydrogen sulfide and ammonia, as well as small amounts of highly corrosive halogens. The differential pressure between the inlet and outlet is approximately 50 Ky/cr
! This control valve is being used under conditions of G, and due to corrosion of the solution and damage to the inner valve due to corrosion, the sealing performance (no leakage) when fully closed deteriorates in a short period of time, and the control ability is lost. This will have a negative impact on product quality and equipment safety, making it necessary to replace the inner valve. By the way, conventionally, (1) to prevent corrosion and wear of the inner valve of a control valve used under high differential pressure or corrosive atmosphere,
In general, the metal material Stellai) (Co-Cr-W-Nb
A stainless steel inner valve with stellite welding is available.

しかしながら上述、苛酷な条件下における調節弁に対し
ステライト被覆を施して硬度を上げても腐蝕、侵蝕がみ
られ、全閉時の漏洩量が多く、制御特性が悪くなって長
期間の使用に耐ええない。
However, as mentioned above, even if the control valve is coated with stellite to increase its hardness under severe conditions, corrosion and erosion are observed, the amount of leakage when fully closed is large, and the control characteristics deteriorate, making it difficult to withstand long-term use. No.

ステライト溶着を施した新品の内弁でも2,3ケ月程度
で調節弁のリーク規定値(定格値の0.01%以下)を
大きく超え、制御弁の本来の目的である制御機能がなく
なり、その都度同種の弁棒、弁座を購入し取替更新しな
ければならず、その管理が面倒でちり、費用もかさむ。
Even with a new inner valve that has been welded with stellite, the leakage will greatly exceed the control valve's specified leakage value (less than 0.01% of the rated value) within a few months, and the original purpose of the control valve, the control function, will be lost. It is necessary to purchase and replace the same type of valve stem and valve seat each time, and managing them is troublesome, tidy, and expensive.

また、 (2)弁に耐蝕性、耐摩耗性をもたせるため内弁の被覆
方法として、従来自溶合金溶射(JISH8303)に
よるニッケル基、コバルト基、タフゲスフンカーバイド
基などの被覆が用いられている。この方法は母材(ステ
ンレス鋼材または炭素鋼材)の必妥部分に溶射被膜を施
して、溶射後に約1000〜1100℃の温度に加熱溶
融させて母材に溶着させる方法である。
(2) In order to provide the valve with corrosion resistance and wear resistance, conventional coatings of nickel, cobalt, or tuff-based carbide by self-fluxing alloy thermal spraying (JISH8303) have been used to coat the inner valve. There is. In this method, a thermal spray coating is applied to the necessary parts of a base material (stainless steel material or carbon steel material), and after the thermal spraying, the coating is heated and melted at a temperature of approximately 1000 to 1100 DEG C. to be welded to the base material.

この方法の特徴は、溶射皮膜にピンホールがなく耐蝕、
耐摩耗性皮膜として良好な点であるが、難点は溶射後皮
膜を高温度に加熱して溶融させるため・母材に歪、変質
、収縮が生じることである。
The feature of this method is that the thermal spray coating has no pinholes and is corrosion resistant.
Although it is good as a wear-resistant coating, the disadvantage is that the coating is heated to high temperature and melted after thermal spraying, which causes distortion, alteration, and shrinkage of the base material.

したがって自溶合金溶射を施すときは母材に寸法上の相
当の余裕が必要でちる。この方法は補修のため再加工を
必要とするときは、母材に更に歪と変質と収縮を生じ原
形に復元させることが困難なだめ、新作時に限って行わ
れる。
Therefore, when spraying a self-fusing alloy, a considerable amount of dimensional allowance is required in the base material. When reprocessing is required for repair, this method causes further distortion, alteration, and shrinkage of the base material, making it difficult to restore it to its original shape, so it is only used when creating new pieces.

(3)上述のとおり、自溶合金溶射または溶接溶着を用
いて硬質皮膜を、弁棒、弁座に施した場合、そこが摩滅
、損傷しても、その補修が困難でちる。
(3) As mentioned above, when a hard coating is applied to a valve stem or valve seat using self-fusing alloy thermal spraying or welding, even if the coating becomes worn out or damaged, it is difficult to repair it.

収縮した母材は溶接肉盛法や自溶合金溶射で原形に復元
したとしても、機械加工費および材料費が増大1.経済
的に年別となる。
Even if the shrunken base metal is restored to its original shape by weld overlay or self-flux alloy spraying, machining costs and material costs will increase.1. Economically, it is determined by year.

また、耐用2,3ケ月程度の内弁の耐久性を伸ばすため
ステライト被覆を施す際、タングステンカーバイドを添
加剤として加えて耐摩耗性を大きくすることも考えられ
るが、水酸化アンモニウムや硫化水素等の取扱いを含む
環境には不適である。
In addition, when applying Stellite coating to extend the durability of the inner valve, which lasts about 2 to 3 months, it is possible to add tungsten carbide as an additive to increase wear resistance, but ammonium hydroxide, hydrogen sulfide, etc. unsuitable for environments involving the handling of

(発明が解決しようとする問題点) そこで本発明者らは、上述の問題点がなく、シかも苛酷
な条件下においても長期間の使用に耐える弁を得るため
種々、試験、研究の結果、弁類の内弁に特定のセラミッ
クコーティングを施したものを使用すれば、はぼ、この
問題点が解決できること、また、このセラミックコーテ
ィングを施す方法は弁類のみならず、この種苛酷な条件
の許で使用される他の物品にも適用できることを発見し
て、次に述べるような結果を得だ。
(Problems to be Solved by the Invention) The present inventors have conducted various tests and research to obtain a valve that does not have the above-mentioned problems and can withstand long-term use even under harsh conditions. This problem can be solved by using a specific ceramic coating on the inner valve of the valve, and the method of applying this ceramic coating can be used not only for valves but also for applications under such harsh conditions. They discovered that the method can be applied to other items used in public transport, and obtained the following results.

まだ、従来セラミック溶射は、セラミック自体の多孔質
による気密性の問題があり、弁のように気密性が要求さ
れるものについてはセラミックコーティングは採用でき
ないと考えられていたところ予想に反し、この問題も解
決できることが判明した。
However, conventional ceramic spraying has problems with airtightness due to the porosity of the ceramic itself, and it was thought that ceramic coatings could not be used for items that require airtightness, such as valves, but contrary to expectations, this problem was solved. It turns out that it can also be solved.

(ロ)発明の構成 (問題点を解決するだめの手段) 上記目的を達成するため、本発明は、 1 被加工面にセラミック材料とポリマーとよシなる複
合材料を溶射することを特徴とする、セラミックコーテ
ィングを施す方法。
(B) Structure of the invention (means to solve the problem) In order to achieve the above object, the present invention is characterized by: 1. A composite material made of a ceramic material and a polymer is thermally sprayed onto the surface to be processed. , a method of applying ceramic coating.

を構成要件として具備している。It has as a configuration requirement.

また、本発明は、被加工面にセラミック材料とポリマー
とよシなる複合材料を溶射することを特徴とする部材表
面の腐蝕、摩耗の防止方法。
The present invention also provides a method for preventing corrosion and wear on the surface of a member, which comprises thermally spraying a composite material of a ceramic material and a polymer onto the surface to be machined.

を提供するものである。It provides:

以下に、その技術の詳細について説明する。The details of this technology will be explained below.

(1)本発明方法の対象とされる機械、部品本発明方法
は、 (al  金属性の内弁を有する弁類、たとえば球形弁
、アングル弁、バタフライ弁、ダイアフラム弁、ボール
弁、ゲート弁、Z形弁などに適用することができ、特に
使用上、制御性が要求される調節弁弁座)の接触面(当
り面)およびその近傍であるが、必要に応じて弁のその
他の部分にも施してもよい。内弁の材質は金属製のもの
、たとえばステンレス鋼製のものに適用できるが、炭素
鋼製、鋳鉄製等にも適用できる。内弁の材質は鉄製ある
いは鋼製のものに適用できるが、その他の金属製のもの
にも適用できる。
(1) Machines and parts targeted by the method of the present invention The method of the present invention includes (al) Valves having a metallic inner valve, such as spherical valves, angle valves, butterfly valves, diaphragm valves, ball valves, gate valves, It can be applied to Z-type valves, etc., and is particularly applicable to the contact surface (abutment surface) of the control valve seat (control valve seat) where controllability is required during use, and its vicinity, but it can also be applied to other parts of the valve as necessary. may also be applied. The material of the inner valve can be metal, for example, stainless steel, but carbon steel, cast iron, etc. can also be used. The inner valve can be made of iron or steel, but it can also be made of other metals.

(b)本発明は弁類のみならず、堅牢さ、特に耐蝕性、
耐侵蝕性、耐摩耗性が要求される金属製のどのような物
品にも適用できる。その例としてはポンプ、エンジン、
燃焼機器、タービン等の部品などがあげられる。
(b) The present invention is applicable not only to valves but also to robustness, especially corrosion resistance.
It can be applied to any metal article that requires corrosion resistance and wear resistance. Examples include pumps, engines,
Examples include parts for combustion equipment, turbines, etc.

(2)次に、本発明方法によるセラミックコーティング
の施工方法について説明する。
(2) Next, a method for applying a ceramic coating according to the method of the present invention will be explained.

ただし、施工対象物として、弁を選択した場合について
主として述べることにするが、他の機械、部品を対象物
にしたときも同様である。
However, although we will mainly discuss the case where a valve is selected as the object to be constructed, the same applies to cases where other machines or parts are the object.

(a)  セラミック溶射プロセスの概要セラミック溶
射する前に、まず被加工材(母材)の加工面を被覆層の
厚みに応じて研削し、プラスト法で表面清浄化と粗面化
とを行ない、下地溶射として金属溶射を行なうことが好
ましく、仕上げ溶射としてセラミック溶射を行なった後
に、まずセラミック表面を封孔処理し、最後に研磨加工
して規定寸法に仕上げ加工する。
(a) Overview of the ceramic spraying process Before ceramic spraying, the processed surface of the workpiece (base material) is first ground according to the thickness of the coating layer, and the surface is cleaned and roughened using the Plast method. It is preferable to perform metal thermal spraying as the base thermal spraying, and after performing ceramic thermal spraying as the final thermal spraying, the ceramic surface is first subjected to sealing treatment and finally polished to a specified size.

また、下地溶射と仕上げ溶射との間に中間溶射としてサ
ーメット溶射を行なうことが好ましい。
Further, it is preferable to perform cermet thermal spraying as an intermediate thermal spraying between base thermal spraying and finishing thermal spraying.

(b)  母材面の加工(ブラスト加工を含む)母材の
加工面の研削は、最終的に研磨加工して仕上げたとき規
定寸法になるようにするため行なうもので、研削する厚
みは被覆層の厚みに応じた量とし、通常5〜2000μ
m1特に50〜1000μm程度の厚さ研削する。プラ
スト法による表面清浄は、母材表面を脱脂、汚物除去、
するため、常法により研削材、たとえば≠10〜220
番、特に+20〜80番程度の粒度を有する研削材(た
とえばアルミナ、シリカアルミナ粒等)と、プラスト法
による表面の粗面化は、表面積を大きくして被覆層との
結合をよくするためのもので、常法により研削材、′宛
とえば≠10〜220番、特にΦ10〜60番程度の砺
度の粒子(たとえばアルミナ、シリカアルミナ粒等)と
、それぞれ3〜20 Kp/c!程度、好ましくは6 
Ky/cr&の空気流を吹きつけることにより行なうこ
とができる。粗面化の程度は40〜200μmRzとす
ることが好ましい。
(b) Machining of the base metal surface (including blasting) Grinding of the machined surface of the base metal is performed so that it will have the specified dimensions when it is finally polished and finished, and the thickness to be ground is determined by the thickness of the coating. The amount depends on the thickness of the layer, usually 5 to 2000μ
m1 is particularly ground to a thickness of about 50 to 1000 μm. Surface cleaning using the Plast method degreases the surface of the base material, removes dirt,
In order to
In particular, abrasive materials with a grain size of +20 to +80 (e.g. alumina, silica alumina grains, etc.) and roughening of the surface using the plasto method are used to increase the surface area and improve bonding with the coating layer. The abrasive material, for example, ≠ ≠ 10 to 220, especially Φ10 to 60 particles (for example, alumina, silica-alumina grains, etc.), is ground by a conventional method with a grinding material of 3 to 20 Kp/c! degree, preferably 6
This can be done by blowing an air stream of Ky/cr&. The degree of surface roughening is preferably 40 to 200 μmRz.

(c)下地溶射 −Afi、 N1−Cr−Fe−Afi、 Ni−Mo
−Afi混合物のような線状、粉末状あるいは地金状の
金属材料を用い、ガス燃焼炎あるいはプラズマアーク炎
により加工面に溶射する。特に好ましい金属材料はニッ
ケル系のもの殊にMo −Afi−Ni混合物(Mo2
〜6%。
(c) Base thermal spraying-Afi, N1-Cr-Fe-Afi, Ni-Mo
- A metal material in the form of a wire, powder or bare metal, such as an Afi mixture, is thermally sprayed onto the work surface using a gas combustion flame or a plasma arc flame. Particularly preferred metal materials are nickel-based materials, especially Mo-Afi-Ni mixtures (Mo2
~6%.

Afi3〜8%、残りN1)tたはAfi−Ni混合糎
ムu3〜15係)である。
Afi3-8%, remaining N1)t or Afi-Ni mixed paste U3-15).

(d)  中間溶射 下地溶射と仕上げ溶射との間に中間溶射を行なうことは
耐蝕性を向上させ、また緩衝作用が付与されるので好ま
しい。中間溶射は上述した金属材料とセラミック材料と
の混合物(サーメット)からなる粉末状あるいはコード
状の複合材料を用い、ガス燃焼炎あるいはプラズマ炎に
より溶射する〇(e)  仕上げ溶射 仕上げ溶射は本発明に必須のセラミックコーティングで
あり、特に耐蝕性と耐摩耗性とを付与するためのもので
、AflzOa、 CrzOa、 Zr0z、 TiO
2゜CrzO3−5iOz、 Al1zoa−TiOz
、 CrzO「510g −TiC等の金属酸化物ある
いはTiC,ZrC,CrC,CrC−NiCr等の炭
化物あるいはCrB、 ZrBs等のホウ化物の粉末状
、コード状あるいは線状のセラミック材料を用い、ガス
燃焼炎あるいはプラズマ炎により加工面に溶射する。好
適なセラミック材料はCr 2031CrzO3−Si
(h(SiOz 2〜10%、残りCr 203 )で
ある。
(d) Intermediate thermal spraying It is preferable to perform intermediate thermal spraying between the base thermal spraying and the final thermal spraying because it improves corrosion resistance and provides a buffering effect. Intermediate thermal spraying uses a powdered or cord-shaped composite material made of a mixture (cermet) of the metal material and ceramic material mentioned above, and is thermally sprayed using a gas combustion flame or plasma flame. Essential ceramic coatings, especially for imparting corrosion and wear resistance, such as AflzOa, CrzOa, ZrOz, TiO
2゜CrzO3-5iOz, Al1zoa-TiOz
, CrzO"510g - Using powdered, corded or linear ceramic materials such as metal oxides such as TiC, carbides such as TiC, ZrC, CrC, CrC-NiCr, or borides such as CrB and ZrBs, a gas combustion flame is used. Alternatively, it is sprayed onto the work surface using a plasma flame.A suitable ceramic material is Cr2031CrzO3-Si.
(h(SiOz 2-10%, remaining Cr203).

本発明方法では、上記セラミック材料に1〜20重量%
程度のポリマーもしくは樹脂たとえばポリエチレン、ポ
リプロピレンのようなポリオレフィン類、酢酸ビニール
、ラウリル酸ビニールのようなポリビニールエステル類
、ポリメチルアクリレート、ポリメチルメタクリレート
、ポリアクリル酸カーボネート、フッ素樹脂、ポリエス
テル類、ポリアミド類、ポリイミド類、フェノール樹脂
、エリア樹脂、メラミン樹脂、フラン樹脂、不飽和ポリ
エステル樹脂、エポキシ樹脂、ケイ素樹脂、ポリウレタ
ン樹脂、キシレン樹脂、トルエン樹脂等を混合したもの
を溶射する。
In the method of the present invention, 1 to 20% by weight of the ceramic material is added to the ceramic material.
Polymers or resins such as polyethylene, polyolefins such as polypropylene, polyvinyl esters such as vinyl acetate and vinyl laurate, polymethyl acrylate, polymethyl methacrylate, polyacrylic acid carbonate, fluororesins, polyesters, polyamides , polyimides, phenolic resins, area resins, melamine resins, furan resins, unsaturated polyester resins, epoxy resins, silicone resins, polyurethane resins, xylene resins, toluene resins, etc. are mixed and sprayed.

これら固形樹脂は微粉末状(たとえば0.1〜10μ程
度)のものが好ましい。セラミック材料にポリマーを添
加して溶射すると生成セラミック層の硬度は、ポリマー
を添加しない場合に較べて、約1.5倍以上であり、耐
摩耗性が向上する。ポリマーは溶射皮膜の過度の酸化を
防止し、まだ皮膜中にカーボン状の残渣を残さない。
These solid resins are preferably in the form of fine powder (for example, about 0.1 to 10 microns). When a polymer is added to a ceramic material and thermal sprayed, the hardness of the resulting ceramic layer is about 1.5 times or more than when no polymer is added, and the wear resistance is improved. The polymer prevents excessive oxidation of the sprayed coating and still does not leave carbon-like residue in the coating.

下地溶射層、中間溶射層および仕上げ溶射層の厚みはい
ずれも2〜1500μm1特に10〜500μm程度と
することが好ましく、これらの層の合計厚みは5〜20
00μm1特に20〜600μm程度とすることが好ま
しい。下地溶射層、中間溶射層および仕上げ溶射層の特
に好ましい厚みは、それぞれ5〜150μm 5〜15
0μm150〜500μmである。
It is preferable that the base sprayed layer, intermediate sprayed layer, and final sprayed layer all have a thickness of 2 to 1,500 μm, especially about 10 to 500 μm, and the total thickness of these layers is 5 to 20 μm.
00 μm1, particularly preferably about 20 to 600 μm. Particularly preferable thicknesses of the base sprayed layer, intermediate sprayed layer, and finish sprayed layer are each 5 to 150 μm 5 to 15
0 μm and 150 to 500 μm.

(f)  封孔処理 次に溶射層の上に封孔処理を行なう。封孔処理は、皮膜
中の気孔に充分含浸させるため、溶剤もしくはビヒクル
中に希釈された封孔剤を塗布し、乾燥させる。常温で乾
燥が遅いものは、各々の封孔剤の許容温度以下での加熱
によって硬化させてもよい。封孔剤の例としては硫酸バ
リウム、酸化チタン、クレー、シリカ白、アルミナ白、
ケイ酸カルシウム等の無機顔料および前述したポリマー
あるいは樹脂等があり、これらは溶剤あるいはビヒクル
、たとえばメタノール、エタノール、オクタンールのよ
うなアルコール類、アセトン、メチルエチルケトンのよ
うなケトン類、テトラヒドロフラン、ミネラルスピリッ
ト、ナフサ、テレピン油、カルピトール類、セロソルブ
類、ボイル油、水等に溶解させ、あるいは分散させて用
いる。特に好ましい封孔剤はシリコン樹脂、フラン樹脂
、封孔処理したままの皮膜の表面は、気密が必要なとき
には砥石、たとえばダイヤモンド砥石あるいはシリコン
カーバイド砥石で研削・研磨を行ない、最終寸法に仕上
げる。
(f) Sealing treatment Next, sealing treatment is performed on the sprayed layer. In the pore sealing treatment, a pore sealant diluted in a solvent or vehicle is applied and dried in order to sufficiently impregnate the pores in the film. Those that dry slowly at room temperature may be cured by heating at a temperature below the allowable temperature of each sealant. Examples of sealants include barium sulfate, titanium oxide, clay, silica white, alumina white,
These include inorganic pigments such as calcium silicate and the aforementioned polymers or resins, which can be used in solvents or vehicles such as alcohols such as methanol, ethanol and octanol, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran, mineral spirits, and naphtha. , turpentine oil, calpitols, cellosolves, boiled oil, water, etc. or dispersed therein. Particularly preferred sealing agents are silicone resins and furan resins.When airtightness is required, the surface of the film after sealing is ground and polished to the final dimensions using a grindstone, such as a diamond grindstone or a silicon carbide grindstone.

このようにして作られた溶射皮膜は硬度も高く、また母
材との密着力も優れた(たとえば300 Ky/d以上
)ものとなる。最終寸法の精密さが要求されないときは
、最初の研削あるいは最後の研磨加工は省略することが
でき、気密性が要求されないときは封孔剤による封孔処
理は省略することができる。
The sprayed coating thus produced has high hardness and excellent adhesion to the base material (for example, 300 Ky/d or more). When final dimensional precision is not required, the initial grinding or final polishing process can be omitted, and when airtightness is not required, the sealing treatment with a sealant can be omitted.

(作 用) 以上のとおりであるので、本発明方法によれば、セラミ
ック溶射皮膜の硬度が、一般同質のセラミック皮膜の倍
近くに向上し、また母材との密着力も優れたものとなる
から、特に苛酷な条件の許における使用のため耐摩耗性
、耐蝕性等が要求される部位に施すことによって、機械
部品の耐用時間を飛躍的に増大させ、設備の保守、管理
を容易かつ経済的にできるよう改善することができる。
(Function) As described above, according to the method of the present invention, the hardness of the ceramic thermal spray coating is improved to nearly twice that of a general homogeneous ceramic coating, and the adhesion to the base material is also excellent. By applying this to parts that require wear resistance, corrosion resistance, etc. for use under particularly harsh conditions, it dramatically increases the service life of mechanical parts and makes equipment maintenance and management easier and more economical. It can be improved to the extent possible.

また、本発明方法によるセラミックコーチイン響を与え
ることがないので、各種廉価な金属を母材として選択す
ることができ、しかも再補°修使用が可能であるので施
工による経済的効果は、犬なるものがある。
In addition, since the method of the present invention does not cause the ceramic coach-in effect, various inexpensive metals can be selected as the base material, and since it can be used for re-repair, the economical effect of construction is There is something.

なお、この点について詳しくは(ハ)発明の効果の欄の
記載も参照されたい。
For details on this point, please also refer to the description in the column (c) Effects of the invention.

(実施例) 〔その1〕 本発明方法を弁に適用した一実施例について図面により
説明する。第1図は自動調節弁(球形弁)の弁部分の縦
断面図を示す(弁部分以外の、調節機構部分は本発明と
直接関係か々いので省略した。)。
(Example) [Part 1] An example in which the method of the present invention is applied to a valve will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view of a valve portion of an automatic control valve (spherical valve) (control mechanism parts other than the valve portion are omitted because they are directly related to the present invention).

図中1は弁体、2は弁座(シートリング)、3は弁棒(
プラグ)、4は弁軸、5は弁棒3を弁軸4に止めるビン
、6はボンネット、7はガイドブッシング、8はガスケ
ット、9.10はボンネット6を弁体1に固定するボル
トである。(弁自体の構造は従来公知のものと同じであ
り、その構造は、たとえば「最新制御システムシリーズ
第1巻計装制御システム」石井保著、昭和55年1月3
1日電気書院発行の第25頁、第320〜326頁、お
よび「化学工学便覧」化学工学協会綿、昭和43年5月
10日丸善株式会社より発行の第186〜187頁など
に詳しい。)本発明方法は従来公知の弁の少なくとも内
弁の接触面に前述したセラミックコーティングを施す。
In the figure, 1 is the valve body, 2 is the valve seat (seat ring), and 3 is the valve stem (
4 is a valve stem, 5 is a pin that fixes the valve stem 3 to the valve stem 4, 6 is a bonnet, 7 is a guide bushing, 8 is a gasket, 9.10 is a bolt that fixes the bonnet 6 to the valve body 1 . (The structure of the valve itself is the same as that of the conventionally known one, and its structure can be seen, for example, in "Latest Control System Series Volume 1 Instrumentation Control System" by Tamotsu Ishii, January 3, 1981.
For details, see pages 25 and 320-326 published by Denkishoin on the 1st, and pages 186-187 of "Chemical Engineering Handbook" published by the Chemical Engineering Association, published by Maruzen Co., Ltd. on May 10, 1964. ) The method of the present invention applies the above-mentioned ceramic coating to at least the contact surface of the inner valve of a conventionally known valve.

第1図においてセラミックコーティングヲ施ス部位は、
斑点を付した弁棒3の表面および弁座2の斑点を付した
上部内表面である。具体的にはこの部位を研削し、プラ
スト法により前処理しく粗面度90μmRz )、N1
−AQ複合粉末(Ni 85%、 Af115チ)を2
5μの厚みで金属溶射し、上記と同じN1−A、IL複
合粉末とCrzOa−ポリメチルアクリレート樹脂混合
粉末(樹脂粉末6wt%)との等重量混合物を25μの
厚みでサーメット溶射し、上記と同じCr 203−ポ
リメチルアクリレート樹脂混合粉末を200μmの厚み
にセラミック溶射し、エポキシ樹脂封孔剤を塗布して8
0℃にて焼成し、最後に研磨加工して規定寸法に仕上げ
た。
In Figure 1, the areas where the ceramic coating is applied are as follows:
The spotted surface of the valve stem 3 and the spotted upper inner surface of the valve seat 2. Specifically, this part was ground and pretreated using the Plast method to obtain a roughness of 90 μm (Rz), N1
-AQ composite powder (85% Ni, 115% Af)
Metal spraying was applied to a thickness of 5μ, and cermet spraying was performed to a thickness of 25μ with an equal weight mixture of the same N1-A, IL composite powder as above and CrzOa-polymethylacrylate resin mixed powder (resin powder 6wt%), and the same as above. Cr 203-polymethyl acrylate resin mixed powder was ceramic sprayed to a thickness of 200 μm, and an epoxy resin sealant was applied.
It was fired at 0°C and finally polished to the specified dimensions.

このようにして内弁をセラミックコーティング加工した
第1図に示す弁を液面調節弁として用いた。扱った液体
は硫化水素26wt%、アンモニア11係、塩素分0.
2 wt ppmを含有するpH9,3の水溶液であシ
、弁は流量251/hr、圧力48 KP/citG 
、  差圧47 Ky/crlG 、温度38℃であっ
た。12ケ月運転後も上記調節弁は正常に作動した。
The valve shown in FIG. 1, whose inner valve was coated with ceramic in this manner, was used as a liquid level control valve. The liquid we handled contained 26wt% hydrogen sulfide, 11% ammonia, and 0% chlorine.
An aqueous solution of pH 9.3 containing 2 wt ppm, the valve has a flow rate of 251/hr and a pressure of 48 KP/citG.
, the differential pressure was 47 Ky/crlG, and the temperature was 38°C. The above control valve operated normally even after 12 months of operation.

比較例1 比較のためセラミックコーティングの代りにステライト
溶着を施した以外は実施例〔その1〕の弁と同じ構造の
弁を使用し、実施例〔その1〕と同じ条件の許で液面調
節弁として使用した。3ケ月後に弁は正常に作動しなく
なり、取替えざるを得なくなった。
Comparative Example 1 For comparison, a valve with the same structure as the valve of Example [Part 1] was used, except that Stellite welding was applied instead of the ceramic coating, and the liquid level was adjusted under the same conditions as Example [Part 1]. Used as a valve. Three months later, the valve stopped working properly and had to be replaced.

〔その2〕 N1−AQ複合粉末の代シにNi−Afi−Mo複合粉
末(M。
[Part 2] Ni-Afi-Mo composite powder (M.

5%、Afi6%、残1) Ni )を使用し、Cra
Oa−ポリメチルアクリレート樹脂混合粉末の代シにC
r20a−51Ch−ポリメチルメタクリレート樹脂混
合粉末(5ins 7%、樹脂7チ、残l) Crab
s)を使用し、エポキシ樹脂封孔剤の代りにフェノール
樹脂封孔剤を使用した以外は、実施例〔その1〕と同様
にして実施例〔その1〕に記載と同様の調節弁について
その内弁にセラミックコーティングを施した。
5%, Afi 6%, remaining 1) using Ni), Cra
C in place of Oa-polymethyl acrylate resin mixed powder
r20a-51Ch-polymethyl methacrylate resin mixed powder (5ins 7%, resin 7ch, remainder 1) Crab
The same control valve as described in Example [Part 1] was prepared in the same manner as in Example [Part 1], except that s) was used and a phenolic resin sealant was used instead of the epoxy resin sealant. Ceramic coating is applied to the inner valve.

この調節弁を実施例〔その1コと同じ条件の許で使用し
たところ、12ケ月後も正常に作動した。
When this control valve was used under the same conditions as the example (1), it operated normally even after 12 months.

〔その3〕 の代シにAnzOa−TiO2−ポリプロピレン樹脂(
TiCh8係、樹脂10%、残り AfizOa )混
合粉末を使用し、エポキシ樹脂封孔剤の代りに硫酸バリ
ウ・ム封孔剤を使用した以外は、実施例〔その1〕と同
様にして実施例〔その1〕に記載と同様の調節弁につい
てその内弁にセラミックコーティングを施した。
[Part 3] AnzOa-TiO2-polypropylene resin (
Example 1 was carried out in the same manner as Example 1, except that TiCh 8, resin 10%, remainder AfizOa) mixed powder was used, and barium sulfate sealant was used instead of the epoxy resin sealant. A ceramic coating was applied to the inner valve of a control valve similar to that described in Part 1].

この調節弁を実施例〔その1〕と同じ条件の許で使用し
たところ、11ケ月間正常に作動した。
When this control valve was used under the same conditions as in Example [Part 1], it operated normally for 11 months.

〔その4〕 CrzOa−ポリメチルアクリレート樹脂混合粉末の代
シに、CrC−NiCr−ケイ素樹脂混合粉末(Ni1
0%。
[Part 4] Instead of the CrzOa-polymethylacrylate resin mixed powder, CrC-NiCr-silicon resin mixed powder (Ni1
0%.

Cr 10%、樹脂8%、残シCrC−)を使用し、エ
ポキシ樹脂封孔剤の代りにシリコン樹脂封孔剤を使用し
た以外は、実施例〔その1〕と同様にして実施例〔その
1〕に記載と同様の調節弁について、その内弁にセラミ
ックコーティングを施した。この調節弁を実施例〔その
1〕と同じ条件の許で使用したところ、12ケ月間正常
に作動した。
Example [Part 1] was carried out in the same manner as Example [Part 1], except that 10% Cr, 8% resin, and the balance CrC-) were used, and a silicone resin sealant was used instead of the epoxy resin sealant. A ceramic coating was applied to the inner valve of a control valve similar to that described in 1]. When this control valve was used under the same conditions as in Example [Part 1], it operated normally for 12 months.

〔その5〕 中間溶射としてのサーメット溶射を行なわなかつた以外
実施例〔その1〕と同様にして調節弁について、その内
弁にセラミックコーティングヲ族した。この調節弁を実
施例〔その1〕と同じ条件の許で使用したところ、10
ケ月間正常に作動した。
[Part 5] A ceramic coating was applied to the inner valve of a control valve in the same manner as in Example [Part 1] except that cermet spraying was not performed as intermediate thermal spraying. When this control valve was used under the same conditions as in Example [Part 1], 10
It worked normally for months.

比較例2 CrOa−ポリメチルアクリレート樹脂混合粉末の代り
にCr 203粉末を使用した以外は実施例〔その1〕
と同様にして調節弁について、その内弁にセラ、ミンク
コーティングを施した。この調節弁を実″へ 施例〔その1〕と同じ条件の許で使用したところ、5チ
月間正常に作動した。
Comparative Example 2 Example [Part 1] except that Cr 203 powder was used instead of the CrOa-polymethylacrylate resin mixed powder
Cera and mink coatings were applied to the inner valve of the control valve in the same manner as above. When this control valve was used under the same conditions as in Example 1, it operated normally for 5 months.

(ハ)発明の効果 本発明により被加工面に施したセラミックコーティング
は堅牢で、セラミック層と母材(被加工面)との結合力
が強く、セラミック層は気孔が少なく、耐熱性、耐侵蝕
性、耐蝕性および耐摩耗性が優れ、硬度が高い。被加工
物はステンレス鋼製のもののみならず、安価な炭素鋼製
、鋳鉄製のものも使用できる。金属溶射、サーメット溶
射およびセラミック溶射を行なう際、被加工材の温度は
低温、たとえば約30〜200℃なので、母材の歪み、
変質、収縮は殆んど起らない。また、本発明による被覆
方法は簡便に行なうことができる等々、従来手段に較べ
格別の作用、効果を奏するものである。
(c) Effects of the invention The ceramic coating applied to the workpiece surface according to the invention is robust, the bond between the ceramic layer and the base material (workpiece surface) is strong, the ceramic layer has few pores, and is heat resistant and corrosion resistant. It has excellent hardness, corrosion resistance, and wear resistance, and high hardness. The workpiece can be made not only of stainless steel, but also of inexpensive carbon steel or cast iron. When performing metal spraying, cermet spraying, and ceramic spraying, the temperature of the workpiece is low, e.g., approximately 30 to 200°C, so distortion of the base material,
Almost no deterioration or shrinkage occurs. Further, the coating method according to the present invention can be easily carried out, and has exceptional functions and effects compared to conventional means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によりセラミックコーティングを内
弁に施した弁の一例について、その縦断面図を示す。 1・・・弁体  2・・・弁座  3・・・弁棒4・・
・弁軸  6・・・ボンネット 代理人 弁理士 永 1)浩 − 第1図
FIG. 1 shows a longitudinal sectional view of an example of a valve whose inner valve is coated with a ceramic coating by the method of the present invention. 1... Valve body 2... Valve seat 3... Valve stem 4...
・Valve stem 6...Bonnet agent Patent attorney Nagai 1) Hiroshi - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、被加工面にセラミック材料とポリマーとよりなる複
合材料を溶射することを特徴とするセラミックコーティ
ングを施す方法。
1. A method of applying a ceramic coating, which is characterized by thermally spraying a composite material made of a ceramic material and a polymer onto the surface to be processed.
JP60190497A 1985-08-29 1985-08-29 Coating method with ceramic Pending JPS6250455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190497A JPS6250455A (en) 1985-08-29 1985-08-29 Coating method with ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190497A JPS6250455A (en) 1985-08-29 1985-08-29 Coating method with ceramic

Publications (1)

Publication Number Publication Date
JPS6250455A true JPS6250455A (en) 1987-03-05

Family

ID=16259074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190497A Pending JPS6250455A (en) 1985-08-29 1985-08-29 Coating method with ceramic

Country Status (1)

Country Link
JP (1) JPS6250455A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176063A (en) * 1987-12-28 1989-07-12 Toyota Motor Corp Thermal spraying material
JPH03226552A (en) * 1990-01-30 1991-10-07 Nippon Steel Corp Thermal spraying material excellent in high temperature wear resistance and build-up resistance and article coated by same
EP0897019A1 (en) * 1997-07-18 1999-02-17 FINMECCANICA S.p.A. AZIENDA ANSALDO Method and device for forming porous ceramic coatings, in particular thermal barrier coatings, on metal substrates
EP1063315A1 (en) * 1999-06-24 2000-12-27 Ford Global Technologies, Inc. Thermally sprayed articles and method of making same
JP2009524732A (en) * 2006-01-26 2009-07-02 ジオム コーポレイション Powder spray composition comprising at least two thermoplastic resins
WO2011131757A1 (en) 2010-04-23 2011-10-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a multilayer coating on a substrate surface by means of thermal spraying

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176063A (en) * 1987-12-28 1989-07-12 Toyota Motor Corp Thermal spraying material
JPH03226552A (en) * 1990-01-30 1991-10-07 Nippon Steel Corp Thermal spraying material excellent in high temperature wear resistance and build-up resistance and article coated by same
EP0897019A1 (en) * 1997-07-18 1999-02-17 FINMECCANICA S.p.A. AZIENDA ANSALDO Method and device for forming porous ceramic coatings, in particular thermal barrier coatings, on metal substrates
EP1063315A1 (en) * 1999-06-24 2000-12-27 Ford Global Technologies, Inc. Thermally sprayed articles and method of making same
US6406756B1 (en) 1999-06-24 2002-06-18 Ford Global Technologies, Inc. Thermally sprayed articles and method of making same
JP2009524732A (en) * 2006-01-26 2009-07-02 ジオム コーポレイション Powder spray composition comprising at least two thermoplastic resins
WO2011131757A1 (en) 2010-04-23 2011-10-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a multilayer coating on a substrate surface by means of thermal spraying

Similar Documents

Publication Publication Date Title
US6073648A (en) Metal element having a laminated coating
Legg et al. The replacement of electroplating
US20080182114A1 (en) Coatings, their production and use
US6186508B1 (en) Wear resistant coating for brush seal applications
JP2008144272A (en) Environmentally friendly wear resistant carbide coating
JP4546867B2 (en) Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method
AU2002100618B4 (en) Nanostructured titania coated titanium
CN109023202A (en) The structure and preparation method thereof of the compound painting-film plating layer of flame-spraying+PVD plated film
JPS6250455A (en) Coating method with ceramic
JPS6249079A (en) Valve coated with ceramic
US20230002911A1 (en) Bi-layer protective coatings for metal components
JP2007146266A (en) Corrosion protection-covered steel material and its production method
US6815099B1 (en) Wear resistant coating for brush seal applications
CN112524116B (en) Hydraulic piston rod and surface composite functional coating thereof and preparation method
JP2003193216A (en) Sprayed-deposit-coated member with excellent corrosion resistance and wear resistance, and its manufacturing method
CN110923696A (en) Laser cladding nickel-based material for surface of ball valve and additive manufacturing process thereof
CA1338111C (en) Pair of seal members of hard material having a low friction coefficient
US20030106198A1 (en) Methods of making wear resistant tooling systems to be used in high temperature casting and molding
AU2021215385A1 (en) Fuse-coated ball valve trim
US20090050314A1 (en) Surface improvement for erosion resistance
RU2192574C1 (en) Ball cock
RU67664U1 (en) GATE VALVE (OPTIONS)
RU2199613C2 (en) Method for covering components of stop valves with protective coatings (alternatives)
RU2347126C1 (en) Ball valve shut-off member and method of its production
CN116753237A (en) Novel thermal spraying water seal shaft sleeve and application thereof