JPS6250448A - High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zone - Google Patents
High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zoneInfo
- Publication number
- JPS6250448A JPS6250448A JP18940085A JP18940085A JPS6250448A JP S6250448 A JPS6250448 A JP S6250448A JP 18940085 A JP18940085 A JP 18940085A JP 18940085 A JP18940085 A JP 18940085A JP S6250448 A JPS6250448 A JP S6250448A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- less
- cracking
- affected zone
- weld heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、溶接熱影響部の耐めつきわれ性にすぐれた低
合金高張力鋼に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low-alloy high-strength steel having excellent resistance to cracking in a weld heat-affected zone.
(従来の技術)
従来より、鋼材の防錆という観点から鋼構造物に、Zn
などをめっきする手段が広く用いられている。これらめ
っきは防錆上極めて有効であるが、鋼の組成、構造物の
形状およびめっき浴への浸漬法によっては、溶接熱影響
部にわれの発生する場合があり問題視されている。(Prior art) Zn has been used in steel structures from the perspective of rust prevention of steel materials.
Plating methods such as these are widely used. These platings are extremely effective in preventing rust, but depending on the composition of the steel, the shape of the structure, and the immersion method in the plating bath, cracks may occur in the weld heat affected zone, which is considered a problem.
この現象は古くから液体金属ぜい化現象とじて知られて
いるが、近年構造物の大型化、使用鋼材の高強度化に伴
い、われ発生事例が多発し、これの改善のため種々研究
が進み、いくつかの成果が公表されている。This phenomenon has long been known as liquid metal embrittlement, but in recent years, as structures have become larger and the steel materials used have become stronger, cracks have been occurring frequently, and various studies have been conducted to improve this phenomenon. Progress has been made and some results have been published.
例えば、鉄と鋼、昭和58年3月(vot69− A5
)の364頁には、「溶接部の溶融亜鉛脆化」と題し
、溶接熱影響部における溶融亜鉛脆化に関する実験結果
が示されている。これによれば、溶融Znによる脆化感
受性は、溶接熱影響部の硬さと良好な相関があり、これ
を小さくするためには、溶接熱影響部の硬さを低下させ
ることが有効であることが明らかである。For example, Tetsu to Hagane, March 1982 (vot69-A5
), page 364 entitled ``Hot-dip zinc embrittlement in welds'' shows experimental results regarding molten-zinc embrittlement in the weld heat-affected zone. According to this, the susceptibility to embrittlement due to molten Zn has a good correlation with the hardness of the weld heat affected zone, and in order to reduce this, it is effective to reduce the hardness of the weld heat affected zone. is clear.
一方、本発明者らは、これまでに溶接熱影響部の耐めつ
きわれ性にすぐれた鋼材に関して、特開昭58−849
59号公報、特開昭59−50157号公報、特開昭5
9−126754号公報、或いは、特願昭60−733
01号などにより提案を行っている。On the other hand, the present inventors have so far reported in Japanese Unexamined Patent Application Publication No. 58-849 regarding steel materials with excellent resistance to welding heat-affected zone cracking.
No. 59, JP-A No. 59-50157, JP-A-Sho 5
Publication No. 9-126754 or Japanese Patent Application No. 1987-733
We have made proposals through issues such as No. 01.
しかし乍らこれもの提案技術によっても、めつきわれ発
生要因である溶接ビードトウ部の形状が、さらに厳しい
溶接継手、溶接入熱量の減少によろ熱影響部組織の変化
による、硬さ上昇を伴う構造部材においては、めっき施
工上の厳1−7い制約が必要であること等、われ防d一
対策上検討の余地を残すものであった。However, even with this proposed technology, the shape of the weld bead toe, which is the cause of plating, becomes more severe, and the welding joint becomes more difficult due to a decrease in welding heat input, and the structure suffers from an increase in hardness due to changes in the heat-affected zone structure. Regarding parts, there is still room for consideration in terms of prevention of cracks, such as the need for strict restrictions on plating.
(発明が解決しようとする問題点)
本発明は上記の要望に応えるべくなされたものであって
、溶接熱影響部の耐めつきわれ性にすぐれた低合金高張
力鋼の提供を目的とするものである。(Problems to be Solved by the Invention) The present invention has been made in response to the above-mentioned needs, and its purpose is to provide a low-alloy high-strength steel that has excellent resistance to cracking in the welded heat-affected zone. It is something.
(問題点を解決するための手段、作用)本発明者らは、
膨大な実験、研究の結果、めつきわれに対するTi 、
、 Ca複合添加による著しい改善効果を見出すととも
に、この場合の各種合金元素の影響を定量化することに
成功し、各合金元素間に一定の関係を満足させることに
より、鋼の溶接熱影響部の溶融Zn脆化に基づくめつき
われ性に対し、耐われ性の一層の飛躍的な向上を可能に
する従来知見にない新たな技術を見出し、本発明を完成
したものであって、その要旨とするところは、重量多で
0003〜0.15%、止0.6〜2.0%、Si
O,05〜0.30 %、 Ti O,005〜0
.030 %、 CaO,0010超〜0.0050
%以下、Al0.005〜0.100%、NO,014
%以下に、さらにCu 2%以下、Ni 2%以下、C
r0.5%以下、Mo0.5%以下、Vo、15%以下
、Nb0.15%以下、Bo、0020%以下の1種又
は2種以上を含み、残部Feおよび不可避不純物からな
り、かつT値= C+ Si/30+Mn/10− S
/2 + Cr/10 +Mo/20 +V/3 +N
b/3−2Ti +3 B<0.28を、同時に満足す
ることを特徴とする溶接熱影響部の耐めつきわれ性にす
ぐれた低合金高張力鋼にある。(Means and effects for solving the problem) The present inventors
As a result of extensive experiments and research, Ti against scratches,
In addition to discovering a significant improvement effect with the addition of Ca complex, we also succeeded in quantifying the influence of various alloying elements, and by satisfying a certain relationship between each alloying element, we were able to improve the weld heat affected zone of steel. The present invention has been completed by discovering a new technology not previously known that enables a further dramatic improvement in resistance to plating resistance due to molten Zn embrittlement. The areas where the weight is 0003~0.15%, the weight is 0.6~2.0%, and the Si
O,05~0.30%, TiO,005~0
.. 030%, CaO, more than 0010 to 0.0050
% or less, Al0.005-0.100%, NO,014
% or less, further Cu 2% or less, Ni 2% or less, C
Contains one or more of the following: r 0.5% or less, Mo 0.5% or less, Vo 15% or less, Nb 0.15% or less, Bo, 0020% or less, the remainder consisting of Fe and inevitable impurities, and T value = C+ Si/30+Mn/10-S
/2 + Cr/10 +Mo/20 +V/3 +N
The present invention is a low-alloy high-strength steel having excellent plating resistance in a weld heat-affected zone and characterized by simultaneously satisfying b/3-2Ti +3 B<0.28.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
最初に各元素の含有量を、前記した範囲に限定した理由
をのべる。First, the reason for limiting the content of each element to the above-mentioned range will be described.
まず、Cは強度を高めるために必須の元素で、55 K
17wm2以上の強度を確保するためには0.03%以
上必要である。HAZのメッキわれの点から、0.15
%を超えると、われが発生するようになるので、上限値
を0.15%とした。従って、C量は0.03〜0.1
5%と制限した。First, C is an essential element to increase strength, and 55 K
In order to ensure a strength of 17wm2 or more, 0.03% or more is required. From the point of HAZ plating, 0.15
%, cracks will appear, so the upper limit was set at 0.15%. Therefore, the amount of C is 0.03 to 0.1
It was limited to 5%.
胤はCと同様、鋼材の強度確保上必須の元素であり、鋼
材強度を55 Kp/rtm2以上確保するためには0
.60%以上必要である。また2、0%を超えると、H
AZのメッキわれがきわめて発生しやずくなるので、2
.0%未満にしなければならない。Seed, like C, is an essential element for ensuring the strength of steel materials, and in order to ensure the strength of steel materials of 55 Kp/rtm2 or more, 0.
.. 60% or more is required. Also, if it exceeds 2.0%, H
AZ plating cracks are extremely likely to occur, so 2.
.. Must be less than 0%.
従ってMn量は0.60%〜2.0%と制限した。Therefore, the amount of Mn was limited to 0.60% to 2.0%.
Siは脱酸元素として、さらには強度確保のため必須で
あり、最低0.05%は必要であるが、HAZメッキわ
れ性の点から低い程よく、0.30kを超えろと著しく
メッキわれが起るので、上限を0.30%と制限する必
要がある。従ってSi量としては005〜0130%と
した。Si is essential as a deoxidizing element and also to ensure strength, and a minimum of 0.05% is required, but from the viewpoint of HAZ plating resistance, the lower the better, and if it exceeds 0.30k, significant plating will occur. Therefore, it is necessary to limit the upper limit to 0.30%. Therefore, the amount of Si was set to 005 to 0130%.
TiはCaとの複合添加により、HAzの耐メッキわれ
性を向上させろ。そのための最低必要量は0.005%
で、0.005%未満ではその効果は認められない。C
aと複合添加させたときに、Ti量が0.030%を超
えろと、もはや複合効果口−なくなり、耐メッキわれ性
は著しく劣化する。従ってTiは0.005〜0.03
0%に制限した。Improve the plating resistance of HAz by adding Ti in combination with Ca. The minimum amount required for this is 0.005%
However, if the content is less than 0.005%, no effect will be observed. C
When added in combination with a, if the amount of Ti exceeds 0.030%, the composite effect will no longer exist and the plating resistance will deteriorate significantly. Therefore, Ti is 0.005 to 0.03
It was limited to 0%.
CaはTiと複合添加することにより、HAZの耐メッ
キわれ性を著しく向上させる。Caの量を0.0010
%以下にするとTiとの複合効果がなく、0.0050
%を超えて添加すると複合効果が失われるばかりでなく
、鋼のしん性も劣化する。従ってCaは0.0010超
〜0.0050%以下に制限した。By adding Ca in combination with Ti, the plating resistance of HAZ is significantly improved. The amount of Ca is 0.0010
% or less, there is no combined effect with Ti, and 0.0050
If added in excess of %, not only will the composite effect be lost, but the toughness of the steel will also deteriorate. Therefore, Ca was limited to more than 0.0010% to 0.0050% or less.
Alは脱酸元素として必須であり、最低0.005チ以
上必要である。また、0.100%を超えて含有させて
も脱酸の効果はほとんど不変で、耐メッキわれ性も劣化
して来るので、上限を0.100%とした。従って、A
lは0005〜0.100%に制限した。Al is essential as a deoxidizing element, and the amount of Al is required to be at least 0.005%. Furthermore, even if the content exceeds 0.100%, the deoxidizing effect remains almost unchanged and the plating resistance deteriorates, so the upper limit was set at 0.100%. Therefore, A
l was limited to 0005-0.100%.
Nは0.014%を超えて含有すると、機械的性質、溶
接性を著しく劣化させるので、0.014%以下に限定
した。If N content exceeds 0.014%, the mechanical properties and weldability will be significantly deteriorated, so it is limited to 0.014% or less.
また、本発明においては、母材、溶接熱影響部の強度、
靭性を向上するためにCu%Ni、 Cr、 Mo、V
、Nb、Bの1種又は2種以上を含有することもできる
。In addition, in the present invention, the strength of the base metal, the weld heat affected zone,
Cu%Ni, Cr, Mo, V to improve toughness
, Nb, and B may be contained.
まず、Cu、Niは耐めつきわれ性を損うことな(、鋼
材の強度、靭性を向上させる元素として有効であるが、
夫々2%を超える添加では溶接性を損うので、Cu%N
i夫々2.0%以下に限定した。First, Cu and Ni are effective elements for improving the strength and toughness of steel materials, without impairing their resistance to cracking.
Cu%N
i was limited to 2.0% or less.
Cr、Moは焼入性を向上し、母材の強度、じん性向上
に有効な元素であるが、夫々0.5%を超えて添加する
と、溶接性および耐めつきわれ性を著しく損うため、C
r、Mo夫々0.5%以下に限定した。Cr and Mo are effective elements for improving hardenability and improving the strength and toughness of the base metal, but if each is added in excess of 0.5%, weldability and cracking resistance will be significantly impaired. Tame, C
r and Mo were each limited to 0.5% or less.
V、 Nbは微量の添加で結晶粒を微細化し、じん性の
向上に有効であり、さらに析出硬化による強度上昇効果
が期待されるが、夫々0.15%を超える添加で、溶接
性、耐めつきわれ性を損うので、v、N′b夫々0.1
5%以下に限定した。V and Nb are effective in refining crystal grains and improving toughness when added in trace amounts, and are expected to increase strength through precipitation hardening, but when added in excess of 0.15% of each, weldability and resistance deteriorate. v and N'b are each 0.1, as this will impair the resistance to adhesion.
It was limited to 5% or less.
Bは極微量添加で、焼入性を向上し、強度確保に有効で
あるが、0.0020%を超えて添加しても効果が飽和
することと、耐めつきわれ性を著しく損う点で、0.0
020%以下に限定した。When B is added in a very small amount, it is effective in improving hardenability and ensuring strength, but even if it is added in excess of 0.0020%, the effect will be saturated and the cracking resistance will be significantly impaired. So, 0.0
0.020% or less.
また、本発明においては、以上の成分限定に加えて、溶
接熱影響部の耐めつきわれ性を維持するため、各成分含
有量の間に一定の関係
T値E= C+ St/30 +Mn/10− S/2
+ Cr/10 +Mo/20+V/3+Nb/3−
2Ti +3 B<0.28を同時に満足させる必要が
あるが、これは次の如き実験により得られた知見に基づ
(ものである。Furthermore, in the present invention, in addition to the above-mentioned component limitations, in order to maintain the weld heat-affected zone's resistance to cracking, a certain relationship T value E= C+ St/30 +Mn/ is established between the contents of each component. 10-S/2
+Cr/10 +Mo/20+V/3+Nb/3-
It is necessary to satisfy 2Ti +3 B<0.28 at the same time, and this is based on the knowledge obtained from the following experiment.
即ち、本発明限定成分範囲内で、種々組合わされた数多
くの素材から、長さ170闘、直径10幀の丸棒を加工
し、入熱量が17000ジユール/偏に相当する熱サイ
クルを付与して、HAZを再現させた後、角度60°、
切欠先端半径0.5ff1ml、深さ211111の円
周切欠加工を行ない、Znメッキを施して、その後、第
1図に示す熱・応力サイクルを与え、実際のメッキ条件
を再現させて、シミュレート試験を行なったときの破断
強度と、破断時間の相関を求めた。That is, a round bar with a length of 170mm and a diameter of 10mm was processed from a large number of materials combined in various ways within the range of the ingredients limited by the present invention, and a heat cycle was applied to the bar with a heat input equivalent to 17,000 joules/mm. , after reproducing the HAZ, the angle is 60°,
A circumferential notch with a notch tip radius of 0.5ff1ml and a depth of 211111 mm was processed, Zn plating was applied, and then the heat/stress cycle shown in Figure 1 was applied to reproduce the actual plating conditions and a simulation test was conducted. The correlation between the breaking strength and the breaking time was determined.
試験結果の例を第2図に示す。同図のよこ軸は破断時間
、たて軸のAはZnめっきしない試片の破断強度で、Z
nめっきした試片の破断強度を除した値である。An example of the test results is shown in Figure 2. In the figure, the horizontal axis is the rupture time, the vertical axis A is the rupture strength of the specimen without Zn plating, and Z
This is the value obtained by dividing the breaking strength of the n-plated specimen.
いま、第2図において、よこ軸400秒を基準にとり、
このときこれに対応するAの値(Kとする)を6鏑につ
いて求めることが出来る。なお、この場合400秒を基
準としたのは、実際のめりき時間を考慮して、400秒
に基準を設定したものである。Now, in Figure 2, taking 400 seconds on the horizontal axis as a reference,
At this time, the corresponding value of A (denoted as K) can be found for the 6 pieces. In this case, 400 seconds was set as the standard in consideration of the actual turning time.
さらに、実めっきラインにおける溶融Znめつきわれ再
現試験として、拘束継手試験を行った。Furthermore, a restrained joint test was conducted as a test to reproduce molten Zn plating on an actual plating line.
この拘束継手試験は、第3図に示す要領で試験体作成後
、470℃のZn浴中に浸漬させ、メッキ後、試験ビー
ド1のトウ部にわれを発生させる試験法である。This restrained joint test is a test method in which a test specimen is prepared as shown in FIG. 3, and then immersed in a Zn bath at 470° C. After plating, cracks are generated in the toe portion of the test bead 1.
なお、図において1は試験ビード、2は拘束ビード、3
は試験板で、それぞれの寸法はt=15間、ht =
hz = ha = h4 = 50 rta、w=1
5Qm、t=7511D11.拘束ビード2の数は25
である。拘束ビードを’l 5 passとしたのは、
この拘束ビードにより、試験ビードトウ部に高い残留応
力を附与しうるからであり、この条件下でわれ発生のな
い場合、実構造物では、当然われの発生はないと判断し
うる。In the figure, 1 is a test bead, 2 is a restraining bead, and 3 is a restraining bead.
are test plates, each dimension is between t=15 and ht=
hz = ha = h4 = 50 rta, w = 1
5Qm, t=7511D11. The number of restraint beads 2 is 25
It is. The reason why the restraint bead was set to 'l 5 pass is that
This is because this restraining bead can impart a high residual stress to the test bead toe, and if no cracking occurs under these conditions, it can be naturally determined that no cracking occurs in the actual structure.
以上2つの試験法により鋼材の耐めつきわれ性を評価し
た。即ち、このようにして、数多くのに値を求め、この
に値と化学組成との相関関係を、重回帰分析により解析
し、めつきわれ感受性に係る炭素当量式、T値= C+
Si/304Mn/10− S/2+ Cr/10
+Mo/20 +V/3 +Nb/3−2 Ti +3
Bを得た。The crack resistance of steel materials was evaluated using the above two test methods. That is, in this way, a large number of values are obtained, and the correlation between these values and the chemical composition is analyzed by multiple regression analysis, and the carbon equivalent formula related to the susceptibility to scratching, T value = C +
Si/304Mn/10- S/2+ Cr/10
+Mo/20 +V/3 +Nb/3-2 Ti +3
I got a B.
しかるのち、実験に供した数多(の鋼組成を凹成で計算
した値(以後T値という)と、K値との関係を第4図に
示した。図中、○印は同時に実験した拘束継手試験にお
いてわれ発生のないことを、・印はわれの発生したこと
を夫々示している。Figure 4 shows the relationship between the K value and the value (hereinafter referred to as T value) calculated by recessing the steel composition of a number of steels used in the experiment. In the restrained joint test, no cracks were observed, and the mark (*) indicates that cracks occurred.
同図から明らかな如く、本発明限定成分範囲内において
、T値=C+ Si/30 +Mn/10− S/2
+Cr/10 +Mo/20 +V/3 +Nb/3−
2Ti + 3 B <0.28を満足することにより
、Znめつきわれが完全に防止しうろことが明瞭である
。As is clear from the figure, within the range of the limited components of the present invention, T value = C+ Si/30 +Mn/10- S/2
+Cr/10 +Mo/20 +V/3 +Nb/3-
It is clear that Zn plating cracking can be completely prevented by satisfying 2Ti + 3 B <0.28.
以下実施例により本発明の効果をさらに具体的に示す。The effects of the present invention will be illustrated in more detail with reference to Examples below.
(実施例)
第1表に示す組成の鋼を、50に9真空溶解炉で溶製後
、制御圧延および通常の圧延後直接焼入れもしくは焼入
焼戻し、規準等により55〜7 Q K5/++oa2
級鋼板とした。鋼板の機械的性質は、第1表に併記した
。これら鋼板を片面から減厚加工し、第3図に示す拘束
継手試片を各2体製作し、2.繰返しの実験を行った。(Example) Steel with the composition shown in Table 1 is melted in a 50 to 9 vacuum melting furnace, then controlled rolling and normal rolling, followed by direct quenching or quenching and tempering, according to standards, etc., to 55 to 7 Q K5/++ oa2
grade steel plate. The mechanical properties of the steel plates are also listed in Table 1. These steel plates were processed to reduce the thickness from one side, and two restrained joint specimens as shown in Fig. 3 were manufactured.2. Repeated experiments were performed.
第3図における寸法は、t=15關、h□=h2= 1
13 = h4 = 5 Q rtm、W : 150
rm、t=75mである。また、拘束/1!ス数はす
べて25とした。The dimensions in Figure 3 are t=15mm, h□=h2=1
13 = h4 = 5 Q rtm, W: 150
rm, t=75m. Also, restraint/1! The number of spaces was set to 25 in all cases.
拘束継手試片は溶接完了後、470℃のZn浴中に10
分間浸漬めっきした後、試験ビード部を磁気探傷により
検査し、われの有無を調べた。このわれ検査結果および
ンミュレート試験におけるに値を、第1表に併記した。After completion of welding, the restrained joint specimen was placed in a Zn bath at 470℃ for 10 minutes.
After immersion plating for a minute, the test bead was inspected by magnetic flaw detection to determine the presence or absence of cracks. The results of this cracking test and the values obtained in the simulated test are also listed in Table 1.
同表に明らかな如く、本発明鋼は、溶融Znめつきわれ
の再現試験として、非常に厳し〜・試験である拘束継手
試験においても、溶融Znめつきわれを完全に防止する
ことができる。As is clear from the same table, the steel of the present invention can completely prevent molten Zn plating cracking even in the restrained joint test, which is a very severe test to reproduce molten Zn plating cracking.
(発明の効果)
以上の実施例から明らかなように、C,Mn、Si 、
Ti 、 Ca、 Al、 Nに、さらにCu、Ni
。(Effect of the invention) As is clear from the above examples, C, Mn, Si,
Ti, Ca, Al, N, and also Cu, Ni
.
Cr、Mo、V、Nb、Bの1種以上の含有量を規定し
、かつT値E−C+ Si/30 + Mn/10−
S/2 +Cr/10 +Mo/20 +V/3 +N
b/3−2Ti + 3 B <0.28を満足する成
分限定により、溶接熱影響部のめつきわれを完全に防止
することができ、産業上の効果は極めて顕著なものがあ
る。The content of one or more of Cr, Mo, V, Nb, and B is specified, and the T value E-C+ Si/30 + Mn/10-
S/2 +Cr/10 +Mo/20 +V/3 +N
By limiting the components to satisfy b/3-2Ti+3B<0.28, plating cracking in the weld heat affected zone can be completely prevented, and the industrial effect is extremely significant.
第1図は切欠付丸棒引張試験の応力、熱サイクルを示す
図表、第2図は切欠付丸棒引張試験結果の例を示す図表
、第3図(a) (b)は拘束継手試験方法を示す模式
図、第4図はに値とT値の相関関係および拘束継手試験
結果の対応を示す図表である。
1・・・試験ビード 2・・・拘束ビード 3・・・試
験板第1図
第2図Figure 1 is a diagram showing the stress and thermal cycle of the notched round bar tensile test, Figure 2 is a diagram showing an example of the notched round bar tensile test results, and Figures 3 (a) and (b) are restraint joint test methods. FIG. 4 is a diagram showing the correlation between the T value and the T value and the correspondence between the results of the restrained joint test. 1...Test bead 2...Restriction bead 3...Test plate Figure 1 Figure 2
Claims (1)
005〜0.100% N:0.014%以下 にさらに Cu:2.0%以下 Ni:2.0%以下 Cr:0.5%以下 Mo:0.5%以下 V:0.15%以下 Nb:0.15%以下 B:0.0020%以下 の1種又は2種以上を含み、残部Feおよび不可避不純
物からなり、かつT値≡C+Si/30+Mn/10−
S/2+Cr/10+Mo/20+V/3+Nb/3−
2Ti+3B≦0.28を満足することを特徴とする溶
接熱影響部の耐めっきわれ性にすぐれた低合金高張力鋼
。[Claims] In weight percent, C: 0.03% to 0.15% Mn: 0.6% to 2.0% Si: 0.05 to 0.30% Ti: 0.005 to 0.030 % Ca: more than 0.0010 to less than 0.0050% Al: 0.
005 to 0.100% N: 0.014% or less Cu: 2.0% or less Ni: 2.0% or less Cr: 0.5% or less Mo: 0.5% or less V: 0.15% or less Contains one or more of Nb: 0.15% or less B: 0.0020% or less, the balance consists of Fe and unavoidable impurities, and T value ≡ C + Si / 30 + Mn / 10 -
S/2+Cr/10+Mo/20+V/3+Nb/3-
A low-alloy high-strength steel with excellent plating resistance in a weld heat-affected zone, characterized by satisfying 2Ti+3B≦0.28.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18940085A JPS6250448A (en) | 1985-08-30 | 1985-08-30 | High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18940085A JPS6250448A (en) | 1985-08-30 | 1985-08-30 | High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zone |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6250448A true JPS6250448A (en) | 1987-03-05 |
Family
ID=16240655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18940085A Pending JPS6250448A (en) | 1985-08-30 | 1985-08-30 | High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6250448A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0257669A (en) * | 1987-10-22 | 1990-02-27 | Nippon Steel Corp | High tensile steel having excellent galvanization cracking resistance |
-
1985
- 1985-08-30 JP JP18940085A patent/JPS6250448A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0257669A (en) * | 1987-10-22 | 1990-02-27 | Nippon Steel Corp | High tensile steel having excellent galvanization cracking resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61130462A (en) | High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above | |
KR19980703593A (en) | Welding coefficient with excellent fatigue strength | |
US6136109A (en) | Method of manufacturing high chromium martensite steel pipe having excellent pitting resistance | |
JP2002226947A (en) | Martensitic stainless steel welded joint having excellent strain aging resistance | |
JPH0841599A (en) | Martensitic stainless steel excellent in corrosion resistance in weld zone | |
JPS6250448A (en) | High-tension low-alloy steel having superior resistance to cracking by plating in weld heat-affected zone | |
JP2000312987A (en) | Welding wire | |
JPS61231141A (en) | Steel having superior plating crack resistance in weld heat-affected zone | |
JPS6393845A (en) | High-tensile steel excellent in cod characteristic in weld zone | |
JP2711554B2 (en) | Hot dip galvanizing prevention method | |
JPH10204584A (en) | Heat treated type earthquake-proof steel product excellent in hot-dip galvanizing crack resistance | |
JP2851651B2 (en) | High-strength steel with excellent hot-dip galvanizing resistance | |
JP2959898B2 (en) | High tensile steel for Zn-Al plating | |
JPS5925022B2 (en) | Wear-resistant high-strength steel with excellent weldability | |
JP2711755B2 (en) | Welded structure with excellent HIC resistance and SSC resistance | |
JP3314649B2 (en) | High-strength steel with excellent earthquake resistance | |
JPH07323392A (en) | Low hydrogen type coated arc electrode and welding method | |
JPS61133363A (en) | 60kg/mm2 high tension steel having superior plating crack resistance in weld heat-affected zone | |
JPH0555584B2 (en) | ||
JP3011380B2 (en) | High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone | |
JPH0583625B2 (en) | ||
JPH01201496A (en) | Method for preventing local corrosion of weld zone | |
JPS6366380B2 (en) | ||
JPH06134572A (en) | Method for preventing local corrosion of weld zone | |
JPH0257669A (en) | High tensile steel having excellent galvanization cracking resistance |