JPS6249833B2 - - Google Patents

Info

Publication number
JPS6249833B2
JPS6249833B2 JP55061798A JP6179880A JPS6249833B2 JP S6249833 B2 JPS6249833 B2 JP S6249833B2 JP 55061798 A JP55061798 A JP 55061798A JP 6179880 A JP6179880 A JP 6179880A JP S6249833 B2 JPS6249833 B2 JP S6249833B2
Authority
JP
Japan
Prior art keywords
transistor
voltage
motor
resistor
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55061798A
Other languages
Japanese (ja)
Other versions
JPS56159979A (en
Inventor
Yoshiharu Tada
Juichi Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP6179880A priority Critical patent/JPS56159979A/en
Publication of JPS56159979A publication Critical patent/JPS56159979A/en
Publication of JPS6249833B2 publication Critical patent/JPS6249833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/022Security devices, e.g. correct phase sequencing
    • H02P1/026Means for delayed starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は直流電動機の回転数制御回路に関し、
更に詳言すれば直流電動機の起動電流も制限する
ことのできる直流電動機の回転数制御回路に関す
る。 従来、車輛用空気調和装置の送風機の回転数制
御回路は、送風機の直流電動機の電機子巻線に直
列に制御用のトランジスタを接続し、前記制御用
のトランジスタへの入力電圧を変化させて、前記
制御用のトランジスタのエミツタ・コレクタ間電
圧を前記入力電圧により変化させ、電機子巻線に
印加される電圧を変化させて、直流電動機の回転
数を制御して、送風機の風量を調節していた。 しかし上記の如き従来の回転数制御回路による
ときは、起動時に前記制御用のトランジスタに起
動電流が流れ、前記制御用のトランジスタを破壊
する。このために定格電流の大きなトランジスタ
を制御用のトランジスタとして用いねばならず、
トランジスタの形状が大きくなり、大きな取付ス
ペースを必要とする欠点があつた。またこのため
高価となる欠点があつた。 本発明は上記にかんがみなされたもので、上記
の欠点を解消した直流電動機の回転数制御回路を
提供するものである。 この目的は本発明によれば、直流電動機の電機
子巻線に直列に接続したトランジスタに並列に抵
抗を接続し、直流電動機の電源に時定数回路を接
続し、かつ前記電源投入時に前記時定数回路にて
定まる所定時間前記トランジスタをオフ状態にす
る遮断回路を接続し、前記電流の投入から前記所
定時間、前記抵抗を通して電機子電流を流すこと
により達成される。 以下、本発明を実施例により説明する。 第1図は本発明の直流電動機の回転数制御回路
の一実施例の回路図である。また本実施例は車輛
用空気調和装置の送風機の直流電動機の回転数制
御回路の例である。 Bは電圧+VCCの電圧が印加される電源端子で
あり、INは回転数制御用の入力電圧(以下、単
に入力電圧と記す)が印加される入力端子であ
り、1は直流電動機の電機子巻線である。ここで
直流電動機の磁極はたとえばフエライトからなる
永久磁石である。 電機子巻線1と、ダーリントン接続したトラン
ジスタ2と3とからなる制御用のトランジスタ
とを直列に接続して電源+VCCに接続する。また
制御用のトランジスタに並列に抵抗5を接続す
る。 6は演算増幅器で非反転入力端子に抵抗9と1
0とで電源+VCCを分圧した電圧を印加し、演算
増幅器6の出力端子の電圧はトランジスタ7とエ
ミツタ抵抗8とからなるエミツタホロワに入力
し、該エミツタホロワの出力は制御用トランジス
に入力する。 一方、電源+VCCにコンデンサ11と抵抗12
と抵抗13とを直列接続した時定数回路を接続
し、該時定数回路の抵抗13に印加される電圧
を、カスケード接続したトランジスタ14と17
とからなる遮断回路を構成するトランジスタ14
のベースに印加し、トランジスタ14のコレクタ
出力を抵抗15と16とで分圧してトランジスタ
17のベースに印加し、トランジスタ17のコレ
クタ出力はトランジスタ2のベースに印加する。
また、抵抗5の電圧は帰環抵抗19を通して演算
増幅器6の反転入力端子に帰還する。 なお、18は演算増幅器6に入力抵抗であり2
0および21は逆流防止用のダイオードであり、
22は演算増幅器6の発信防止用のコンデンサで
ある。 つぎに上記の如く構成した本実施例の作用につ
いて説明する。 まず定常状態においては、コンデンサ11に電
流は流れていない。従つてトランジスタ14と1
7とからなる遮断回路はトランジスタ14および
17はオフ状態で作用しないために遮断回路は除
外してよい。 従つて演算増幅器6の出力電圧は、トランジス
タ7からなるエミツタホロワを通して、制御用ト
ランジスタに入力される。そこで制御用トラン
ジスタのエミツタ・コレクタ間電圧VCE4が制
御され、電圧VCE4は演算増幅器6の入力電圧か
ら前記非反転入力端子に印加された電圧を差引い
た値に従つて増減する。 いま入力電圧をVIN、演算増幅器6の非反転入
力端子の電圧をVS、演算増幅器6の出力端子と
トランジスタ7のエミツタ間の電圧をVBE1、ト
ランジスタ2のエミツタとトランジスタ7のエミ
ツタ間の電圧をVBE2、トランジスタ2のエミツ
タの電圧をVC、演算増幅器6の出力端子の電圧
をV0とすれば、 VC=V0+VBE2−VBE1C=R/R(VS−VIN)+VS の関係が成立する。 ここでRSは抵抗18の抵抗値であり、Rfは抵
抗19の抵抗値である。 そこで電機子巻線1に印加される電圧VAは VA=VCC−VC となり、入力電圧VINによつて直流電動機の回転
数は制御される。 つぎに、電源+VCCの印加時の作用について説
明する。 電源+VCCを印加した瞬間には電機子は勿論回
転していない。電源+VCCの印加の瞬間から、コ
ンデンサ11、抵抗12および13からなる時定
数回路の時定数で定まる時間、トランジスタ14
はオン状態となる。従つてトランジスタ17もオ
ン状態となる。すなわちトランジスタ14と17
とからなる遮断回路は作用して、トランジスタ2
のベースにほぼ電源+VCCが印加され、トランジ
スタ2および3をトランジスタ17がオンとなつ
ている期間オフ状態にする。従つて第2図に示す
如く起動電流ISは抵抗5にのみ流れ、前記時定
数回路の時定数により定まる前記期間中、電機子
電流IM1は抵抗5のみを流れる。また起動電流は
抵抗5の存在により制限される。さらにまた、時
定数により定まる前記期間の経過した時刻t1にお
いて、トランジスタ14および17はオフ状態と
なりトランジスタ2および3はオフ状態からオン
状態となり、入力電圧により制御される状態とな
る。この場合、一般に抵抗5にのみ流れている電
流IM1による直流電動機の回転数は、入力電圧に
より制御される回転数とは異なるため、時刻t1
おいて再び入力電圧により定まる回転数の場合の
電流IM3より多い電流IM2まで流れ、その后、電
流IM3となり前記した定常状態となる。なお第2
図においてt0は電源+VCCを印加した瞬間の時刻
である。 そこで上記に説明した如く電源+VCC印加時の
起動電流は抵抗5にのみ流れ、制御用トランジス
タには電源+VCCの印加時の起動電流が流れるこ
とはなくなり、かつ定常状態においても電機子電
流の一部は抵抗5を通して流れるために、制御用
トランジスタ4、特にトランジスタ3の容量は小
さくてすむ。 つぎに本発明の一実施例を車輛用空気調和装置
の送風機用直流電動機に適用した場合について説
明する。 車輛用空気調和装置の送風機の風量は、車室内
温度が適当なときは所定の風量であり、車室内温
度を冷却するときは前記所定の風量から増加し、
また車室内温度を加熱するときも前記所定の風量
から増加するように制御するのが普通である。こ
のため送風機用直流電動機の回転数は第3図に示
す如くに制御される。第3図において、横軸は空
気調和装置の吹出空気温度でありCは冷却側を、
Hは加熱側を示し、縦軸は回転数を示している。 そこで第1図に示した本発明の一実施例を上記
の送風機用直流電動機に適用した場合、入力端子
INに印加する入力電圧のパターンを後述する第
4図のIC線形とし、抵抗5の抵抗値を、制御用
トランジスタがオフ状態のとき第3図の回転数
N1に対応する電機子電流を流すように選定す
る。従つて、制御用トランジスタ4はオフ状態
で、トランジスタ2のエミツタの電圧は回転数
N1に対応する電圧となり、電機子電流は総て抵
抗5を流れ、制御用トランジスタ4に電機子電流
は流れない。 また、風量を増加する場合は入力電圧を上昇さ
せて反転増幅器6の出力電圧を低下させれば制御
用トランジスタの導通度が増し、また電機子電
流の一部は抵抗5に分流する。 従つて抵抗5に流れる電流をIR、制御用トラ
ンジスタに流れる電流をICとすれば、第3図
のパターンに対する電流IR、IC、電圧VCは第
4図に示す如くになる。 第4図から明らかな如くトランジスタ3が最大
電力を消費するのは風量を車室温度を冷却または
加熱する場合の風量増加範囲の中間点近傍にな
り、またトランジスタ3は送風機の送風により冷
却されることにより、トランジスタ3は容量が小
さくてすみ、また放熱器も小型でよくなる。 また、本実施例では演算増幅器6の入力信号が
第4図IC線のパターンと同形であると説明した
が、演算増幅器6を二つ用い、それぞれの演算増
幅器を、一方は反転、他方を非反転増幅器として
第4図のパターンを構成しても良い。 以上説明した如く本発明によれば、直流電動機
の電源投入時の起動電流は電機子巻線に直列に接
続した抵抗により制限され、かつ直流電動機の回
転数制御用トランジスタに流れることはないた
め、制御用トランジスタに定格電流の大きいトラ
ンジスタを用いる必要もなく、取付スペースも小
さくなり、安価となる効果がある。 さらにまた、回転数制御用トランジスタは入力
電圧を増幅する演算増幅器の出力電圧により制御
される。したがつて演算増幅器の入力抵抗、帰還
抵抗、バイアス用抵抗を選定することにより、入
力電圧一定時において、電源電圧の変動にかかわ
らず、モータの両端子間の電圧をほぼ一定に維持
することができる効果もある。
[Detailed Description of the Invention] The present invention relates to a rotation speed control circuit for a DC motor,
More specifically, the present invention relates to a rotation speed control circuit for a DC motor that can also limit the starting current of the DC motor. Conventionally, a rotation speed control circuit for a blower in a vehicle air conditioner connects a control transistor in series with the armature winding of a DC motor of the blower, and changes the input voltage to the control transistor. The emitter-collector voltage of the control transistor is varied by the input voltage, and the voltage applied to the armature winding is varied to control the rotation speed of the DC motor and adjust the air volume of the blower. Ta. However, when using the conventional rotational speed control circuit as described above, a starting current flows through the control transistor at startup, destroying the control transistor. For this reason, a transistor with a large rated current must be used as a control transistor.
The disadvantage was that the size of the transistor became larger and required a larger installation space. This also resulted in the drawback of being expensive. The present invention has been made in view of the above, and it is an object of the present invention to provide a rotation speed control circuit for a DC motor that eliminates the above-mentioned drawbacks. According to the present invention, this purpose is achieved by connecting a resistor in parallel to a transistor connected in series to an armature winding of a DC motor, connecting a time constant circuit to a power source of the DC motor, and controlling the time constant when the power is turned on. This is achieved by connecting a cutoff circuit that turns off the transistor for a predetermined period of time determined by the circuit, and allowing armature current to flow through the resistor for the predetermined period of time after the current is applied. The present invention will be explained below using examples. FIG. 1 is a circuit diagram of an embodiment of a rotation speed control circuit for a DC motor according to the present invention. Further, this embodiment is an example of a rotation speed control circuit of a DC motor of a blower of a vehicle air conditioner. B is a power supply terminal to which a voltage of +V CC is applied, IN is an input terminal to which an input voltage for rotation speed control (hereinafter simply referred to as input voltage) is applied, and 1 is a terminal for the armature of a DC motor. It is a winding. The magnetic poles of the DC motor are permanent magnets made of ferrite, for example. An armature winding 1 and a control transistor 4 consisting of Darlington-connected transistors 2 and 3.
Connect them in series and connect them to the power supply +V CC . Further, a resistor 5 is connected in parallel to the control transistor 4 . 6 is an operational amplifier with resistors 9 and 1 connected to the non-inverting input terminal.
A voltage obtained by dividing the power supply +V CC with 0 is applied, and the voltage at the output terminal of the operational amplifier 6 is input to an emitter follower consisting of a transistor 7 and an emitter resistor 8, and the output of the emitter follower is input to the control transistor 4 . . On the other hand, capacitor 11 and resistor 12 are connected to the power supply +V CC
and a resistor 13 are connected in series, and the voltage applied to the resistor 13 of the time constant circuit is connected to the transistors 14 and 17 connected in cascade.
A transistor 14 constituting a cutoff circuit consisting of
The collector output of transistor 14 is voltage-divided by resistors 15 and 16 and applied to the base of transistor 17, and the collector output of transistor 17 is applied to the base of transistor 2.
Further, the voltage of the resistor 5 is fed back to the inverting input terminal of the operational amplifier 6 through the return resistor 19. In addition, 18 is an input resistance to the operational amplifier 6, and 2
0 and 21 are diodes for preventing backflow,
22 is a capacitor for preventing the operational amplifier 6 from oscillating. Next, the operation of this embodiment configured as described above will be explained. First, in a steady state, no current flows through the capacitor 11. Therefore transistors 14 and 1
Since the transistors 14 and 17 do not function in the OFF state, the circuit 7 may be omitted. Therefore, the output voltage of the operational amplifier 6 is inputted to the control transistor 4 through the emitter follower made up of the transistor 7. Therefore, the emitter-collector voltage V CE4 of the control transistor 4 is controlled, and the voltage V CE4 increases or decreases in accordance with the value obtained by subtracting the voltage applied to the non-inverting input terminal from the input voltage of the operational amplifier 6. Now, the input voltage is V IN , the voltage at the non-inverting input terminal of operational amplifier 6 is V S , the voltage between the output terminal of operational amplifier 6 and the emitter of transistor 7 is V BE1 , and the voltage between the emitter of transistor 2 and the emitter of transistor 7 is V S . If the voltage is V BE2 , the voltage at the emitter of transistor 2 is V C , and the voltage at the output terminal of operational amplifier 6 is V 0 , then V C = V 0 + V BE2 - V BE1 V C = R f /R S (V The relationship of S - V IN ) + V S holds true. Here, R S is the resistance value of the resistor 18 and R f is the resistance value of the resistor 19. Therefore, the voltage V A applied to the armature winding 1 becomes V A =V CC -V C , and the rotation speed of the DC motor is controlled by the input voltage V IN . Next, the effect when the power supply +V CC is applied will be explained. Of course, the armature is not rotating at the moment when the power supply +V CC is applied. From the moment of application of the power supply +V CC , the time determined by the time constant of the time constant circuit consisting of the capacitor 11 and the resistors 12 and 13, the transistor 14
is in the on state. Therefore, transistor 17 is also turned on. That is, transistors 14 and 17
The interrupting circuit consisting of
Approximately the power supply +V CC is applied to the base of , turning transistors 2 and 3 off while transistor 17 is on. Therefore, as shown in FIG. 2, the starting current I S flows only through the resistor 5, and the armature current I M1 flows only through the resistor 5 during the period determined by the time constant of the time constant circuit. Furthermore, the starting current is limited by the presence of the resistor 5. Furthermore, at time t1 when the period determined by the time constant has elapsed, transistors 14 and 17 are turned off, transistors 2 and 3 are turned on from the off state, and are in a state controlled by the input voltage. In this case, the rotational speed of the DC motor due to the current I M1 flowing only through the resistor 5 is generally different from the rotational speed controlled by the input voltage, so at time t 1 the current when the rotational speed is determined by the input voltage again. The current flows up to I M2 which is larger than I M3 , after which the current becomes I M3 and the above-mentioned steady state is reached. Furthermore, the second
In the figure, t 0 is the instant when the power supply +V CC is applied. Therefore, as explained above, the starting current when the power supply +V CC is applied flows only to the resistor 5, and the starting current when the power supply +V CC is applied does not flow to the control transistor, and even in the steady state, the armature current Since a portion of the current flows through the resistor 5, the capacitance of the control transistor 4, especially the transistor 3, can be small. Next, a case will be described in which an embodiment of the present invention is applied to a DC motor for a blower of a vehicle air conditioner. The air volume of the blower of the vehicle air conditioner is a predetermined air volume when the vehicle interior temperature is appropriate, and increases from the predetermined air volume when cooling the vehicle interior temperature,
Also, when heating the vehicle interior temperature, it is common to control the air volume to increase from the predetermined air volume. Therefore, the rotational speed of the blower DC motor is controlled as shown in FIG. In Fig. 3, the horizontal axis is the temperature of the air blown out from the air conditioner, and C represents the cooling side.
H indicates the heating side, and the vertical axis indicates the number of rotations. Therefore, when the embodiment of the present invention shown in FIG. 1 is applied to the above-mentioned DC motor for blower, the input terminal
The pattern of the input voltage applied to IN is the I C linear pattern shown in FIG. 4, which will be described later, and the resistance value of the resistor 5 is set to the rotation speed shown in FIG. 3 when the control transistor 4 is in the off state.
Select so that the armature current corresponding to N 1 flows. Therefore, the control transistor 4 is in the off state, and the voltage at the emitter of the transistor 2 is equal to the rotation speed.
The voltage corresponds to N1 , and all the armature current flows through the resistor 5, and no armature current flows through the control transistor 4. Further, when increasing the air volume, by increasing the input voltage and decreasing the output voltage of the inverting amplifier 6, the degree of conductivity of the control transistor 4 increases and a part of the armature current is shunted to the resistor 5. Therefore, if the current flowing through the resistor 5 is I R and the current flowing through the control transistor 4 is I C , then the current I R , I C and voltage V C for the pattern shown in FIG. 3 will be as shown in FIG. 4. . As is clear from FIG. 4, transistor 3 consumes maximum power near the midpoint of the range of increase in air volume when cooling or heating the cabin temperature, and transistor 3 is cooled by air from the blower. As a result, the transistor 3 can have a small capacity, and the heat sink can also be made small. Furthermore, in this embodiment, it has been explained that the input signal of the operational amplifier 6 has the same shape as the pattern of the I C line in FIG. The pattern of FIG. 4 may be configured as a non-inverting amplifier. As explained above, according to the present invention, the starting current when the DC motor is powered on is limited by the resistor connected in series with the armature winding, and does not flow to the rotation speed control transistor of the DC motor. There is no need to use a transistor with a large rated current as a control transistor, the installation space is reduced, and the cost is reduced. Furthermore, the rotational speed control transistor is controlled by the output voltage of an operational amplifier that amplifies the input voltage. Therefore, by selecting the input resistance, feedback resistance, and bias resistance of the operational amplifier, it is possible to maintain the voltage between both terminals of the motor almost constant when the input voltage is constant, regardless of fluctuations in the power supply voltage. There are some effects that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図。第2図は
本発明の一実施例の作用の説明に供する図。第3
図は車輛用空気調和装置の送風機の回転数制御の
一例を示す図。第4図は本発明の一実施例を第3
図に示す回転数制御の送風機に用いた場合の作用
の説明に供する図。 1……電機子巻線、2,3,7,14および1
7……トランジスタ、……制御用トランジス
タ、5……抵抗、6……反転増幅器。
FIG. 1 is a circuit diagram of an embodiment of the present invention. FIG. 2 is a diagram for explaining the operation of an embodiment of the present invention. Third
The figure is a diagram showing an example of rotation speed control of a blower of a vehicle air conditioner. FIG. 4 shows a third embodiment of the present invention.
FIG. 3 is a diagram for explaining the effect when used in the rotation speed controlled blower shown in the figure. 1... Armature winding, 2, 3, 7, 14 and 1
7...Transistor, 4 ...Control transistor, 5...Resistor, 6...Inverting amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電動機の電機子巻線に直列にトランジス
タを接続し、該トランジスタの制御電圧を変化さ
せて前記直流電動機の回転数を制御する直流電動
機の回転数制御回路において、入力電圧を増幅
し、かつ出力電圧で前記トランジスタの制御電圧
を変化させる演算増幅器と、前記トランジスタに
並列に接続した抵抗と、前記直流電動機の電源に
接続した時定数回路と、前記電源の投入時に該電
源の投入時から前記時定数回路にて定まる所定時
間前記トランジスタをオフ状態にする遮断回路と
を備えたことを特徴とする直流電動機の回転数制
御回路。
1. In a DC motor rotation speed control circuit that connects a transistor in series to the armature winding of a DC motor and controls the rotation speed of the DC motor by changing the control voltage of the transistor, the input voltage is amplified, and an operational amplifier that changes the control voltage of the transistor with an output voltage; a resistor connected in parallel to the transistor; a time constant circuit connected to the power source of the DC motor; 1. A rotation speed control circuit for a DC motor, comprising: a cutoff circuit that turns off the transistor for a predetermined period determined by a time constant circuit.
JP6179880A 1980-05-12 1980-05-12 Revolution controlling circuit for dc motor Granted JPS56159979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6179880A JPS56159979A (en) 1980-05-12 1980-05-12 Revolution controlling circuit for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6179880A JPS56159979A (en) 1980-05-12 1980-05-12 Revolution controlling circuit for dc motor

Publications (2)

Publication Number Publication Date
JPS56159979A JPS56159979A (en) 1981-12-09
JPS6249833B2 true JPS6249833B2 (en) 1987-10-21

Family

ID=13181475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6179880A Granted JPS56159979A (en) 1980-05-12 1980-05-12 Revolution controlling circuit for dc motor

Country Status (1)

Country Link
JP (1) JPS56159979A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799412A (en) * 1980-12-12 1982-06-21 Hitachi Ltd Air flow control circuit of air conditioner for car
EP1039623A3 (en) * 1999-03-26 2003-09-03 Siemens Aktiengesellschaft Actuator and auxilliar drive in a vehicule with DC-motor and limiting of inrush current

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102313A (en) * 1973-01-31 1974-09-27
JPS5129622U (en) * 1974-08-21 1976-03-03
JPS5465317A (en) * 1977-11-01 1979-05-25 Nippon Denso Co Ltd Motor drive unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102313A (en) * 1973-01-31 1974-09-27
JPS5129622U (en) * 1974-08-21 1976-03-03
JPS5465317A (en) * 1977-11-01 1979-05-25 Nippon Denso Co Ltd Motor drive unit

Also Published As

Publication number Publication date
JPS56159979A (en) 1981-12-09

Similar Documents

Publication Publication Date Title
JP3687343B2 (en) Battery charge control circuit
US5349275A (en) Brushless direct current motor
JPS623667B2 (en)
JPH0223090A (en) Driver for brushless motor
JPH04304188A (en) Speed controller for dc brushless motor
JPH0731190A (en) Drive circuit for fan motor
JPS6249833B2 (en)
US3412306A (en) Circuit arrangement for controlling the speed of battery-fed electric motors
JPH0129866Y2 (en)
US5434488A (en) Device for preventing the burning of a coil for a brushless motor and capable of controlling the speed of the motor
JP3333318B2 (en) Output transistor saturation prevention circuit
JPS589589A (en) Speed control circuit for compact dc motor
USRE36860E (en) Brushless direct current motor
JPS6223278Y2 (en)
JPH11220374A (en) Power source device
JP3064327B2 (en) Motor drive circuit
JP2777002B2 (en) Motor drive
JP2577446Y2 (en) DC fan motor speed controller
JPS6242476B2 (en)
JP2973244B2 (en) Motor drive circuit
JPH023929Y2 (en)
JPH0346596Y2 (en)
JPS582158Y2 (en) Chiyokuryudendo Kinosokudo Seigiyosouchi
JPH0243007B2 (en)
JPS602006Y2 (en) Air conditioner air volume control device