JPS6249950B2 - - Google Patents
Info
- Publication number
- JPS6249950B2 JPS6249950B2 JP54166886A JP16688679A JPS6249950B2 JP S6249950 B2 JPS6249950 B2 JP S6249950B2 JP 54166886 A JP54166886 A JP 54166886A JP 16688679 A JP16688679 A JP 16688679A JP S6249950 B2 JPS6249950 B2 JP S6249950B2
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- rod
- neutron
- weight
- hfo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010521 absorption reaction Methods 0.000 claims description 19
- 239000010936 titanium Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 5
- 239000008188 pellet Substances 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000011358 absorbing material Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【発明の詳細な説明】
本発明は原子炉の制御棒に関し、さらに詳しく
は制御棒の構造材と中性子吸収棒の材質に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control rod for a nuclear reactor, and more particularly to a structural material of a control rod and a material of a neutron absorption rod.
一般に原子炉の制御棒の構造材にはステンレス
鋼が用いられ、この構造材の中に中性子吸収物質
たとえばボロンカーバイド(B4C)等を充てんし
たステンレス鋼の中性子吸収棒が収められてい
る。 Stainless steel is generally used for the structural material of nuclear reactor control rods, and the structural material contains a stainless steel neutron absorbing rod filled with a neutron absorbing material such as boron carbide (B 4 C).
第1図は従来の沸騰水型原子炉の制御棒の斜視
図である。制御棒1は図示するように十字形をし
ており、直交する4枚のウイング2はU字形のシ
ースの中に中性子吸収物質を入れた吸収棒が並べ
られて構成されている。ウイング2の上下には同
じくステンレス鋼製固定板3,4が取付けられて
おり、この制御棒1は原子炉内の炉心に多数挿入
されて炉心底部に設けられた制御棒駆動装置(図
示せず、以下CRDと略する)によつて駆動され
る。 FIG. 1 is a perspective view of a control rod of a conventional boiling water reactor. The control rod 1 has a cross shape as shown in the figure, and the four orthogonal wings 2 are composed of absorption rods containing a neutron absorption material placed in a U-shaped sheath. Stainless steel fixing plates 3 and 4 are attached to the top and bottom of the wing 2, and a large number of control rods 1 are inserted into the core of the reactor, and a control rod drive device (not shown) is installed at the bottom of the reactor core. , hereinafter abbreviated as CRD).
この型式の制御棒の欠点を列挙すれば次の通り
である。構造材にステンレス鋼(SUS)を使用す
るので、その比重は約8g/cm3であるため重く制
御棒の重量は約100Kgとなる。すなわちシースの
重さが約30Kg、吸収棒のそれが約35Kg、その他の
構造材が約35Kg、中性子吸収物質(B4C)約5Kg
の重量配分となり、吸収物質は全体の5%しかな
く、全重量のほとんどを構造材が占めている。そ
の結果制御棒を駆動するCRDは大型複雑となる
外、特に沸騰水型原子炉では前述したように炉心
底部から制御棒を挿入する方式を採用しているた
め、制御棒が重いと原子炉を緊急停止させる必要
がある場合に、挿入に時間がかかつたり、挿入開
始および終了時の大きな慣性にうちかつための機
能がCRDに要求されるなど、緊急停止上不都合
である。また制御棒の落下事故が生じたとき、制
御棒が重たいので落下速度が大きくなるのも欠点
である。 The drawbacks of this type of control rod are listed below. Since stainless steel (SUS) is used as the structural material, its specific gravity is approximately 8 g/cm 3 , making it heavy, and the control rod weighs approximately 100 kg. That is, the weight of the sheath is approximately 30Kg, that of the absorption rod is approximately 35Kg, other structural materials are approximately 35Kg, and the neutron absorbing material (B 4 C) is approximately 5Kg.
The weight distribution is , and the absorbent material accounts for only 5% of the total weight, with the structural material accounting for most of the total weight. As a result, the CRD that drives the control rods becomes large and complex, and in boiling water reactors in particular, the control rods are inserted from the bottom of the reactor core as mentioned above, so if the control rods are heavy, the reactor When it is necessary to make an emergency stop, it is inconvenient for the CRD to take time to insert, and the CRD is required to have a function to overcome the large inertia at the start and end of insertion. Another drawback is that in the event of a control rod falling accident, the falling speed will be high because the control rod is heavy.
次に中性子吸収物質であるB4C中の成分B−10
は中性子を吸収すると(n,α)反応によりヘリ
ウム(He)ガスを発生し、ステンレス鋼製制御
棒の機械的寿命がその圧力によつて影響をうける
ことも欠点の一つである。 Next, component B-10 in B 4 C, which is a neutron absorbing substance
Another drawback is that when absorbing neutrons, helium (He) gas is generated through an (n,α) reaction, and the mechanical life of the stainless steel control rods is affected by the pressure.
本発明の目的は以上説明した欠点を有しない原
子炉の制御棒を提供するにある。 The object of the invention is to provide a control rod for a nuclear reactor that does not have the disadvantages mentioned above.
本発明者は制御棒の重量の大部分を占める構造
材であるステンレス鋼に代る構造材にチタン
(Ti)またはその合金を使用すれば前述の欠点を
除去しうることを見出した。 The present inventor has discovered that the above-mentioned drawbacks can be eliminated by using titanium (Ti) or an alloy thereof as a structural material in place of stainless steel, which is the structural material that accounts for most of the weight of the control rod.
チタン金属は機械的および化学的に優れた性質
を有し、かつ比重が小さい(4.5g/cm3)ことは
よく知られているが、このTiまたはその合金を
制御棒の構造材の一部または全部に採用すると次
にのべる多くの利点がある。 It is well known that titanium metal has excellent mechanical and chemical properties and has a low specific gravity (4.5 g/cm 3 ). Or, if you adopt it in all areas, there are many advantages listed below.
1 制御棒が非常に軽量となる。たとえば従来の
ステンレス鋼製の制御棒は前述したように重量
は約100Kgであるが、中性子吸収物質(B4C)
を除いてシース、吸収棒管その他の構造材に
Tiを使用するとその重量は約59Kgとなり、従
来のそれにくらべて約41Kgの重量減となる。ま
た吸収棒管をすべてステンレス鋼からTiに変
更すれば重量は100Kgから87Kgに約13Kgの減少
となる。シースだけステンレス鋼からTiに変
更すれば同じく13Kgの減少となる。さらに吸収
棒管とシースをTiに変更するとその重量は74
Kgとなり、26Kgの重量減となる。また後述する
ように中性子照射量の大きい制御棒先端と側縁
部に配置する中性子吸収棒の金属棒管をTi合
金としたものもその重量は低減されることがわ
かる。1. The control rod becomes extremely lightweight. For example, a conventional stainless steel control rod weighs about 100 kg as mentioned above, but it is made of neutron absorbing material (B 4 C).
Except for sheaths, absorption rod pipes and other structural materials.
If Ti is used, the weight will be approximately 59Kg, which is approximately 41Kg less than the conventional model. Also, if all absorption rod tubes are changed from stainless steel to Ti, the weight will decrease from 100Kg to 87Kg, approximately 13Kg. If only the sheath was changed from stainless steel to Ti, the weight would be reduced by 13 kg. Furthermore, if you change the absorption rod tube and sheath to Ti, the weight will be 74
Kg, resulting in a weight reduction of 26Kg. Furthermore, as will be described later, it can be seen that the weight can also be reduced when the metal rod tubes of the neutron absorption rods arranged at the tips and side edges of the control rods, which receive a large amount of neutron irradiation, are made of Ti alloy.
本発明によれば制御棒が軽量となるので、原
子炉を緊急に停止する必要がある場合、高速度
で制御棒を炉心に挿入できる。また制御棒の落
下のような事故が生じても、落下速度は小さく
なる。 According to the present invention, since the control rods are lightweight, the control rods can be inserted into the reactor core at high speed when it is necessary to urgently shut down the nuclear reactor. Furthermore, even if an accident occurs such as a control rod falling, the falling speed will be reduced.
2 次にTiまたはTi合金を、用いた制御棒は従
来のそれより軽いため、中性子吸収物質の重さ
をその分だけ増すことができる。たとえば本発
明者が開発し出願している酸化ユーロピウムと
酸化ハフニウム(Eu2O3―HfO2)混合粉末ある
いはペレツトをB4C粉末に代えて充てんすれ
ば、制御棒の重量は多少増加するが、Tiを用
いることによつて従来の制御棒の重量範囲に抑
えることができ、一方Eu2O3―HfO2は吸収材
としてすぐれた性質を発揮する。2. Control rods using Ti or Ti alloys are lighter than conventional control rods, so the weight of the neutron absorbing material can be increased by that amount. For example, if the europium oxide and hafnium oxide (Eu 2 O 3 - HfO 2 ) mixed powder or pellets developed and filed by the present inventors are filled instead of B 4 C powder, the weight of the control rod will increase somewhat, but By using , Ti, the weight can be kept within the range of conventional control rods, while Eu 2 O 3 --HfO 2 exhibits excellent properties as an absorbent material.
具体的には、Eu2O3―HfO2に用いられるEu
やHfは(n,γ)反応性の中性子吸収材であ
り、中性子反応によつてもガスを発生させない
ので、中性子吸収棒管の機械的寿命を損うこと
がない。 Specifically, Eu 2 O 3 - Eu used in HfO 2
and Hf are (n, gamma) reactive neutron absorbing materials and do not generate gas even through neutron reactions, so they do not impair the mechanical life of the neutron absorbing tube.
また、EuやHfの一部は中性子を1回吸収し
た後でも高い中性子吸収能力を有し、1つの核
種が中性子を何度も吸収できるので、これらを
中性子吸収材として用いた場合には、制御棒の
核的寿命が長くなり、制御棒の長寿命化を図る
ことができる。 In addition, some of Eu and Hf have high neutron absorption ability even after absorbing neutrons once, and one nuclide can absorb neutrons many times, so when these are used as neutron absorbing materials, The core life of the control rod becomes longer, and the life of the control rod can be extended.
さらに、Eu2O3の中性子吸収断面積は大き
く、HfO2の中性子吸収断面積は小さいので、
両者の混合比を変えることにより種々の中性子
吸収特性が得られる。 Furthermore, the neutron absorption cross section of Eu 2 O 3 is large and the neutron absorption cross section of HfO 2 is small, so
By changing the mixing ratio of both, various neutron absorption characteristics can be obtained.
さらにまた、Eu2O3―HfO2は相互に安定化
させる働きをし合い、高温・高圧・耐蝕性が水
中でも極めてよい。 Furthermore, Eu 2 O 3 --HfO 2 works to stabilize each other, and has excellent high temperature, high pressure, and corrosion resistance even in water.
また、Tiまたはその合金とEu2O3―HfO2混
合粉末あるいはペレツトの組合せからなる制御
棒は機械的・核的寿命を延ばすことができる。 In addition, a control rod made of a combination of Ti or its alloy and Eu 2 O 3 -HfO 2 mixed powder or pellets can extend its mechanical and nuclear life.
第2図は前述した組合せからなる原子炉の制御
棒を示し、右半分を断面にして示す図である。第
1図と共通な部分には同一付号を採用してある。 FIG. 2 shows a control rod of a nuclear reactor constructed from the combination described above, with the right half shown in cross section. The same numbers are used for parts common to those in Figure 1.
図においてTi製ウイング2の上端すなわち制
御棒1の上端にはEu2O3―HfO2の粉末を充てん
した比較的長さの短いTi製吸収棒管5が横方向
に並列に配置されている。さらにウイング2の側
縁付近には前述したTi製吸収棒管5′が縦方向に
階段的に配置されており、それ以外の場所には
B4C粉末を充てんした吸収棒管6を配置して重量
の軽減をはかつている。このような制御棒を使用
すれば中性子照射量の高い制御棒先端と側縁にお
いて中性子の吸収が有効に行なわれるので制御棒
の機械的・核的寿命が延びることがわかる。 In the figure, at the upper end of the Ti wing 2, that is, at the upper end of the control rod 1, relatively short Ti absorption rod tubes 5 filled with Eu 2 O 3 -HfO 2 powder are arranged in parallel in the lateral direction. . Furthermore, near the side edge of wing 2, the aforementioned Ti absorption rod pipe 5' is arranged vertically in a stepped manner, and in other locations.
An absorption rod tube 6 filled with B 4 C powder is arranged to reduce the weight. It can be seen that if such a control rod is used, neutrons are effectively absorbed at the tip and side edges of the control rod, where the amount of neutron irradiation is high, thereby extending the mechanical and nuclear life of the control rod.
以上に述べたように本発明に係る原子炉の制御
棒においては、制御棒構造材の一部または全部を
チタンまたはチタン合金で構成したから、軽量化
を図ることができ、制御棒の炉心への挿入がスム
ーズになり、また、制御棒引抜き時の衝撃を小さ
くすることができる。 As described above, in the control rod for a nuclear reactor according to the present invention, since a part or all of the control rod structural material is made of titanium or a titanium alloy, it is possible to reduce the weight, and the control rod can be attached to the reactor core. Insertion of the control rod becomes smoother, and the impact when pulling out the control rod can be reduced.
また、中性子照射量の高い制御棒先端部と側縁
部にEu2O3―HfO2粉末あるいはペレツトを充填
した中性子吸収棒管を設けたので、制御棒の長寿
命化を図ることができ、しかもEuやHfは中性子
反応によりHeガス等のガスを発生させないの
で、中性子吸収棒管の機械的寿命を損うことがな
い。Eu2O3―HfO2を用いても制御棒構造材の軽
量化を図ることができるので、全体の制御棒の重
量を従来の制御棒以下とすることができる。 In addition, neutron absorption rod tubes filled with Eu 2 O 3 - HfO 2 powder or pellets are installed at the tip and side edges of the control rod, where the amount of neutron irradiation is high, making it possible to extend the life of the control rod. Moreover, since Eu and Hf do not generate gases such as He gas through neutron reactions, the mechanical life of the neutron absorption tube is not impaired. Since it is possible to reduce the weight of the control rod structural material by using Eu 2 O 3 -HfO 2 , the weight of the entire control rod can be reduced to less than that of conventional control rods.
第1図は従来の沸騰水型原子炉の制御棒の斜視
図、第2図は本発明の実施例の図であつて右半分
を断面として示す図である。
1…制御棒、2…ウイング、3…上部固定板、
4…下部固定板、5…Eu2O3―HfO2充てん管、
6…B4C充てん管。
FIG. 1 is a perspective view of a control rod of a conventional boiling water reactor, and FIG. 2 is a view of an embodiment of the present invention, showing the right half in cross section. 1...Control rod, 2...Wing, 3...Upper fixing plate,
4...Lower fixing plate, 5...Eu 2 O 3 - HfO 2 filling tube,
6...B 4 C filled tube.
Claims (1)
はチタンを主成分とするチタン合金で構成すると
ともに、中性子照射量の高い制御棒先端部と側縁
部にEu2O3―HfO2粉末あるいはペレツトを充填
した中性子吸収棒管を設けたことを特徴とする原
子炉の制御棒。 2 Eu2O3―HfO2粉末あるいはペレツトを充填
した中性子吸収棒管はチタンまたはチタン合金で
形成された特許請求の範囲第1項に記載の原子炉
の制御棒。[Claims] 1. Part or all of the control rod structural material is made of titanium or a titanium alloy containing titanium as a main component, and Eu 2 O 3 is used at the tip and side edges of the control rod, which are exposed to a high amount of neutron irradiation. - A control rod for a nuclear reactor characterized by having a neutron absorption rod tube filled with HfO 2 powder or pellets. 2. The control rod for a nuclear reactor according to claim 1, wherein the neutron absorption rod tube filled with Eu 2 O 3 -HfO 2 powder or pellets is made of titanium or a titanium alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16688679A JPS5690292A (en) | 1979-12-24 | 1979-12-24 | Nuclear reactor control rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16688679A JPS5690292A (en) | 1979-12-24 | 1979-12-24 | Nuclear reactor control rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5690292A JPS5690292A (en) | 1981-07-22 |
JPS6249950B2 true JPS6249950B2 (en) | 1987-10-22 |
Family
ID=15839435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16688679A Granted JPS5690292A (en) | 1979-12-24 | 1979-12-24 | Nuclear reactor control rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5690292A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134438U (en) * | 1988-03-09 | 1989-09-13 | ||
EP0364650B1 (en) * | 1988-10-19 | 1996-10-09 | General Electric Company | Sintered polycrystalline neutron-absorbent bodies comprising lanthanide rare-earth oxides and same water stabilized with a 4A-group metal oxide. |
FR2841368A1 (en) * | 2002-06-25 | 2003-12-26 | Framatome Anp | ARRANGEMENT FOR ADJUSTING THE HEART REACTIVITY OF A NUCLEAR REACTOR, ARRAY ABSORBING THE ARRANGEMENT AND METHOD FOR PROTECTING AGAINST THE WEAR OF THE ABSORBENT ARRAY |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855888A (en) * | 1981-09-30 | 1983-04-02 | 日本原子力事業株式会社 | Control rod of reactor |
JPS6247587A (en) * | 1985-08-28 | 1987-03-02 | 株式会社東芝 | Control rod for nuclear reactor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5614989A (en) * | 1979-07-19 | 1981-02-13 | Tokyo Shibaura Electric Co | Nuclear reactor control rod |
-
1979
- 1979-12-24 JP JP16688679A patent/JPS5690292A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5614989A (en) * | 1979-07-19 | 1981-02-13 | Tokyo Shibaura Electric Co | Nuclear reactor control rod |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134438U (en) * | 1988-03-09 | 1989-09-13 | ||
EP0364650B1 (en) * | 1988-10-19 | 1996-10-09 | General Electric Company | Sintered polycrystalline neutron-absorbent bodies comprising lanthanide rare-earth oxides and same water stabilized with a 4A-group metal oxide. |
FR2841368A1 (en) * | 2002-06-25 | 2003-12-26 | Framatome Anp | ARRANGEMENT FOR ADJUSTING THE HEART REACTIVITY OF A NUCLEAR REACTOR, ARRAY ABSORBING THE ARRANGEMENT AND METHOD FOR PROTECTING AGAINST THE WEAR OF THE ABSORBENT ARRAY |
WO2004001765A1 (en) * | 2002-06-25 | 2003-12-31 | Framatome Anp | Cluster for adjusting a nuclear reactor core reactivity, absorber rod of the cluster and method for protecting the absorber rod against wear |
US7424085B2 (en) | 2002-06-25 | 2008-09-09 | Framatome Anp | Cluster for adjusting a nuclear reactor core reactivity, absorber rod of the cluster and method for protecting the absorber rod against wear |
Also Published As
Publication number | Publication date |
---|---|
JPS5690292A (en) | 1981-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS603584A (en) | Control rod for nuclear reactor | |
EP0145336B1 (en) | Method for minimizing the permeation release of tritrium through a nuclear reactor component | |
JPS6249950B2 (en) | ||
JPS6224755B2 (en) | ||
JPS59192992A (en) | Control rod of reactor | |
JPH0134358B2 (en) | ||
JPH02236198A (en) | Control rod for nuclear reactor | |
JPS6085390A (en) | Reactor control rod | |
JPS60170790A (en) | Control rod for nuclear reactor | |
Zavorka et al. | Enhanced nuclear safety of spent fuel | |
JPS5855886A (en) | Control rod of reactor | |
Bruggeman et al. | Radiolysis and corrosion aspects of the aqueous self-cooled blanket concept | |
JPS62194497A (en) | Control rod for nuclear reactor | |
JPS5855888A (en) | Control rod of reactor | |
JPS5979181A (en) | Reactor control rod | |
JP3056803B2 (en) | Reactor control rod | |
JPS62289792A (en) | Control rod for nuclear reactor | |
JPS62218892A (en) | Control rod | |
JPH0134359B2 (en) | ||
Miyawaki | An experimental study on subcritical assembly with neutron source | |
JP3080775B2 (en) | Reactor control rod | |
JPH04127086A (en) | Control rod for nuclear reactor | |
JPS6035034B2 (en) | control rod | |
JPS5855884A (en) | Control rod of reactor | |
JPS6071988A (en) | Control rod for nuclear reactor |