JPS62500419A - Current supply circuit for essential inductive loads - Google Patents

Current supply circuit for essential inductive loads

Info

Publication number
JPS62500419A
JPS62500419A JP60504238A JP50423885A JPS62500419A JP S62500419 A JPS62500419 A JP S62500419A JP 60504238 A JP60504238 A JP 60504238A JP 50423885 A JP50423885 A JP 50423885A JP S62500419 A JPS62500419 A JP S62500419A
Authority
JP
Japan
Prior art keywords
circuit
load
voltage
source
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60504238A
Other languages
Japanese (ja)
Inventor
オーデ,クロード
Original Assignee
ポルテスキヤツプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポルテスキヤツプ filed Critical ポルテスキヤツプ
Publication of JPS62500419A publication Critical patent/JPS62500419A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/523Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1555Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only for the generation of a regulated current to a load whose impedance is substantially inductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 木質的な 導負11のためのf′、回 この発明は実質的な誘導負荷のための電流供給回路に関するものであって、この 回路は前記負荷に直列に装着され、連続的な供給電圧の少なくとも1つのソース と、各ソー・スのための少なくと51つの制御スイッチと、電流測定抵抗器とを 含み、さらに前記スイッチのための1iIJs回路を含み、この制御回路は順に 測定抵抗器の端子に現われる測定電圧と、連続的または非連続的モードで変化す る基準電圧源によって制御され、そこでは負荷に与えられる電圧パルスの持続I J間、高さ、反復周波数、または発生の時期などの特徴の中で少なくとも1つが 測定電圧と基t1!電圧の差によって制御される。[Detailed description of the invention] f′, times for the woody derivative 11 The present invention relates to a current supply circuit for a substantial inductive load. The circuit is mounted in series with said load and has at least one source of continuous supply voltage. and at least 51 control switches for each source, and a current measuring resistor. and further includes an 1iIJs circuit for said switch, said control circuit in turn The measuring voltage appearing at the terminals of the measuring resistor and varying in continuous or discontinuous mode is controlled by a reference voltage source in which the duration of the voltage pulse applied to the load I At least one of the following characteristics, such as J interval, height, repetition frequency, or time of occurrence, Measured voltage and base t1! Controlled by voltage difference.

この型の供給回路はたとえば、電気モータのコイルまたはモザイクプリンタのヘ ッド、特に鉄のコイルを供給するために用いられ、一般に入力電圧をチョッピン グする原理で働く。負荷の公称電圧より大いに、たとえば20のファるときの負 荷の端子間の電圧降下は、電流が前記公称値に達する瞬間まで負荷に与えられ、 それから電力源がカットオフされる。これはたとえば、電流が最小値以下に下が ったとき、または?i流の所望のレベルを平均して維持するために必要な時間の 周期的モードで制御回路を介して再びオンに切換えられ、この電流の像は基準電 圧から与えられる。This type of supply circuit is used, for example, in the coil of an electric motor or in the head of a mosaic printer. used to supply coils, especially iron coils, and generally chop the input voltage It works on the principle of Negative voltage greater than the nominal voltage of the load, e.g. the voltage drop across the terminals of the load is applied to the load until the moment when the current reaches said nominal value; The power source is then cut off. This means, for example, that the current drops below the minimum value. Or when? i of the time required to maintain the desired level of flow on average. It is switched on again via the control circuit in periodic mode and the image of this current is applied to the reference voltage. Given from pressure.

この動作原理は、誘導負荷が連続的または非連続的モードで変化する基準電圧に ほぼ従う電流によって供給されることを可能にし、カット周波数は基準電圧の変 化の基本周波数より一般により高いオーダの大きさである。The principle of operation is that an inductive load is applied to a reference voltage that varies in continuous or discontinuous mode. Allows the cut frequency to be supplied by a current that approximately follows the change in the reference voltage. is generally an order of magnitude higher than the fundamental frequency of .

そのような既知のチョッパ回路では、負荷を流れる電流は、入力電圧のオンおよ びオフの連続的な切換によって時間で規定されたのこぎり状パターンに従う。こ の電流変調の振幅は比較的重要で、電流高調波の内容は高い。その結果、一般に 誘導負荷と結合した鉄損は高く、大いに温度の上界を生じる。さらに、電流変調 の振幅を減するために、チョッパ周波数の増加が達成され得るが、これは鉄損を 増加させる傾向がある。 〜 負荷電流の変調の高振幅およびその高調波の豊富さの他の欠点には、それらが電 気のノイズ、すなわち無視できない干渉輻射につながることが注目され、これは 特に負荷と供給回路との間の接続が良い場合に最も面倒になり得る。In such known chopper circuits, the current flowing through the load depends on the input voltage on and off. follows a time-defined sawtooth pattern by continuous switching on and off. child The amplitude of the current modulation is relatively important, and the content of current harmonics is high. As a result, generally Iron losses combined with inductive loads are high and create a large temperature ceiling. Furthermore, current modulation An increase in chopper frequency can be achieved to reduce the amplitude of There is a tendency to increase ~ Other disadvantages of the high amplitude of the modulation of the load current and the abundance of its harmonics include that they It has been noted that this leads to air noise, i.e. non-negligible interference radiation, and this This can be most troublesome especially if the connection between the load and the supply circuit is good.

さらに、現存のモータで平均のvl流値を正確に制御することは難しく、これは 変調の波高値が検出されたり・またはパルス幅変調が0.5に近いサイクル率で 用いられるかいずれかのためであり、この率のわずかな変化が?!!流の田型な 変化につながる。Furthermore, it is difficult to accurately control the average vl flow value with existing motors; The peak value of the modulation is detected or the pulse width modulation is at a cycle rate close to 0.5. Is this small change in rate for any used? ! ! Nagata style Leads to change.

この発明は現存する供給回路の欠点を克服し、特に比較的単純で、高い効率を有 する回路を提供することを狙いとし、そこでは負荷の電流振動が低い振幅で、高 周波数の成分が少ない。This invention overcomes the shortcomings of existing supply circuits, and in particular is relatively simple and has high efficiency. The aim is to provide a circuit in which the load current oscillations are of low amplitude and high There are few frequency components.

この目的で、この発明に従った供給回路は、コンデンサが負荷とそれに直列に接 続された測定抵抗器とに並列に接続され、このコンデンサの容量は、この容ff iおよび負荷のインダクタンスによって決定される共振周波数が、直列に装着さ れる負荷と、測定抵抗器に与えられる周期的な電圧パルスの最小の再現周波数と 比較して小さく、そしてJ!準電圧の変化の基本的な成分の最大周波数より高い か、またはほぼ同じであるように選択されていることを特徴とし、さらに負荷と 、測定抵抗器と、前記コンデンサとを含む負荷回路が、測定抵抗器と制御回路の 間の接続を除いては、前記制御回路によって制御されるスイッチを介して供給回 路に挿入され、この制御回路は、回路全体で閉じていることができる各ループ内 の負荷回路と直列に接続されるスイッチの少なくとも1つが、電圧パルスを負荷 回路に与えている期間以外は開いており、その結果、負荷回路は前記期間以外は 非閉ループの一部となる。For this purpose, the supply circuit according to the invention comprises a capacitor connected in series with the load. connected in parallel with the connected measuring resistor, and the capacitance of this capacitor is equal to this capacitance ff The resonant frequency determined by i and the inductance of the load is the minimum reproducible frequency of the periodic voltage pulses applied to the measuring resistor. Small in comparison, and J! Higher than the maximum frequency of the fundamental component of quasi-voltage change selected to be equal to or approximately the same, and further load and , a load circuit including a measuring resistor and the capacitor is connected to the measuring resistor and the control circuit. The supply circuit is connected through a switch controlled by said control circuit, except for the connection between This control circuit is inserted into the circuit and within each loop can be closed throughout the circuit. at least one of the switches connected in series with the load circuit of It is open except during the period given to the circuit, and as a result, the load circuit is open except during said period. Becomes part of a non-closed loop.

この発明に従った回路は特に、逆極性または同じ極性の電圧パルスを負荷に与え るように、少なくとも2つの電圧供給源を含むことができる。In particular, the circuit according to the invention applies voltage pulses of opposite or the same polarity to a load. At least two voltage supplies can be included so as to

好ましくは、この発明の回路は前記制御回路によって制御される電圧供給源から 受取られる電圧のための少なくとも1つの調整回路をさらに含む。Preferably, the circuit of the invention is connected to a voltage source controlled by said control circuit. Further including at least one regulation circuit for the received voltage.

さらに、制御回路は、余分のパルスが周期的パルス外で負荷に時折供給され得る ようにI!ii!置され得る。Additionally, the control circuit allows extra pulses to be occasionally supplied to the load outside of the periodic pulses. Like I! ii! may be placed.

この供給回路の他の特徴および利点は、添付の図面に例示されlζ例示の具体例 の以下の説明からより明らかとなるであろう。Other features and advantages of this supply circuit are illustrated in the accompanying drawings and an illustrative embodiment. It will become clearer from the following explanation.

第1図はこの発明に従った供給回路の電気回路図である。FIG. 1 is an electrical diagram of a supply circuit according to the invention.

第2図は周波数の関数で負荷回路の電流利得の変化を示す。FIG. 2 shows the variation of the current gain of the load circuit as a function of frequency.

第1図に示される回路では、供給されるべき負荷は鉄磁気回路に結合されたコイ ル1からなる。このコイルのインダクタンスをし、そしてオーム抵抗をRとする 。抵抗rを有する測定抵抗器2は供給回路端子3と4の間で負荷と直列に接続さ れる。In the circuit shown in Figure 1, the load to be supplied is a coil coupled to a ferromagnetic circuit. Consists of 1. Let the inductance of this coil be and the ohmic resistance be R. . A measuring resistor 2 with a resistance r is connected in series with the load between supply circuit terminals 3 and 4. It will be done.

例示される回路は逆極性の2つの連続入力電圧源のある2倍電源を含み、入力電 圧はそれぞれ回路の端子5および6ならびに7および6上に現われ、端子6は上 述の端子4と同じ電位である。たとえばバイポーラトランジスタまたはMOS  I−ランリスク8および9のような2つの制御スイッチは、それぞれ端子5と3 および7と3の間に接続される。$制御回路10はそれぞれ接続11および12 を介してこれらのトランジスタの制tlllTi極に接続される。したがって、 スイッチ8または9の1つが制御回路10によって閉じられるとぎ、すなわらト ランジスタがつ通しているとき、対応づる入力電圧は直列に装着される負荷およ び測定抵抗器の端子3および4上に与えられる。The illustrated circuit includes a doubler power supply with two continuous input voltage sources of opposite polarity; voltages appear on terminals 5 and 6 and 7 and 6 of the circuit, respectively, with terminal 6 appearing above It has the same potential as the terminal 4 mentioned above. For example, bipolar transistor or MOS Two control switches such as I-run risks 8 and 9 are connected to terminals 5 and 3 respectively. and connected between 7 and 3. The $ control circuit 10 has connections 11 and 12, respectively. are connected to the control tllllTi poles of these transistors via . therefore, When one of the switches 8 or 9 is closed by the control circuit 10, the When a transistor is conducting, the corresponding input voltage is connected to the load and and on terminals 3 and 4 of the measuring resistor.

この回路では、容量Cのコンデンサ13は端子3と4の間に接続され、こうして 誘導子1とともに共振回路を形成し、その共振周波数は第2図でr。で表わされ る。In this circuit, a capacitor 13 of capacitance C is connected between terminals 3 and 4, thus A resonant circuit is formed together with the inductor 1, and its resonant frequency is r in FIG. represented by Ru.

第2図は横座標の軸に沿ってプロットされた周波Wlrの関数で、上述の共振回 路の電流利得Qの変化を示す。Figure 2 is a function of the frequency Wlr plotted along the axis of the abscissa, and the resonant circuit described above. 2 shows the change in current gain Q of the circuit.

第1図の回路が動作しているとき、周波数r、の周期的なll1I制御パルスが たとえば、トランジスタ8のベースに与えられ、これはこれらのパルスの持続期 間中にトランジスタを導通させる。またカット周波数とも呼ばれる周1]的II I IIパルスの再現周波数「。は、「。<<f cとなるように共振周波数f 、に圓して選択される。たとえば、共振周波数roは1キロヘルツのオーダで、 「、は100キロヘルツのオーダである。供給電圧の印加の期間、誘導子、測定 抵抗器およびコンデンサからなる負荷回路は回路のいかなる外部の閏じたループ の〆いかなる部分でもなく、そのためM導子1を通って流れる電流はストアされ たエネルギおよ機能を制御する法則によって決定される。When the circuit of FIG. 1 is operating, periodic ll1I control pulses of frequency r, For example, it is applied to the base of transistor 8, which determines the duration of these pulses. During this period, the transistor is made conductive. It is also called the cut frequency. The resonant frequency f is set so that the reproduction frequency of the I II pulse becomes “.<<f c. , are selected based on. For example, the resonant frequency ro is on the order of 1 kilohertz, ", is of the order of 100 kilohertz. The duration of the application of the supply voltage, the inductor, the measurement The load circuit consisting of a resistor and capacitor is connected to any external loop of the circuit. , so the current flowing through M conductor 1 is stored. determined by laws governing energy and function.

たとえば、抵抗器15およびコンデンサ16によって形成されるフィルタ回路は 電流測定抵抗器の端子4および14に接続され、そして15J3よび16の間の 接続点である端子17で現われる信号は電圧比較器18の第1の入力に結合され 、これは決定したプログラムに従って連続的または非連続的モードで変化するこ とができる基準電圧Vrを与え、この変化の基本の成分の最大周波数はfRであ る。For example, the filter circuit formed by resistor 15 and capacitor 16 is connected to terminals 4 and 14 of the current measuring resistor and between 15J3 and 16. The signal appearing at the connection point, terminal 17, is coupled to a first input of a voltage comparator 18. , which can vary in continuous or discontinuous mode according to the determined program. The maximum frequency of the fundamental component of this change is fR. Ru.

周波数rRは好ましくは共振周波数f。より大いに低いが、しかし実際は、また f。と同じオーダの値に達することもでさ・る。The frequency rR is preferably the resonant frequency f. much lower, but in fact, also f. It is also possible to reach values of the same order as .

数字20によって概略的に示された増幅器は比較器18の出力21に接続され、 そして接続22を通って制御回路10に、点17で現われるフィルタを通した測 定電圧と基準電圧vllの間の差を表わす増幅したエラー信号を送る。An amplifier, indicated schematically by the numeral 20, is connected to the output 21 of the comparator 18; The filtered measurement appearing at point 17 then passes through connection 22 to control circuit 10. An amplified error signal is sent representing the difference between the constant voltage and the reference voltage vll.

さらに、VRの極性を示す信号は接続36を通って回路10に送られる。これら の信号に従って、制御回路は再現周波数foでm制御パルスの持続期間を制御し 、スイッチ8または9の2つのどちらが動作されるべきかを制御する。周波数f cは入力23を通って外部ソースからりOツクパルスとしてR−制御回路10に 与えられる。さらに、制御回路10は、負荷1の特定の使用に従ってスイッチ8 および9を制御するようにプログラムされることができる。Additionally, a signal indicating the polarity of VR is sent to circuit 10 through connection 36. these According to the signal of m, the control circuit controls the duration of m control pulses at the reproduction frequency fo. , which of the two switches 8 or 9 is to be operated. frequency f c is supplied to the R-control circuit 10 as an output pulse from an external source through input 23. Given. Furthermore, the control circuit 10 controls the switch 8 according to the specific use of the load 1. and 9.

第1図に例示される例では、各電圧供給源は周波数[11の電流と共に主要部か ら供給される変圧器26の2次巻線24および25の半分と、それぞれライン2 9および30と、それぞれバッファコンデンサ31および32で概略的に示され る接続を通って制御回路10によって制御されるサイリスク整流器ブリッジ27 および28の半分を含み、それらはそれぞれ2次巻線24および25と端子5お よび7の中間点に接続される端子6の間に接続される。さらに、保護ツェナーダ イオード33および34は好ましくは、たとえばモータの制動位相などのいくつ かの応用で起こり得る、エネルギがソースに戻るときに起こる可能性のある過角 荷に対してそれらを保護するように、コンデンサ31と32に並列に接続される 。In the example illustrated in FIG. and half of the secondary windings 24 and 25 of transformer 26 supplied from line 2 9 and 30 and are shown schematically by buffer capacitors 31 and 32, respectively. The Sirisk rectifier bridge 27 is controlled by the control circuit 10 through the connections and half of 28, which include secondary windings 24 and 25 and terminals 5 and 28, respectively. and terminal 6 connected to the midpoint of terminals 7 and 7. In addition, protection Zenada The diodes 33 and 34 are preferably connected to some Excessive angles that may occur in some applications as energy returns to the source connected in parallel to capacitors 31 and 32 to protect them against loads. .

制御回路10は入力35を通って周波1に2fwのりOツク信号を受取り、整流 器ブリッジ27および28のサイリスタを通って2つのソースからそれぞれコン デンサ31および32の端子に付与された入力電圧のレベルを1.制御する。The control circuit 10 receives the 2fw ON signal at frequency 1 through an input 35 and rectifies it. from the two sources through the thyristors of the bridges 27 and 28, respectively. The level of the input voltage applied to the terminals of capacitors 31 and 32 is set to 1. Control.

したがって、回路が機能しているとき、負荷回路に与えられた電圧パルスは極性 、レベルおよび持続期間を有し、これらは負荷を流れる電流が基準電圧Vmによ って制御されるように、制御回路10によって制御される。この回路では、負荷 の電流は低い振幅のwt動を示し、そして高調波は乏しい。これは第2図に示さ れるように、^周波数の強い減衰を引き起こt負荷回路の動きからもたらされる 。その結果、誘導負荷が鉄回路に結合されるとき温度上昇はかなり減じられ、そ して制御の正確さはかなり改良され、抵抗器2の端子で現われる測定電圧をA波 すると、この電圧の非常に低い振動のため、負荷の電流の平均値の非常に良好な 像が提供される。Therefore, when the circuit is functioning, the voltage pulse given to the load circuit is polar , level and duration, which indicate that the current flowing through the load is dependent on the reference voltage Vm. It is controlled by the control circuit 10 so as to be controlled as follows. In this circuit, the load The current exhibits low amplitude wt behavior and poor harmonics. This is shown in Figure 2. As shown, it causes a strong attenuation of the frequency resulting from the movement of the load circuit. . As a result, the temperature rise is significantly reduced when the inductive load is coupled to the iron circuit; The accuracy of the control is considerably improved by converting the measured voltage appearing at the terminals of resistor 2 into the A wave. Then, due to the very low oscillations of this voltage, a very good average value of the load current A statue is provided.

さらに、この回路は説明された機能化のモードにI!Jl遠した一連の利点を提 供し、それらは特に以下のとおりである。Furthermore, this circuit is compatible with I! in the mode of functionalization described. Jl offers a series of far-flung benefits. In particular, they are as follows:

高繰返し周波数を持った供給電圧パルスの持続期間は、これらのパルスの期間に 比べて短いことが可能で、これは2個または3個以上の電圧供給源を用いるとぎ その制御を容易にする。The duration of the supply voltage pulses with high repetition frequency is equal to the duration of these pulses. This can be done in a relatively short time by using two or more voltage supplies. Facilitate its control.

負荷回路はその期間以外はそれ自身が閉じているので、供給電圧が与えられると き、スイッチを保護するためにダイオードを設けたり、II子内に蓄積されたエ ネルギのために放電ループを閉じる必要はない。The load circuit is itself closed except during that period, so when the supply voltage is applied, When installing a diode to protect the switch or There is no need to close the discharge loop for energy.

コイルと回路の残りの間を流れる電流はほとんど振動しておらず、そして高調波 ら乏しいので、回路と負荷の間の接続から起こる電気のノイズはただ非常に低く なり得る。The current flowing between the coil and the rest of the circuit has almost no oscillations and no harmonics The electrical noise arising from the connection between the circuit and the load is only very low because It can be.

この電力供給回路は特に、たとえば、米国特許第4.330.727号または第 2.123.618号として公開された英国特許で説明されるように、永久磁石 を備えた同期電気モータに供給するために用いられ得る。This power supply circuit is particularly suitable for example in US Pat. Permanent magnets as described in the British patent published as No. 2.123.618 It can be used to supply synchronous electric motors with

第1図の回路は、そのようなモータのコイルにその持続期間およびレベルが調整 可能である逆極性のパルスを供給するために用いられ得る。一般に、供給電圧パ ルスの特徴の各々、すなわちそれらのレベル、持続期間、繰返し周波数または発 生の時期が負荷の平均電流を制御するために、個々にまたは他と組合わせて用い られ得る。こうしてたとえば、パルスの持続期間は一定で、繰返し周波数は可変 であり4′#タリ、または各パルスの始まりと終わりは設定値を通る平均電流の 像が通過Jることによって制御され19る。The circuit of Figure 1 provides a means for adjusting the duration and level of the coils of such a motor. It can be used to provide pulses of opposite polarity where possible. In general, the supply voltage each of the characteristics of the pulses, i.e. their level, duration, repetition frequency or oscillation. Raw timing can be used individually or in combination with others to control the average current of the load. It can be done. Thus, for example, the pulse duration is constant and the repetition frequency is variable. 4' #tari, or the beginning and end of each pulse is the average current through the set point. It is controlled by the passage of the image 19.

さらに、第1図の2倍電源の代わりに、P!l単な電源が、!」型回路に挿入さ れる負荷回路と共に用いられることができ、すなわちその場合には1つの極性し か右ざない入力電圧が第1図の端子5および7に与えられ、スイッチ8および9 と同様の他の2つのスイッチはそれぞれ端子5と4および4と7の間に接続され 、これらのスイッチもまたtiII御回路から制御される。第1図の場合と同様 にこの場合も、制御スイッチの導通ラインに並列の保護ダイオードは必要ないこ とが注目される。また、たとえ回路の他の利点は維持されていても、抵抗器2の 端子での測定電圧はたとえば差動増幅器を介して得られなければならない。さら に、この電力供給回路の異なった型でも回路の歩留りは高く、これは供給電圧が 与えられるときの短期間を除いて負荷回路以外に電流が流れないためであること も注目されなければいくつかの使用では、同じ極性の2つのパルスの間に逆極性 のパルスを与えることが必要になり得るが、この場合、それらの期間と比べて比 較的短いパルスの持続期間は、正および負のパルスがそれらの間のいかなる干渉 をも避けるように、たとえば半分の期間でシフトされることを可能にする。Furthermore, instead of the double power supply in FIG. 1, P! A simple power supply! ” inserted into the type circuit can be used with a load circuit of one polarity, i.e. A positive input voltage is applied to terminals 5 and 7 of FIG. 1, and switches 8 and 9 Two other switches similar to are connected between terminals 5 and 4 and 4 and 7 respectively. , these switches are also controlled from the tiII control circuit. Same as in Figure 1 Again, a protection diode in parallel with the control switch continuity line is not required. is attracting attention. Also, even though the other advantages of the circuit are maintained, resistor 2 The measured voltage at the terminals must be obtained, for example, via a differential amplifier. Sara In addition, the circuit yield is high even with different types of this power supply circuit, which is due to the supply voltage This is because no current flows outside the load circuit except for a short period when the load is applied. In some uses, reverse polarity between two pulses of the same polarity is also noted. It may be necessary to provide pulses of The relatively short pulse durations prevent the positive and negative pulses from having any interference between them. For example, it allows to be shifted by half the period, so as to avoid also.

違うレベルで2つの電力源を用いて、たとえば、まず所望のレベルとほぼ等しい 高レベルの第1のパルスを、それから大いに低いレベルの第2の調整パルスを負 荷に付与づ゛ることちまた興味があり、この第2のパルスの持H期間番よより良 く、それゆえ制御が簡単である。機能のこのモードは、かなりの精度で制御され たパルスの、負荷への付与を可能にする。Using two power sources at different levels, e.g. first approximately equal to the desired level negative first pulse at a high level and then a second adjustment pulse at a much lower level. I am also interested in the load imparted to the load, and I would like to know if the duration of this second pulse is better. and therefore easy to control. This mode of functionality is controlled with considerable precision. This makes it possible to apply pulses to the load.

A、NNEXToT)!EINTERN;−τl0NAL、5EARCHREP ORTONPatent document Publication Pat ant family PubLicationcited in 5earc h data member(s) dataeportA, NNEXToT)! EINTERN;-τl0NAL, 5EARCHREP ORTONPatent document Publication Pat ant family PubLicationcited in 5earc h data member(s) dataeport

Claims (7)

【特許請求の範囲】[Claims] 1.本質的に誘導性の負荷のための電流供給回路であって、前記負荷に直列に装 着され、連続的な供給電圧の少なくとも1つのソースと、各ソースのための少な くとも1つの制御スイッチと、電流測定抵抗器とを含み、さらに前記スイッチの ための制御回路を含み、この制御回路は順に測定抵抗器の端子に現われる測定電 圧と、連続的または非連続的モードで変化する基準電圧源によって、制御される 、回路。1. A current supply circuit for an inherently inductive load, the circuit being connected in series with said load. at least one source of continuous supply voltage and at least one source of continuous supply voltage for each source. at least one control switch and a current measuring resistor; This control circuit in turn controls the measurement voltage appearing at the terminals of the measurement resistor. controlled by a reference voltage source that varies in continuous or discontinuous mode. ,circuit. 2.本質的に誘導負荷のための電流供給回路であって、前記負荷に直列に装着さ れ、連続的供給電圧の少なくとも1つのソースと、各ソースのための少なくとも 1つの制御スイッチと、電流測定抵抗器とを含み、さらに前記スイッチのための 制御回路を含み、この制御回路は順に測定抵抗器の端子に現われる測定電圧と、 連続的または非連続的モードで変化する基準電圧源によって、制御され、そこで は負荷に与えられる電圧パルスの持続期間、高さ、繰返し周波数、または発生の 時期などの特徴の中で少なくとも1つが測定電圧と基準電圧の差によって制御さ れ、コンデンサは、直列に接続される負荷と測定抵抗器とに並列に接続され、こ のコンデンサの容量は、この容量と負荷のインダクタンスによって決定される共 振周波数が直列に装着される負荷と測定抵抗器に与えられる周期的な電圧パルス の最小の繰返し周波数と比較して小さく、そして基準電圧の変化の基本的な最大 周波数より高いか、またはほぼ同じであるように選択されることを特徴とし、そ して負荷と、測定抵抗器と、前記コンデンサとを含む負荷回路は、測定抵抗器と 制御回路の間の接続を除いて、前記制御回路によって制御されるスイッチを介し て全体の供給回路の中に挿入され、この制御回路は、回路全体で閉じていること ができる各ループの負荷回路と直列に接続される前記スイッチの少なくとも1つ が、電圧パルスを負荷回路に与える時間以外は開いており、その結果負荷回路は 前記期間外は非閉ループの一部であることを特徴とする、回路。2. Essentially a current supply circuit for an inductive load, which is mounted in series with said load. at least one source of continuous supply voltage and at least one source for each source. one control switch and a current measuring resistor; includes a control circuit which in turn determines the measurement voltage appearing at the terminals of the measurement resistor; controlled by a reference voltage source varying in continuous or discontinuous mode, where is the duration, height, repetition frequency, or occurrence of the voltage pulses applied to the load. At least one of the characteristics, such as timing, is controlled by the difference between the measured voltage and the reference voltage. The capacitor is connected in parallel with the load and the measuring resistor, which are connected in series. The capacitance of the capacitor is a co-value determined by this capacitance and the inductance of the load. A periodic voltage pulse applied to a load and a measuring resistor in which the oscillation frequency is connected in series is small compared to the minimum repetition frequency of , and the fundamental maximum of the change in reference voltage selected to be higher than or approximately the same as the frequency; A load circuit including a load, a measuring resistor, and the capacitor is connected to the measuring resistor and the capacitor. Except for connections between control circuits, through switches controlled by said control circuits. is inserted into the entire supply circuit, and this control circuit must be closed throughout the circuit. at least one of said switches connected in series with the load circuit of each loop capable of is open except during the time when the voltage pulse is applied to the load circuit, so that the load circuit A circuit, characterized in that the period outside the period is part of a non-closed loop. 3.逆極性の電圧パルスを負荷に付与するように接続される少なくとも2つの電 圧供給のソースを含むことを特徴とする、請求の範囲第1項または第2項に記載 の供給回路。3. at least two electrical voltages connected to apply voltage pulses of opposite polarity to the load; Claim 1 or 2, characterized in that it comprises a source of pressure supply. supply circuit. 4.同じ極性の電圧パルスを負荷に付与するように接続される少なくとも2つの 供給電圧のソースを含むことを特徴とする、請求の範囲第1項、第2項または第 3項の1つに記載の供給回路。4. at least two connected to apply voltage pulses of the same polarity to the load Claims 1, 2 or 3, characterized in that they include a source of supply voltage. Supply circuit according to one of clauses 3. 5.2つのソースが大いに違うレベルで電圧を付与することを特徴とする、請求 の範囲第3項または第4項に記載の供給回路。5. A claim characterized in that the two sources apply voltages at vastly different levels. The supply circuit according to the range 3 or 4. 6.電圧供給回路から付与される電圧のための少なくとも1つの調整回路を含み 、この回路は前記制御回路によって制御されることを特徴とする、請求の範囲第 1項ないし第5項に記載の供給回路。6. at least one regulating circuit for the voltage applied from the voltage supply circuit; , this circuit is controlled by the control circuit, The supply circuit according to items 1 to 5. 7.余分のパルスが周期パルス以外で負荷に付与されるように制御回路が調整さ れることを特徴とする、請求の範囲第1項ないし第6項に記載の供給回路。7. The control circuit is adjusted so that extra pulses are applied to the load other than periodic pulses. A supply circuit according to any one of claims 1 to 6, characterized in that:
JP60504238A 1984-10-05 1985-10-03 Current supply circuit for essential inductive loads Pending JPS62500419A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4794/84-6 1984-10-05
CH479484 1984-10-05

Publications (1)

Publication Number Publication Date
JPS62500419A true JPS62500419A (en) 1987-02-19

Family

ID=4282657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60504238A Pending JPS62500419A (en) 1984-10-05 1985-10-03 Current supply circuit for essential inductive loads

Country Status (4)

Country Link
EP (1) EP0197056A1 (en)
JP (1) JPS62500419A (en)
KR (1) KR880700525A (en)
WO (1) WO1986002211A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8938978B2 (en) 2011-05-03 2015-01-27 General Electric Company Gas turbine engine combustor with lobed, three dimensional contouring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2085243B (en) * 1980-09-03 1984-11-21 Cheltenham Induction Heating L Apparatus for driving a heating load circuit
DE3214669C2 (en) * 1982-04-21 1986-03-27 Norka Norddeutsche Kunststoff- Und Elektro-Gesellschaft Staecker & Co., 3091 Huelsen Arrangement for operating discharge lamps
DE3462739D1 (en) * 1983-05-16 1987-04-23 Gen Electric Load voltage control for resonant inverter circuits

Also Published As

Publication number Publication date
KR880700525A (en) 1988-03-15
EP0197056A1 (en) 1986-10-15
WO1986002211A1 (en) 1986-04-10

Similar Documents

Publication Publication Date Title
EP0769844B1 (en) Current control circuit for a reluctance machine
CA1127247A (en) High frequency switching circuit having preselected parameters to reduce power dissipation therein
JP2500999B2 (en) Switch mode converter
US20040218405A1 (en) Dc-to-dc converter
JP2877164B2 (en) Self-oscillating switching device for inverter or DC transformer
EP0049633B1 (en) Improvements in and relating to electrical inverters
CA1303675C (en) Current source for a variable load with an inductive component
CN1051657C (en) Switched-mode power supply with magnetic flux density control
JPS607909B2 (en) Switch mode power supply circuit
US4791546A (en) Voltage regulator circuit
JPH06225172A (en) Switching mode power supply
US5622643A (en) Process and device for controlling power for a circuit for induction cooking including a resonant invertor
US4417199A (en) Zero crossover triggering circuit for thyristor
JP2000509958A (en) Switched mode power supply with delay insensitive timing in control loop
GB2175154A (en) Inverter for supplying a load having an inductive component
JPS62500419A (en) Current supply circuit for essential inductive loads
US4430542A (en) Electromagnetic cooking apparatus
GB2262822A (en) A synchronised switch-mode power supply
US4320308A (en) Pulse duty control system
JP2515650B2 (en) Power factor correction circuit and switching power supply circuit using the power factor correction circuit
US4176302A (en) Vertical deflection output circuit
JPS61140015A (en) Driver for electromagnet
JPH1031050A (en) Dielectric withstanding voltage tester for deflection coil assembly
JPS58148680A (en) Self-excited oscillator
JPH0231913Y2 (en)